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Magnetic-field-tuned quantum criticality of the heavy-fermion system YbPtBi
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In this paper, we present systematic measurements of the temperature and magnetic field dependencies of
the thermodynamic and transport properties of the Yb-based heavy fermion YbPtBi for temperatures down to
0.02 K with magnetic fields up to 140 kOe to address the possible existence of a field-tuned quantum critical
point. Measurements of magnetic-field- and temperature-dependent resistivity, specific heat, thermal expansion,
Hall effect, and thermoelectric power indicate that the AFM order can be suppressed by an applied magnetic
field of Hc ∼ 4 kOe. In the H -T phase diagram of YbPtBi, three regimes of its low-temperature states emerge:
(I) AFM state, characterized by a spin density wave-like feature, which can be suppressed to T = 0 by the relatively
small magnetic field of Hc ∼ 4 kOe; (II) field-induced anomalous state in which the electrical resistivity follows
�ρ(T ) ∝ T 1.5 between Hc and ∼8 kOe; and (III) Fermi liquid (FL) state in which �ρ(T ) ∝ T 2 for H � 8 kOe.
Regions I and II are separated at T = 0 by what appears to be a quantum critical point. Whereas region III appears
to be a FL associated with the hybridized 4f states of Yb, region II may be a manifestation of a spin liquid state.
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I. INTRODUCTION

The face-centered-cubic (fcc) YbPtBi is a member of RPtBi
(R = rare-earth) systems and one of the few stoichiometric
Yb-based heavy fermion compounds.1,2 An enormous
low-temperature Sommerfeld coefficient, γ � 8 J/mol K2

(Ref. 2), which corresponds to one of highest effective mass
values among heavy fermion (HF) systems, is a characteristic
of YbPtBi. This system manifests what is thought to be antifer-
romagnetic (AFM) ordering below TN = 0.4 K, below the esti-
mated Kondo temperature of TK ∼ 1 K (Ref. 2). The results of
electrical resistivity and specific-heat measurements suggested
that a spin density wave transition occurs below TN (Ref. 3)
with a small ordered moment of only ∼0.1μB or less that so
far has prevented determination of the ordering wave vector.4,5

It has been proposed that the massive electronic state manages
to appear due to either (1) the frustrated (for nearest neighbors)
fcc crystal structure suppressing long-range order to below
the Kondo temperature or (2) the low carrier density, metallic
nature leading to an unusually low Kondo temperature2,6

or both.
For an AFM quantum critical point (QCP) in HF systems

the conventional theory, so-called spin density wave (SDW)
scenario, considers itinerant f electrons on both the ordered
and the paramagnetic sides of the QCP.7–9 The critical
SDW fluctuations are responsible for non-Fermi liquid (nFL)
behavior in which the electrical resistivity follows �ρ(T ) ∝
T n with n < 2 (n = 1.5 for d = 3 and n = 1 for d = 2).
In this scenario, the quasiparticle effective mass is finite
C(T )/T ∝ −√

T at QCP for d = 3 critical fluctuations. For
d = 2 critical fluctuations, the theory predicts a logarithmic
divergence of the effective mass C(T )/T ∝ − log(T ). An
essential aspect of the SDW scenario is that the characteristic
energy scale, TK , remains finite across the QCP; thus, the
quasiparticles survive in the vicinity of the QCP.10 An alternate
scenario, so-called Kondo breakdown scenario, has proposed

that a localization of the f electrons at the QCP gives rise to
a breakdown of the local Kondo energy scale and a dramatic
change of the Fermi surface topology.11–15 The SDW scenario
has been applied to several HF compounds such as CeCu2Si2
(Ref. 16) and CeNi2Ge2 (Ref. 17) and the Kondo breakdown
model seems to be applicable to Au-doped CeCu6−xAux (Refs.
18 and 19) (specially called a local quantum criticality12,13)
and YbRh2Si2 (Refs. 10 and 20). However, unfortunately,
neither SDW nor the Kondo breakdown model are sufficient
to explain the observed experimental results from these
systems.

Magnetic-field-induced AFM QCP systems have been
limited to relatively few examples, only among stoichio-
metric compounds, in particular YbRh2Si2 (Refs. 20–24)
and YbAgGe (Refs. 25–30). In addition to strong quantum
fluctuations in the vicinity of the QCP, the existence of a
new crossover field scale, apparently associated with the QCP,
detected by several thermodynamic and transport measure-
ments, has emerged from the extensive study of YbRh2Si2
(Refs. 20,23, and 24) and YbAgGe (Refs. 25 and 26). This
crossover field scale was associated with changes in Hall
effect measurements,20 interpreted as a change of the Fermi
surface at the QCP and more clearly seen in the other HF
antiferromagnet, YbAgGe, in an applied magnetic field of ∼45
kOe (Refs. 27–29), particularly in Hall resistivity data27 and
extended to higher temperatures via thermoelectric power31

measurements. Among magnetic-field-tuned QCP systems,
YbAgGe shows a wide nFL region characterized by the
linear temperature dependence of the resistivity, �ρ ∝ T

(Ref. 28). Recently, a similar range of nFL behavior has
also been observed in Ge-doped YbRh2Si2 (Ref. 32). Mainly
based on the magnetic-field-tuned QCP systems, a new
mechanism for quantum criticality has been proposed, one
that considers two tuning parameters:32–35 (i) the ratio between
the Kondo temperature and the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction and (ii) the quantum zero-point
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fluctuations which can be tuned by increasing the amount of
frustration. A Doniach-like36 two-dimensional phase diagram
can be established with these two tuning parameters. In order
to better understand and test the details of this and other models
of magnetic-field-tuned quantum criticality, new, hopefully
simpler, model stoichiometric Yb-based systems are needed.

In this paper, we present systematic measurements of the
thermodynamic and transport properties of YbPtBi down to
0.02 K with magnetic fields up to 140 kOe to establish,
delineate, and understand the nature of magnetic field-induced
QCP in this canonical system. In the constructed H -T phase
diagram for YbPtBi three low-temperature regimes emerge:
(i) AFM state, characterized by signatures of a SDW, which
can be suppressed to T = 0 with a relatively small, external
magnetic field of Hc ∼ 4 kOe, (ii) a field-induced, anomalous
state in which the electrical resistivity follows ρ(T ) ∝ T 1.5

between Hc and ∼8 kOe, and (iii) a Fermi liquid (FL)
state in which ρ(T ) ∝ T 2 for H � 8 kOe. Associated with
these regions are two crossover scales, emerging near Hc ∼
4 kOe and H ∗ ∼ 7.8 kOe at T = 0. For H > H ∗, the FL
coefficient A of the temperature dependence of resistivity and
γ the linear component of the temperature dependence of
specific heat are drastically enhanced as ∼1/(H − Hc) and
∼1/(H − Hc)2, respectively, when approaching Hc from the
high-magnetic-field side. In contrast to the resistivity results,
the electronic specific-heat coefficient, C(T )/T , does not show
any pronounced nFL behavior as either C(T )/T ∝ −√

T or
−log(T ) down to 0.05 K near Hc and H ∗.

II. EXPERIMENTAL

Single crystals of YbPtBi and LuPtBi were grown out of
a Bi-rich ternary melt.1,37,38 The crystals were characterized
by powder x-ray diffraction measurements, collected at room
temperature on a Rigaku MiniFlex. The determined lattice
parameters and space group are in agreement with earlier
studies;1,5 MgAgAs structure type, space group F43m, Z =
4. The electrical resistivity, ρ(T ,H ), and Hall resistivity,
ρH (T ,H ), measurements as functions of temperature (0.02–
300 K) and magnetic field (0–140 kOe) were performed
by ordinary ac (f = 16 Hz) four-probe methods. Below
1 K, ρ(T ,H ) and ρH (T ,H ) were measured in an Oxford
Instruments 3He-4He dilution refrigerator with Lakeshore
LS370 and Linear Research LR700 ac resistance bridges.
In order to reduce heating effects, the excitation current, I ,
was selected as low as possible, 10–30 μA, and the magnetic
field was swept very slowly, 100–500 Oe/min. Above 0.4 K,
ρ(T ,H ) and ρH (T ,H ) were measured in a Quantum Design
(QD) Physical Property Measurements System (PPMS) with
3He option. The magnetoresistance (MR) measurements were
performed in a transverse configuration (I ⊥ H) : I ‖ [010]
and H ‖ [100]. The Hall resistivity was measured with the
following configuration: The Hall voltage is perpendicular to
the current and magnetic field (VH ⊥ I ⊥ H), where I ‖ [010]
and H ‖ [100]. In order to remove MR contributions in ρH due
to the misalignments of the Hall voltage wires, the polarity
of magnetic field was switched. For LuPtBi ρ(T ) and ρH (T )
measurements were performed with H ‖ [111], I ⊥ [111], and
H ⊥ I ⊥ VH configuration.

The specific heat was measured in a PPMS with a 3He
option by the relaxation method in the temperature range
between 0.4 K and 100 K and magnetic fields up to
140 kOe, applied along the [100] direction. The specific-
heat measurements were extended down to 0.05 K using
a PPMS with dilution refrigerator option at the Quantum
Design headquarters in San Diego, CA. The dc magnetization
as a function of temperature from 1.8 K to 300 K and
magnetic fields, up to 70 kOe, were measured in a QD
Magnetic Property Measurement System. Thermal expan-
sion and magnetostriction were measured using a capacitive
dilatometer39 constructed of copper for the 3He setup and
titanium for the dilution refrigerator setup. The dilatometer
was mounted in a 3He cryostat and was operated over a
temperature range of 0.3–300 K and magnetic fields up to
90 kOe. The magnetostriction measurements were extended to
temperatures down to 0.02 K and magnetic fields up to 180 kOe
in a 3He-4He dilution refrigerator at the Millikelvin Facility,
High Magnetic Field National Laboratory, Tallahassee, FL.
The variation of the sample length was measured in the
longitudinal configuration, �L ‖ H ‖ [100]. Thermoelectric
power (TEP) measurements were carried out using a dc,
alternating heating (two-heater-two-thermometer) technique40

over the temperature range from 0.35 K to 300 K and
magnetic fields up to 140 kOe. The heat current was generated
along �T ‖ [010] and the temperature difference, �T , was
kept between 0.03 K to 0.05 K below 2 K. The magnetic
field was applied along H ‖ [100], maintaining a transverse
configuration with heat current; H ⊥ �T . For LuPtBi TEP
was measured in a transverse configuration with �T ⊥ [111]
and H ‖ [111] configuration.

III. RESULTS

A. Magnetization

The anisotropic inverse magnetic susceptibilities,
H/M(T ), of YbPtBi are shown in Fig. 1(a), where the
magnetic field was applied along the [100], [110], and
[111] directions. The observed magnetic susceptibility is
essentially isotropic down to 2 K. Between 10 K and 250 K,
H/M(T ) obeys the Curie-Weiss law, χ (T ) = C/(T − θp),
with θp � −2 K and μeff � 4.3 μB/Yb3+, which is close to
the free ion value of 4.5μB and consistent with earlier studies.2

Magnetization isotherms, M(H ), of YbPtBi were measured at
1.8 K for the magnetic field applied along the [100], [110], and
[111] directions, as shown in Fig. 1(b). The magnetic moment
develops a modest anisotropy for H > 25 kOe at 1.8 K and
reaches values between 2.3μB/Yb3+ and 2.8μB/Yb3+ at
70 kOe, depending on the magnetic-field orientations, all of
which are below the theoretical saturated value of 4μB for
the free Yb3+ ion that is expected due to the Kondo and
crystalline-electric-field (CEF) effects.

B. Resistivity

Earlier studies of the low-temperature resistivity of YbPtBi
found that below TN ∼ 0.4 K an unexpected sample-to-sample
variation of the resistive anomaly, and even an apparent
anisotropy, could develop. It was speculated that strain associ-
ated with the sample mounting and hypothesized magnetoelas-
tic effects could be responsible for these observations.41 Before
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FIG. 1. (Color online) (a) Inverse magnetic susceptibility, H/M(T ), of YbPtBi, where the magnetic field was applied along [100], [110], and
[111] directions. The solid line represents the Curie-Weiss fit to the data for H ‖ [100]. (Inset) H/M(T ) at low temperatures. (b) Magnetization
isotherms of YbPtBi at T = 1.8 K for H ‖ [100], [110], and [111] direction.

embarking on extensive detailed transport measurements, we
decided to examine this in detail.

Figure 2 shows the electrical resistivity, ρ(T ), for several
differently mounted samples of YbPtBi as a function of
temperature for cooling. The electrical resistivity curves of
samples #3, #10, and #14 are normalized at 1 K to the
resistivity of sample #13, for clarity. The detailed shape of

FIG. 2. (Color online) Temperature-dependent electrical resistiv-
ity, ρ(T ), of YbPtBi measured for different sample mount conditions
for cooling. ρ(T ) curves are normalized to the sample #13 curve
at T = 1 K. Samples #13 and #14 were hanging in vacuum, thus
cooled only through high-purity platinum voltage and current lead
wires. Samples #3 and #10 were attached to the thermal bath by
GE 7301 varnish. (Inset) ρ(T ) of sample #10, measured by the
following temporal procedure. (i) Initially, the sample was mounted
with Apiezon N grease in 3He cryostat and ρ(T ) was measured down
to 0.34 K (circles) in order to see the onset of a sharp phase transition.
After cleaning the N grease (ii) the sample was attached to the dilution
refrigerator with GE varnish and ρ(T ) was measured (squares, inset
and main figure). After cleaning the GE varnish (iii) the sample was
mounted with N grease again in a dilution refrigerator and ρ(T ) was
measured (triangles).

the ρ(T ) curve below the AFM ordering temperature, TN ,
turns out to be very sensitive to the details of how the sample
is attached to heat sink for cooling. Samples #13 and #14,
both of which show a sharp increase of ρ(T ) below the phase
transition, were measured with the sample hanging in vacuum
(without being directly affixed to the thermal bath). Thus,
these samples were cooled down to 0.02 K primarily through
the platinum voltage and current wires. On the other hand,
the electrical resistivity measurements, taken on samples that
were mechanically attached to the heat sink, showed less
reproducible behavior. Samples #3 and #10 were attached to
the heat sink with GE 7301 varnish (GE varnish). The ρ(T )
curve for sample #3 shows a relatively weak jump below TN ,
compared to the results from samples #13 or #14, and no
obvious anomaly, corresponding to the AFM phase transition,
was observed for sample #10, which manifests a weak slope
change, best seen in a dρ(T )/dT plot.

The degree of sensitivity to mounting conditions can be
illustrated in further detail by the measurement sequence
illustrated in the inset of Fig. 2. Initially, ρ(T ) data on several
samples of YbPtBi were measured down to 0.34 K in 3He
cryostat in order to confirm a sharp onset of the phase transition
below 0.4 K; Apiezon N grease was used to secure the sample
to the heat sink. Most of the samples showed a sharp rise of
ρ(T ) below 0.4 K in which the slope of ρ(T ) below 0.4 K
was comparable to that of sample #13 in Fig. 2. The ρ(T )
data for sample #10 is representative and is shown as circles
in the inset to Fig. 2. Next, from these samples, after cleaning
the N grease off using toluene, eight samples were mounted
on a dilution refrigerator cold stage with the GE varnish and
ρ(T ) was measured down to 0.02 K. The ρ(T ) data obtained
for sample #10 in this measurement are presented as squares
in Fig. 2 (and its inset) in which the phase transition is no
longer discernible, due to the complete suppression of the
ρ(T ) feature below 0.4 K. All eight samples showed ρ(T )
behavior similar that of sample #10. Last, after cleaning of
the GE varnish, using ethanol, samples were remounted with
Apiezon N grease to the cold stage of the dilution refrigerator.
The ρ(T ) data obtained in this measurement for sample #10
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FIG. 3. (Color online) Temperature-dependent electrical resistiv-
ity, ρ(T ), of YbPtBi (for samples #3 and #13) at H = 0 and 140 kOe.
For T > 0.35 K data, samples were mounted in PPMS 3He option
with Apiezon N grease. Below 1 K, in a dilution refrigerator sample
#3 was mounted to the heat sink with GE varnish and sample #13 was
measured with the sample hanging in vacuum. The sample mounting
configuration for sample #13 in a dilution refrigerator is illustrated
in the upper left side. Sample #13 was held onto the heat sink with
four Pt electrical contact wires and very thin dental floss (dashed
line) to address the torque on sample; in order to cool down the
sample through contact wires, Pt wires were glued to the heat sink
using dilute Ge varnish (hatched area). (Inset) ρ(T ) of sample #13
for several selected magnetic fields.

are plotted in the inset of Fig. 2 as triangles. Interestingly, ρ(T )
shows sharp rise below 0.4 K, which is similar to the result of
sample #3. The magnitude of enhancement of ρ(T ) below TN

is still smaller than that for the results for free hanging samples,
#13 and #14, however much bigger than that for GE-varnish
results, where among the eight remounted samples, five of
them indicate a sharply rising ρ(T ) below 0.4 K. The observed
ρ(T ) response for different sample mounting methods may be
related to the anisotropic local pressure (strain), generated by
different thermal contraction between sample and heat sink via
thermal bond (GE varnish) combined with changes associated
with the AFM transition.

In the paramagnetic region, T > TN , the electrical resistiv-
ity of YbPtBi is not sensitive to either the sample mounting
methods for cooling or the sample growth conditions, which
was tested with more than 20 samples. All resistivity curves,
normalized at 300 K, collapse to a single curve, where
the resistivity values at 300 K range between 350 and
420 μ� cm (reflecting our geometric error in evaluating
sample dimensions). In Fig. 3, as an example, the ρ(T )
data of samples #3 and #13 are plotted for H = 0 (down
to 0.02 K) and 140 kOe (down to 0.35 K), where the ρ(T )
curve of sample #3 is scaled at 300 K to sample #13. For
T > 0.35 K, both samples were mounted in PPMS 3He option
with Apizon N grease. For measurements below 1 K, in a
dilution refrigerator, sample #3 was mounted to the heat sink
with GE varnish and sample #13 was hanging in vacuum.
Two curves between 0.35 K and 1 K overlap very well within
instrumental error range. In zero field the two ρ(T ) curves
are identical above 0.4 K. For H = 140 kOe data, two curves

also show virtually identical temperature dependencies with an
approximately 10% (1.6 μ� cm) difference at 0.4 K. In zero
field, ρ(T ) decreases with decreasing temperature, displayed
an inflection around 85 K [a maximum in dρ(T )/dT , not
shown in the figure], and shows a shoulderlike feature below
5 K as it drops sharply until T = TN . These two characteristic
features in ρ(T ), around 5 K and 85 K, are probably due
to the Kondo and CEF effects. Without correction for the
phonon contribution to the resistivity, the local maximum
associated with the coherence effect in a Kondo lattice and
the logarithmic temperature dependence of ρ(T ) cannot be
resolved. In the inset of Fig. 3, ρ(T ) data from sample #13
are plotted down to 0.02 K for H = 0 and down to 0.4 K in
various applied magnetic fields. As magnetic field increases,
ρ(T ) shows a continuous suppression of the low-temperature
anomaly, developed near 5 K, which is no longer visible at
least for H = 140 kOe. The observed MR for H = 140 kOe
changes from negative below to positive above approximately
25 K. In the following, we mainly present the resistivity
results of sample #13 and the results are compared to those of
samples #3 and #14.

It should be noted we were aware of the possibility that
torque on free hanging samples in vacuum (#13 and #14)
might affect the measurements under magnetic fields. As
shown in Fig. 1(b), M(H ) has an anisotropy although small for
H > 25 kOe. This small anisotropy can affect the resistivity
measurements when the sample is hanging with only current
and voltage wires (without glue). Thus, samples were secured
by very thin dental floss across the silver-paste contacts as
shown in the upper left side of Fig. 3. Dilution-refrigerator-
based measurements of the resistivity under magnetic field
for samples #13 and #14 were made only up to 50 kOe due
to the concern of potential torque on the sample and the
resistivity was measured in a 3He setup fixed with Apizon
grease. Based on several measurements, a detailed analysis
leads us to the conclusion that the torque on sample is not
an issue at least up to 50 kOe when holding samples with
dental floss and four electrical contact wires. The two sets of
temperature-dependent resistivity data between the data below
1 K without glue and down to 0.35 K with Apizon grease
are well matched with each other above 0.35 K. In addition,
the magnetic-field dependence of resistivity down to 0.4 K
measured with Apizon grease overlap well with the curve with
GE varnish and no noticeable difference was observed between
the up- and downsweeps of magnetic fields. As we show
below, the power-law analysis of the resistivity, ρ(T ) = ρ0 +
AT n, indicates virtually same behavior of A and n between
samples #3 (GE varnish) and #13 (free hanging).

Figures 4(a) and 4(b) show the low-temperature ρ(T ) of
YbPtBi for sample #13. In zero field there is a monotonic
quasilinear decrease with temperature from 1 K down to
just above 0.4 K, followed by a sharp increase of ρ(T )
observed below 0.4 K (which is consistent with earlier
results3). This behavior is not consistent with that observed
for simple, local moment AFM ordering for which ρ(T )
decreases below TN due to a loss of spin disorder scattering.
A sharp rise of the resistivity below 0.4 K is reminiscent
of the resistivity signature of charge density wave (CDW)42

and SDW materials43 and of that in AFM materials which
form a magnetic superzone gap below TN (Ref. 44). The
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FIG. 4. (Color online) Low-temperature electrical resistivity [ρ(T ), sample #13] of YbPtBi in various magnetic fields applied along the
[100] direction (a) for H � 6 kOe and (b) for 4 kOe � H � 20 kOe. For comparison, ρ(T ) data at H = 4 and 6 kOe are plotted in both figures.
(a) Open and closed symbols correspond to the data taken with 3 and 30 μA excitation current, respectively.

ac magnetic susceptibility suggests that YbPtBi exhibits an
AFM order below 0.4 K (Ref. 2) but the μSR (Ref. 4) and
neutron scattering experiments5 indicate that if there is an
ordered moment it is 0.1μB or less. Thus, the ρ(T ) data are
not inconsistent with an increase of ρ(T ) along the direction of
the SDW modulation, indicating a partial gapping of the Fermi
surface, similar to what is observed for a number of SDW
systems. For H > 4 kOe the resistive anomaly is completely
suppressed and a monotonic increase of ρ(T ) is observed as
temperature increases as shown in Fig. 4(b). Interestingly, an
anomalous behavior of the resistivity in the zero-temperature
limit, ρ(0), is observed around 8 kOe, at which ρ(0) seems
to have a local maximum with varying magnetic field (see
below).

As magnetic field increases from H = 0, the resistive
anomaly associated with TN is not only reduced in height but

also shifts to lower temperature as shown in Fig. 4(a). In order
to estimate how much Fermi surface is being gapped and its
magnetic field dependence, the relative change in conductivity,
(σn − σg)/σn, is determined, where the subscripts g and n refer
to the gapped and normal state, respectively.3,45 The criteria
for determination of resistivity values above (ρn + ρ0) and
below (ρg + ρ0) the SDW transition are shown in Fig. 5(a).
Since the residual resistivity (ρ0) of HF compounds is often
dependent on magnetic field and pressure, especially close to
the magnetic instability,46–48 the ρ0 value is not solely due
to impurity or defect scattering. Thus, the deconvolution of
contributions to ρ0 for HF compounds is complex and not
trivial. For this reason, we estimate how much FS is gapped
based on two extremes: one subtracting off the ρ0 = 1/σ0 term
and the other leaving it in. First, (σn − σg)/σn is estimated
by subtracting ρ0: [(σn − σ0) − (σg − σ0)]/(σn − σ0). The ρ0

FIG. 5. (Color online) (a) Resistivity for sample #13 at H = 0 and 3 kOe, where, in order to subtract residual resistivity (ρ0), shown
as solid circles on the y axis, 4-kOe curves (dashed lines) are shifted to match with curves at 0.6 K for H = 0 and 3 kOe. ρn and ρg , the
resistivities associated with the normal and gapped states are inferred as shown. (b) The degree of Fermi surface gapping can be estimated from
the relative change in conductivity, (σn − σg)/σn = �σ/σn, where σn = 1/ρn, σg = 1/ρg , and σ0 = 1/ρ0. Square and triangle symbols are
based on �σ/(σn − σ0) (subtracting the residual resistivity) and �σ/σn (including the residual resistivity), respectively. Error bars represent
uncertainty, primarily associated with determination of ρ0 and magnetoresistive effects.
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FIG. 6. (Color online) (a) Transverse magnetoresistivity of YbPtBi (sample #13) as plotted ρ vs H at various temperatures: H ‖ [100] and
I ‖ [010] (H ⊥ I). (Inset) An expanded plot in the low-field regime for T = 0.02 K, 0.3 K, and 0.5 K. Open circles in both the main figure and
the inset represent the residual resistivity taken from the power-law fit to ρ(T ) data (Fig. 4); T 1.5 fit for H < 8 kOe and T 2 fit for H � 8 kOe.
Vertical arrows in the inset indicate slope changes in the dρ(H )/dH curve. (b) Transverse magnetoresistance of YbPtBi (sample #13) as plotted
[ρ(H ) − ρ(0)]/ρ(0) vs H at various temperatures.

for H < 4 kOe curves is determined by shifting the 4 kOe
curve (as a reference, dashed lines) to match the resistivity
value of each curve at 0.6 K and 1 K, as shown in Fig. 5(a).
Then conductivities in the normal and gapped states are
determined as σn = 1/ρn and σg = 1/ρg , respectively. The
relative change in conductivity data, (σn − σg)/σn, are plotted
as square symbols in Fig. 5(b), where the error bars are
determined by considering the two criteria for determining ρ0

(shifting 4 kOe curves to 0.6 K and 1 K). Second, (σn − σg)/σn

values are determined by without any subtraction of σ0 term
and plotted as triangle symbols in the same figure. As can
be clearly seen in the Fig. 5(b), the FS gapping due to the
formation of SDW is about 60% or 20%, as estimated by
subtracting ρ0 or including it, respectively. For both cases, the
ratio (σn − σg)/σn weakly depends on applied magnetic field
up to 2.5 kOe and decreases with further increasing magnetic
field. Although TN is suppressed by applied magnetic field in
a continuous manner, the degree of Fermi surface gapping is
fairly independent of field up to 2.5 kOe. This implies that
the mechanism suppressing TN does not significantly depend
on, or affect, the degree of Fermi surface gapping, at least
initially.

Figure 6(a) shows the transverse magnetoresistivity, ρ(H ),
of sample #13 at various temperatures, data taken with a
configuration H ‖ [100] and I ‖ [010] (H ⊥ I). At T = 0.02 K
ρ(H ) steeply decreases with increasing magnetic field, has a
local minimum near 5.6 kOe, exhibits a hump around 8 kOe,
and then decreases with further increasing magnetic field.
As temperature is increased, the maximum around 8 kOe at
T = 0.02 K broadens further and turns into a weak slope
change as temperature increases up to 0.5 K, above which the
anomaly is no longer noticeable. The steep decrease of ρ(H )
as magnetic field increases from zero to 5 kOe can be related
to the boundary of the AFM state. It is not clear at present
whether the additional signature around 8 kOe represents a
phase transition or some kind of crossover. For T > TN a
negative MR appears, only without an ∼8 kOe hump, up to

40 kOe. Figure 6(b) shows the higher temperature MR, plotted
as [ρ(H ) − ρ(0)]/ρ(0) vs H . The MR decreases without any
noticeable anomaly as magnetic field increases and the sign
of the MR change from negative to positive for T > 20 K.
In the high-magnetic-field regime (H > 100 kOe), quantum
oscillations are visible at low temperatures, consistent with
well-ordered, high-quality samples.

The AFM phase boundary was determined from the peak
position in dρ(T )/dT because the steep rise, seen in the zero
field ρ(T ) below TN , broadens as magnetic field increases.
Figure 7(a) shows dρ(T )/dT of sample #13 for selected
magnetic fields. As magnetic field increases, the peak height
at TN decreases and the peak in dρ(T )/dT becomes wider,
indicating that the phase transition broadens. The peak in
dρ(T )/dT is fairly sharp for H � 3 kOe curves, whereas it is
no longer visible, down to 0.02 K, for H � 4 kOe. Thus, with
increasing magnetic field, the AFM phase transition shifts to
lower temperatures and vanishes at around 4 kOe. The arrows
in Fig. 7(a) illustrate the criterion used to determine TN .

Figure 7(b) shows the magnetic field dependence of
the derivatives, dρ(H )/dH , obtained from the ρ(H ) curves
presented in Fig. 6. The sharp peak positions of dρ(H )/dH

were selected as the critical field of the phase transition. The
sharp peak at 2.9 kOe, shown in the 0.02 K curve, shifts to
lower field as temperature increases (inset) and turns into
a broad minimum for T � 0.4 K. The higher field broad
maximum near 7.6 kOe for the 0.02 K curve broadens as
temperature increases. For T > 0.75 K, the lower field broad
minimum and a slope change near 6 kOe shown for T = 0.4 K
curve are no longer visible and instead dρ(H )/dH shows
a single minimum near ∼10 kOe. As discussed below, the
positions of the sharp peak and the local maximum agree
with the observed anomalies in the magnetostriction, Hall
resistivity, and TEP measurements.

To get further insight from the low-temperature transport
data from YbPtBi, ρ(T ) data are analyzed in terms of a power
law; �ρ(T ) = ρ(T ) − ρ0 = AT n, where ρ0 is the residual
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FIG. 7. (Color online) (a) dρ(T )/dT at various magnetic fields
up to 4 kOe. Vertical arrows indicate the determined AFM phase
transition temperature. (b) dρ(H )/dH at various temperatures. Up
arrows indicate the AFM phase boundary and the down arrow
corresponds to a local maximum. (Inset) dρ(H )/dH up to 0.5 K,
where vertical arrows indicate the determined phase transition field.

resistivity and A is the coefficient. The coefficient A can be
interpreted as the quasiparticle scattering cross section. The
exponent, n, indicates whether the system is in a FL regime
(n = 2) with dominant electron-electron scattering or whether
strong quantum fluctuation effects dominate, generally n < 2,
in the vicinity of a QCP.48 Figures 8(a) and 8(b) show plots of
ρ(T ) vs T 1.5 and T 2, respectively, at various magnetic fields.
In Fig. 8(a) ρ(T ) for H = 8 and 10 kOe data are shifted
by −1 μ� cm each for clarity. Since the anomaly in ρ(T )
below the SDW phase transition for H < 4 kOe prevents the
power-law fit to the data, the fit was performed for H � 4 kOe
at which no sharp feature in dρ(T )/dT was observed down to
0.02 K [see Fig. 7(a)].

For 4 kOe � H � 8 kOe, ρ(T ) can be well described by
a T 1.5 dependence down to the lowest accessible temperature
of 0.02 K, where the exponent n ranges between 1.45 and
1.6 depending on the fit range. The maximum temperature
below which �ρ(T ) = AT 1.5 shifts to higher temperature as
magnetic field increases, indicated by down arrows in Fig 8(a).
For H = 8 and 10 kOe, plotted in Figs. 8(a) and 8(b), ρ(T ) can
be described by a T 2 dependence at low temperatures above
which T 1.5 dependence is predominant. For H > 10 kOe a
characteristic of FL state is clearly evidenced by the relation
�ρ(T ) = AT 2 at low temperatures, as indicated by the arrow
in Fig. 8(b). Note for H � 20 kOe that as temperature

FIG. 8. (Color online) (a) ρ(T ) vs T 1.5 at various magnetic fields,
where ρ(T ) curves for H = 8 and 10 kOe are shifted by −1 μ� cm
each for clarity. Down arrows indicate the temperature below which
�ρ(T ) = AT 1.5, determined from a power-law fit [�ρ(T ) = AT n]
to the data. For H = 10 kOe the line is the fit of the power law to the
data and the up arrow indicates a deviation from T 1.5 dependence of
�ρ(T ). (b) ρ(T ) vs T 2 at various magnetic fields. The arrows mark
the temperature where the fits [�ρ(T ) = AT 2] deviate from the data.
These temperatures, TFL, are plotted in the H -T phase diagram (see
Fig. 12). For H = 20 kOe the line is the fit of the power law to
the data and the up arrow in the low-temperature side indicates a
deviation from T 2 dependence of �ρ(T ). (c) Double-logarithmic
plots of �ρ(T ) vs T for H = 6, 8, 10, and 15 kOe. The solid
lines represent the temperature dependence expected for the exponent
n = 1.5 and n = 2.

decreases ρ(T ) follows T 2 dependence and then flattens,
revealing the deviation of FL behavior with n > 2. In Fig. 8(b)
the up arrow in the low-temperature side on ρ(T ) curve for
H = 20 kOe curve indicates a deviation of T 2 dependence.

Since the difference of the exponent between n = 1.5 and
2 is very small, the results based on the power-law analysis
are also visualized in Fig. 8(c) as a log-log plot of �ρ(T )
vs T at selected magnetic fields. �ρ(T ) for H = 6 kOe is a
straight line at least up to 0.4 K, which is parallel to the T 1.5

line, whereas �ρ(T ) for H = 10 kOe deviates from a straight
line parallel to the T 1.5 line near 0.1 K, below which the
slope is parallel to the T 2 line. Note that at low temperatures
the slope in the log - log plot depends on the ρ0 value. When
ρ(T ) is corrected by the ρ0 value obtained from the fit of
T 1.5 dependence above ∼0.1 K, the slope for H = 10 kOe is
parallel to the T 1.5 line above 0.1 K. For the H = 15 kOe curve,
�ρ is a straight line parallel to the T 2 line below ∼0.25 K,
which clearly indicates a quadratic temperature dependence
down to lowest temperature measured.

In addition, the exponent of power-law analysis depends on
the fitting temperature range. In order to further quantify the
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FIG. 9. (Color online) Plots of the sum of the squares of the
offsets (residual), χ 2, from least-squares fitting of the power law,
ρ(T ) = ρ0 + AT n, to the data with fixed n values for (a) H = 5 kOe
and (b) 10 kOe. The calculated resistivity with n = 1.5 (solid line)
and 2 (dashed line) for (c) H = 5 kOe and (d) 10 kOe. The calculated
resistivity curves are based on the fitting up to 0.2 K and 0.15 K for
H = 5 kOe and 10 kOe, respectively.

robustness of the exponent value, we tried a least square fitting
of the power law to the data with fixed n values between 1
and 3. The results of χ2 of the least-squares fit as a function
of the power n are plotted in Figs. 9(a)–9(d), where several
temperature ranges for fitting are selected; the χ2 and the
power-law fit with n = 1.5 and 2 are plotted only for H =
5 kOe [panels (a) and (c)] and H = 10 kOe [panels (b) and

FIG. 10. (Color online) ρ(T ) of (a) sample #3 and (b) sample
#14 at selected magnetic fields. ρ(H ) of (c) sample #3 and (d) sample
#14 at selected temperatures. (b) Zero-field ρ(T ) of sample #14 was
shifted by +3 μ� cm for clarity. Open circles in (c) and (d) represent
the residual resistivity obtained from the power-law fit to the ρ(T )
data. As discussed in text and the caption of Fig. 2, sample #14 was
suspended in vacuum by its four Pt leads and sample #3 was mounted
to the thermal bath with N grease.

(d)] as representative data sets. For H = 5 kOe, Fig. 9(a), the
χ2 obtained by fitting from base temperature, TB ∼ 0.04 K,
up to 0.2 K or 0.3 K clearly indicates a deep minimum near
n = 1.5. The χ2 data for fitting from TB to 0.1 K (a very
limited range) show a shallow minimum around n ∼ 1.7, but
also indicates that this temperature range is at the edge of
being too small for such analysis. For H = 10 kOe, the fit
up to 0.1 K and 0.15 K shows a minimum around n = 2.2
and n = 2, respectively, as shown in Fig. 9(b). Based on the
minimum of χ2, low-temperature fits of the resistivity of the
form ρ(T ) = ρ0 + AT n with n = 1.5 and 2 are shown by the
solid and dashed lines, respectively, in Figs. 9(c) and 9(d).
The resistivity for H = 5 kOe can be better described with
n = 1.5 than 2, whereas the resistivity for H = 10 kOe shows
a good agreement with n = 2 curve. Similar χ2 analysis clearly
suggests that the best exponent is n = 1.5 for 4 kOe � H <

8 kOe and n = 2 for H � 8 kOe. It should be noted, though,
that when the maximum fitting temperature range is set to 0.1 K
or lower, the very shallow minimum in χ2 curve does move
toward n ∼ 2 for H < 8 kOe. Thus, there is a possibility to
have exponent n = 2 by selecting the fitting temperature range
below 0.1 K for H < 8 kOe.

The electrical resistivity data for samples #3 and #14 are
plotted in Figs. 10(a)–10(d), respectively, at selected tempera-
tures and magnetic fields as representative data. For H ‖ [100],
the overall temperature and magnetic-field dependencies of the
resistivity for both samples #3 and #14 are the same as those
for sample #13 (Figs. 4 and 6). These data were analyzed
by the same methods, applied to sample #13, to determine
phase transitions and power-law dependencies of ρ(T ). These
results, together with those of sample #13, are summarized in
Figs. 11 and 12.

In Fig. 11 parameters of ρ0, A, n, and the maximum
temperature range satisfying T 1.5 and T 2, obtained from the
power-law fits, are summarized for H � 4 kOe. All open
and solid symbols correspond to the fits with n = 1.5 and
n = 2 [Fig. 11(b)], respectively, for three different samples.
The obtained ρ0 shows a broad local maximum around 8 kOe,
as shown in Fig. 11(c). For comparison with magnetoresistivity
at 0.02 K, the obtained ρ0 values for sample #13 are plotted in
Fig. 6 as open circles, which track well the magnetoresistivity
at T = 0.02 K. ρ0 values for samples #3 and #10 also
track the low-temperature ρ(H ) well [Figs. 10(c) and 10(d),
respectively]. As shown in Fig. 11(a) for magnetic fields above
4 kOe the temperature range, following T 1.5 dependencies
of ρ(T ), increases monotonically and for magnetic fields
higher than 8 kOe the FL region, �ρ(T ) = AT 2, gradually
increases. The field dependencies of the coefficients, A =
[ρ(T ) − ρ0]/T n, with n = 1.5 and 2, are plotted Fig. 11(d).
A strong enhancement of the T 2 coefficient is observed as the
magnetic field approaches 8 kOe from higher magnetic fields.

The various characteristics (field-temperature points) ob-
served from sample #13, together with those from samples #3
and #14, are collected in the H -T phase diagram displayed in
Fig. 12. The magnetic-field dependence of TN was determined
from the sharp peak position in dρ(T )/dT and dρ(H )/dH

(Fig. 7). The crossover scale, H ∗, was obtained from the
maximum of dρ(H )/dH [Fig. 7(b)]. The FL region, TFL,
marks the upper limit of T 2 dependence of ρ(T ) (Fig. 8). The
AFM phase boundary of TN and the crossover of H ∗ and TFL,
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FIG. 11. (Color online) Parameters obtained from power-law fits,
ρ(T ) = ρ0 + AT n, to the data for three different samples. Open and
solid symbols correspond to fits with n = 1.5 and n = 2, respectively.
For n = 1.5, the obtained parameters are plotted only up to 10 kOe.
(a) Temperatures of the fit range below which a T n dependence
of ρ(T ) fit data well. For 8 kOe � H � 10 kOe the fit of T 1.5

dependence was performed above the temperature, satisfying T 2

dependence. The horizontal line for H � 20 kOe indicates the
temperature below which ρ(T ) flattens. (b) Determined exponents
n from least-squares fits to the data. (c) Obtained ρ0. Solid lines
are guides for the eye. (d) Field dependencies of the coefficients,
A = [ρ(T ) − ρ0]/T n, with n = 1.5 and 2, for three different samples.

obtained from the results of three different samples, agree well
each other. Therefore, it seems to be reasonable to assume that
the strength of the anomaly in ρ(T ) below TN is only sensitive
to the strain generated through bonding agent for sample
cooling (see Fig. 2), but the relevant physics of the samples
remains the same. The AFM boundary determined from
dρ(T )/dT does not fully agree with the one obtained from
dρ(H )/dH at low temperatures; the AFM phase boundary
below 0.2 K spreads significantly. It is most likely that this
inconsistency is based on the criteria used to determine phase
transition coordinates, but it is possible that there are two
closely spaced phase boundaries.

From the H -T phase diagram for the applied magnetic field
parallel to the [100] direction, it is clear that the AFM ordering

FIG. 12. (Color online) H -T phase diagram of YbPtBi con-
structed from the ρ(T ,H ) results for three different samples; all cir-
cles, triangles, and squares correspond to the results of samples #13,
#14, and #3, respectively. TN was derived from the sharp minimum in
dρ(T )/dT (solid symbols) and dρ(H )/dH (open symbols). H ∗ was
derived from the broad local maximum in dρ(H )/dH (Fig. 7). TFL

represents the upper limit of the T 2 dependence of ρ(T ).

can be suppressed to zero for Hc � 4 kOe. For H > Hc a field-
induced anomalous state, characterized by �ρ(T ) = AT 1.5, is
established up to ∼8 kOe, and a FL state, characterized by
�ρ(T ) = AT 2, is induced for H � 8 kOe. The TFL region
enlarges monotonically with increasing magnetic field. It is
apparent that at the lowest temperature measured (T = 0.02 K)
a crossover from T 1.5 to T 2 dependence of ρ(T ) occurs
near 8 kOe. At higher magnetic fields, for H � 8 kOe, a
crossover from T 1.5 to T 2 dependence of ρ(T ) is observed with
decreasing temperature. Note that for H < 8 kOe, because
of the poor signal-to-noise ratio, below 0.08 K, where the
exponent n is ill defined if only this small range as used, ρ(T )
can be described with the exponent n = 2, depending on the
fit region.

As magnetic field decreases from the higher magnetic field
(paramagnetic) side, the temperature range, TFL, becomes
smaller, while the coefficient A of T 2 dependence increases
rapidly and shows a tendency of diverging as H → Hc. A
divergent nature of this coefficient, when approaching to the
critical field from paramagnetic side, is considered strong
evidence for a field-induced quantum phase transition,22 which
is discussed below together with the field dependence of
the electronic specific-heat coefficient (γ ). In addition, the
exponent n = 1.5 near a QCP was predicted by the traditional
SDW scenario of quantum criticality with d = 3 and z = 2
(Refs. 7 and 8). From the phase diagram it is apparent that H ∗
separates TFL region from the AFM phase boundary TN .

C. Specific heat

Figure 13(a) displays the temperature dependencies of the
specific heat, Cp(T ), of YbPtBi for H = 0 and 140 kOe,
applied along the [100] direction, together with zero field
Cp(T ) of its nonmagnetic isostructural counterpart, LuPtBi.
The overall shape of Cp(T ) for LuPtBi is typical for a
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FIG. 13. (Color online) (a) Specific heat of YbPtBi as Cp(T ) vs T for H = 0 (circles) and 140 kOe (triangles), applied magnetic field
along the [100] direction, and zero-field Cp(T ) of LuPtBi (squares). (Inset) Cp/T vs T 2 for LuPtBi. The solid line is a fit of the equation
Cp(T ) = γ T + βT 3 to the data. (b) Zero-field specific heat for YbPtBi and LuPtBi below 10 K.

nonmagnetic systems. In particular, below 8 K it is easily
described by the relation, Cp(T ) = γ T + βT 3, in which the
first term is a conventional conduction electron contribution
to the specific heat with the Sommerfeld coefficient, γ , and
the second term is a low-temperature phonon contribution in
a form of the Debye-T 3 law with the Debye temperature, 
D .
For LuPtBi, shown in the inset of Fig. 13(a), least-squares
fitting of this formula to the experimental data yields the γ � 0
(6 × 10−5 J/mol K2) and from β, the 
D � 190 K. Since γ

is negligible, which is consistent with a low carrier density
system, Cp(T ) of LuPtBi is dominated by the phonon specific
heat.

The zero field, Cp(T ) of YbPtBi indicates a distinct
anomaly at about 0.41 K as shown in Fig. 13(b), which is
consistent with earlier results.2 Since Cp(T ) of YbPtBi shows
a broad hump around 6 K and a peak at TN , we were not
able to extract γ and 
D from a fit of Cp(T )/T = γ + βT 2

to the data. The result of Cp(T ) for H = 140 kOe shows the
development of a large, broad peak structure, centered near
10 K, probably related to a magnetic Schottky anomaly. At
high temperatures (T > 60 K) the Cp(T ) data are essentially
the same for all curves shown in Fig. 13(a).

The total specific heat obtained for YbPtBi can be assumed
to consist of the nuclear Schottky (CN ), electronic (Cel),
phonon (Clattice), and magnetic (Cm) contributions. At higher
temperatures, where CN (T ) contribution can be ignored,
Cp(T ) consists of Cel, Clattice, and Cm contributions. Thus,
Cm(T ) of YbPtBi was estimated by subtracting Cp(T ) of
LuPtBi and plotted as Cm(T ) vs log(T ) in Fig. 14(a) for
selected magnetic fields.

In zero field, in addition to a distinct anomaly at TN , the
two anomalies, which can be expected due to the Schottky
contributions (associated with the splitting of the Hund’s rule,
ground-state multiplet of the Yb3+ by the CEF), are visible

FIG. 14. (Color online) (a) Logarithmic temperature variation of the magnetic contribution Cm(T ) to the specific heat of YbPtBi at selected
magnetic fields: Cm(T ) = Cp(T )(YbPtBi) − Cp(T )(LuPtBi). (Inset) Positions of maxima developed in Cm(T ). (b) Magnetic entropy, Sm(T ),
for H = 0 and 140 kOe, inferred by integrating Cm/T starting from the lowest temperature measured. (Inset) The low-temperature Cp(T ) of
YbPtBi (left axis, symbols) and the magnetic entropy (Sm) divided by Rln(2) (right axis, line). The dashed vertical line marks the peak position
of the λ-shaped anomaly.
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FIG. 15. (Color online) (a) Low-temperature specific heat as Cp(T )/T (solid symbols) and �C(T )/T (solid lines) vs log(T ) for YbPtBi at
various magnetic fields, applied along the [100] direction; �C(T ) = Cp(T ) − CN (T ), where the nuclear Schottky contribution was subtracted
by using CN (T ) ∝ 1/T 2. (Inset) The electronic specific-heat coefficient, γ = �C(T )/T |T →0 (open squares), and �C(T )/T at T = 0.1 K
(solid circles) as a function of magnetic field. (b) Cp/T , CN/T , and �C/T for H = 30 kOe, plotted in a log(T ) scale.

near 6 K and higher than 50 K. For H > 4 kOe which is
high enough to suppress TN , as shown by ρ(T ,H ) results, a
broad peak develops in the low-temperature data (around 1 K
in the H = 10 kOe data). The position of the maximum of
this low-temperature anomaly continuously shifts to higher
temperature as magnetic field increases to 140 kOe. The
anomaly, shown near 6 K in the zero field, merges into a
lower temperature anomaly around 40 kOe, causing significant
broadening of the combined feature. The evolution of these two
anomalies as a function of magnetic field is plotted in the inset
of Fig. 14(a), where the position of maximum was determined
from the Gaussian fit to the data.

For H = 0 and 140 kOe, the magnetic entropy, Sm(T ),
was inferred by integrating Cm(T )/T starting from the lowest
temperature measured and plotted in Fig. 14(b). For H =
140 kOe, since the Cp(T ) data were taken above 2 K and
no upturn in Cp(T ) data at low temperatures was observed,
the nuclear contribution was ignored in the evaluation of the
magnetic entropy. For H = 0, Sm(T ) reaches about 55% of
Rln(2) at TN and recovers the full doublet, Rln(2), entropy by
∼0.8 K (inset), which suggests that the ordered moment at TN

is compensated (reduced) by Kondo screening. The calculated
Sm(T ) reaches a value of Rln(4) by 7 K and Rln(6) by 28 K,
and the recovered Sm(T ) at T = 100 K is close to the full
Rln(8), which suggests that the highest CEF energy levels are
separated by approximately 100 K from the ground state. The
inferred Sm(T ) data for H = 140 kOe is released more slowly
than that for H = 0.

The results of low-temperature specific-heat measurements
shed light on the HF state of YbPtBi, where the evolution
of the quasiparticle mass can be inferred as the system is
tuned by external magnetic field. The specific-heat data divided
by temperature are plotted in Fig. 15(a) (solid symbols) as
Cp(T )/T vs log(T ) for T � 2 K and H � 30 kOe, where
the C(T )/T data for H = 0 are plotted below 10 K. When
magnetic field is applied, the well defined anomaly at TN is no
longer visible for H > 3 kOe and instead the data show a broad

maximum. This broad maximum decreases in magnitude and
shifts to higher temperature with increasing magnetic field,
indicating that the magnetic entropy is removed at higher
temperature for larger applied magnetic fields [see for H =
140 kOe the curve in Fig. 14(b)]. At the lowest temperatures,
a slight upturn in Cp(T ), associated with a nuclear Schottky
anomaly, becomes increasingly visible as field increases. This
nuclear Schottky anomaly is much more pronounced in the
Cp(T )/T plots.

Below 2 K, where the Clattice contribution can be safely
ignored, the electronic specific-heat coefficient was estimated
by subtracting the nuclear contribution, using CN (T ) ∝ 1/T 2;
�C(T ) = Cp(T ) − CN (T ). As an example, the Cp(T ), the
estimated CN (T ), and the �C(T ) for H = 30 kOe are plotted
as circles, line, and pentagons, respectively, in Fig. 15(b).
Above ∼0.4 K, the CN (T ) contribution to the total C(T )/T

is very small, however, below ∼0.2 K, C(T )/T is dominated
by CN (T ) contribution. The obtained �C(T ) data for several
magnetic fields are plotted as �C(T )/T vs log(T ) in Fig. 15(a)
(solid lines). In zero field, by extrapolating �C(T )/T to
zero temperature [γ = �C(T )/T |T →0], γ is estimated to
be 7.4 J/mol K2, which is consistent with earlier result
[∼8 J/mol K2 (Ref. 2)] and is one of the highest effective mass
values observed among HF compounds. Note that recently
a similar γ value has been observed in fcc YbCo2Zn20

compound, where no magnetic order was detected down
to 20 mK (Ref. 49). The magnetic-field dependence of γ

is plotted in the inset of Fig. 15(a) as open squares. For
comparison, the �C(T )/T data at T = 0.1 K are also plotted
as solid circles, which are essentially the same as γ . At
magnetic fields below 8 kOe, γ is approximately constant
within about 1 J/mol K2. A strong decrease of γ is observed
for H � 8 kOe, implying that the quasiparticle mass diverges
when approaching the critical field from higher magnetic
fields. For magnetic fields larger than 8 kOe, γ shows a
very similar field dependence as A [see Fig. 11(d) and the
discussion below]. For any of the specific-heat data, measured
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FIG. 16. (Color online) (a) The linear thermal expansion coefficient, α100 = d(�L/L100)/dT , of YbPtBi, where L is the sample length
along the [100] direction. The AFM ordering temperature is indicated by the arrow at 0.38 K. The arrow at 6 K represents the maximum
observed in the H = 0 specific-heat data. (Inset) α100 and Cm at H = 0. Dashed vertical lines indicate maximum positions observed in Cm.
(b) α100 at selected magnetic fields up to 10 K for H = 0, 2.5, and 5 kOe, measured with a longitudinal configuration �L/L ‖ H ‖ [100].
(Inset) α100 for H = 0, 2.5, 5, and 10 kOe (bottom to top) below 1.5 K.

in magnetic fields up to 30 kOe, �C(T )/T shows no clear
indication of a nFL-like behavior either as a logarithmic
[−log(T )] or nonanalytic (−√

T ) temperature dependence.
It should be noted that with such a small TK value, a simple
temperature dependence of �C/T may be convoluted with the
field dependence of the Kondo scale. A −log(T ) dependence of
�C(T )/T is observed over only a limited temperature range;
for example, �C(T )/T shows such a −log(T ) dependence
between 0.3–0.8 K near 4 kOe and between 0.45 K and 1.6 K
near 8 kOe.

D. Thermal expansion and magnetostriction

Figure 16(a) shows the linear thermal expansion coefficient,
α100 = d(�L/L)/dT , where �L is the length variation along
the [100] direction (�L/L ‖ [100]). At high temperatures,
α100 gradually decreases with lowering temperature and then,
below 100 K, α100 decreases more rapidly down to ∼6 K. With
decreasing temperature further, α100 shows a sudden enhance-
ment below 5 K, followed by a sharp peak at T = 0.38 K. The
observed characteristics in the temperature dependence of the
zero field α100 are very similar to that shown in the magnetic
specific heat (see inset). The AFM transition manifests itself
as a sharp peak in α100 at TN = 0.38 K, where Cm(T )
exhibits the AFM transition as a maximum at TN = 0.41 K.
If the thermal expansion, �L/L, was composed of only the
lattice contribution, it will only decrease monotonically with
decreasing temperature. Thus, the two features, at which α100

shows a decrease with warming, at about 5 K and a saturation
for T > 100 K, can be related to a substantial magnetic CEF
contribution associated with Yb3+ ions, which is in agreement
with the broad peak positions centered at about 6 K and higher
than 50 K in Cm(T ). The saturation of α100 for T > 100 K
is most likely due to CEF effects of higher energy levels
combined with simple lattice effects. Similar α(T ) behavior at
high temperatures has been shown in YbAl3 and YbNi2B2C
(Refs. 50 and 51). The anomaly near 5 K can be related to

the first excited state due to CEF effects, where the lattice
contribution can be ignored at low temperatures. In order to
examine the magnetic field effect on α100 at low temperatures,
the temperature-dependent, constant-field, thermal expansion
was measured in the magnetic field parallel to [100], i.e.,
�L ‖ H ‖ [100]. The results are plotted in the Fig. 16(b). The
peak at TN is suppressed below 0.3 K for H > 2.5 kOe. Below
∼5 K anomaly, low-temperature α100 increases rapidly with
application of a magnetic field.

Figure 17 shows the linear magnetostriction coefficient,
λ100 = d(�L/L100)/dH , and the linear magnetostriction,

FIG. 17. (Color online) Magnetostriction and the coeffi-
cient of YbPtBi. The linear magnetostriction coefficient, λ100 =
d(�L/L100)/dH vs H , at selected temperatures, where L is the
sample length along the [100] direction parallel to the magnetic
field applied along the [100] (longitudinal configuration �L/L ‖
H ‖ [100]). The upper inset shows the magnetic field dependence of
the magnetostriction �L/L100. The lower inset shows λ100 at 0.02 K.
The up- and down-arrow indicate the phase transition TN and the
local minimum H ∗, respectively.
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FIG. 18. (Color online) (a) The linear magnetostriction coefficient, λ100 = d(�L/L100)/dH vs H , at selected temperatures. For clarity, the
data sets are vertically shifted each by 5 × 10−5/kOe. The up and down arrows indicate the phase transition TN and the local minimum H ∗,
respectively. (b) λ100 up to 3 K. (Inset) λ100 up to 10 K. Arrows indicate the minimum (H ∗) and maximum in λ100. (c) H -T phase diagram of
YbPtBi, constructed form α100 and λ100. The dashed line is a guide for the eye.

�L/L100 (top inset), of YbPtBi for selected temperatures,
where the longitudinal linear magnetostriction has been
measured parallel to the [100] direction, i.e., �L ‖ H ‖ [100].
The magnetic field was swept with a rate of between 5 and
10 Oe/s for temperatures up to 10 K. No hysteresis larger
than ∼100 Oe could be detected. In the low-magnetic-field
regime �L/L at T = 0.02 K shows weak slope changes
and then decreases rapidly as magnetic field increases, which
manifests in λ100 as sharp slope changes below 3 kOe and a
minimum around 7.8 kOe (see arrows in the bottom inset).
As temperature is raised, the sharp slope changes are no
longer visible for T > 0.4 K and the minimum shifts to
higher magnetic field. At high magnetic fields, there are broad
features: a shoulder near 50 kOe and a shallow minimum near
100 kOe in λ100.

Figure 18(a) shows a plot of the magnetic field variation
of λ100 at selected temperatures. For T = 0.02 K data; the
two slope changes in λ100 are visible at about 1.5 and 3 kOe.
These anomalies shift to lower magnetic field as temperature
increases. The phase transition field was selected for the higher
field slope change because the higher field one is well matched
with the sharp peak position in dρ(H )/dH (see discussion
below). The determined phase transition fields are indicated
by up arrows in Fig. 18(a). The local minimum, observed from
the T = 0.02 K curve at H ∗ ∼ 7.8 kOe, is not very sensitive
to temperature up to 0.5 K (H ∗ = 8.4 kOe), above which H ∗
shifts, almost linearly, to higher magnetic field with further
increase of temperature up to 10 K, which can be clearly seen
when this position is plotted in the H -T plane in Fig. 18(c). A
negative λ100 is observed up to 4 K and it changes to positive
for T > 5 K, shown in the inset of Fig. 18(b). Figure 18(c)
displays a H -T phase diagram constructed from both α100 and
λ100: The AFM phase boundary, TN , corresponds to the sharp
peak position in α100 and the higher field slope change in λ100,
and a crossover scale, H ∗, corresponds to the position of the
minimum for T � 4 K in λ100.

E. Hall effect

Figure 19 shows the temperature-dependent Hall coeffi-
cient, RH = ρH /H , of LuPtBi at H = 10 kOe, applied along
the [111] direction. The positive RH of LuPtBi, suggesting
that the dominant carriers are holes, monotonically increases
as temperature decreases. Assuming a single-band model,
the carrier concentration at 300 K is estimated to be n =
1.7 × 1026 m−3 (RH = 0.37 n� cm/Oe), corresponding to
∼0.02 hole per formula unit. As shown in the inset of Fig. 19,
ρ(T ) of LuPtBi decreases as temperature is lowered. Thus,
LuPtBi can be characterized as a low-carrier-density metallic
(or semimetallic) system. The carrier concentration of LuPtBi
is approximately 100 times smaller than that for copper,52

comparable to that for earlier result of isostructural YbPtBi
(Ref. 6), and 2 orders of magnitude larger than that of NdPtBi
(Ref. 53) and LaPtBi (Ref. 54). This trend is consistent

FIG. 19. Temperature dependence of the Hall coefficient, RH =
ρH /H , of LuPtBi for H = 10 kOe, applied along the [111] direction.
(Inset) The zero-field resistivity.
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FIG. 20. (Color online) Hall resistivity, ρH , of YbPtBi as a
function of magnetic field, applied along the [100] direction, at
various temperatures. The arrow pointing to the 0.06 K curve near
55 kOe indicates a deviation from linear field dependence of ρH . The
dash-dotted line is a guide for the eye. (Inset) The low-temperature
and low-field ρH at selected temperatures.

with the earlier resistivity results1 in which the resistivity
systematically changes from a small gap semiconductor (or
semimetal) for lighter rare-earth compounds to metallic (or
semimetallic) for heavier rare-earth compounds.

Figure 20 displays the magnetic field-dependent Hall resis-
tivity, ρH , of YbPtBi in magnetic fields up to 140 kOe at various
temperatures. The high-temperature results, obtained in this
study (shown as inset to Fig. 21 below), are similar to previous
Hall effect measurements above 2 K (Ref. 6). Here, the
measurements have been extended to much higher magnetic
fields, up to 140 kOe, and to much lower temperatures, down
to 0.06 K, investigating the phenomena that are related to
quantum criticality. Below 1 K the ρH data as a function of
temperature and magnetic field were taken with the condition

FIG. 21. (Color online) Hall coefficient, RH = ρH /H , of YbPtBi
as a function of magnetic field, applied along the [100] direction, at
various temperatures. The arrow near 8 kOe indicates the position
of local minimum shown in RH at T = 0.06 K. (Inset) The high
temperature RH for T = 3, 5, 10, 25, 50, 100, and 300 K (top to
bottom).

that the sample was mounted on a dilution-refrigerator cold
stage with a very thin layer of GE varnish. At high temperatures
(for T � 0.5 K), after cleaning the GE varnish off using
ethanol, the sample was mounted on the cold stage of the 3He
option in PPMS with Apiezon N grease and ρH was measured.
The data, taken from a dilution refrigerator measurements, are
in good agreement with the data, taken from the 3He setup.

The sign of ρH is positive for all temperatures measured,
which, as was the case for LuPtBi, is suggestive that
hole-type carriers are dominant. Above 100 K, ρH follows
a linear magnetic field dependence, whereas, for T � 25 K,
ρH exhibits a nonlinear magnetic field dependence. A clear
deviation from the linear magnetic field dependence of ρH is
shown in Fig. 20 and indicated by the heavy arrow on 0.06 K
data. As highlighted in the inset, the overall features of ρH at
0.06 K are strongly nonmonotonic as a function of magnetic
field. The ρH data manifest distinct features: a local maximum
around 4 kOe and a broad local minimum between 4 and
12 kOe. These characteristic features broaden for T > 0.4 K.

Figure 21 shows RH of YbPtBi as a function of magnetic
field. At high temperatures (inset), RH is almost magnetic-
field-independent. As temperature is lowered, a broad local
minimum in RH is developed and sharpened. An anomalous
low-temperature behavior of Hall effect can be clearly seen
in the RH plot; at base temperature, T = 0.06 K, the high-
magnetic-field limit of RH (H → 140 kOe) is close to the
low-magnetic-field limit of RH (H → 0), but, as the magnetic
field increases from H = 0 two features develop a weak slope
change near 4 kOe and a clear minimum around 8 kOe.
Given that similar features are also seen in the MR and
magnetostriction measurements, the anomaly near 4 kOe can
be related to the AFM phase boundary, and the 8 kOe anomaly
tracks the H ∗ line.

Figure 22(a) shows RH of YbPtBi at selected low temper-
atures; the data sets have been shifted by different amounts
vertically for clarity. Because of the poor signal-to-noise
ratio associated with low-field measurements, the position
of the characteristic feature of the SDW transition cannot be
determined precisely. The local maximum in ρH near 4 kOe
that is clear at 0.06 K (inset, Fig. 20) broadens significantly as
temperature increases and is no longer visible for T > 0.5 K.
The local minimum, H ∗ ∼ 8 kOe observed at T = 0.06 K,
gradually shifts to higher magnetic fields as temperature
increases. For T > 1.25 K, RH does not show the local
minimum. The determined positions of the local minimum are
indicated by arrows in Fig. 22(a) and also plotted in the H -T
plane in the inset. For comparison, dρH /dH curves are plotted
in Figs. 22(b) and 22(c). The local minimum observed in RH

is indicated by arrows in Fig. 22(b). In the high-field region, a
local maximum in dρH /dH is observed and shifted to higher
fields as temperature increases [Fig. 22(c)]. As shown below,
the positions of H ∗ agree with the anomalies developed in
MR, magnetostriction, specific heat, and TEP measurements.

In Figs. 23(a) and 23(b), RH is plotted as a function of
temperature at selected magnetic fields, where closed and open
symbols are taken from temperature and magnetic-field sweeps
of ρH , respectively. The RH (H → 0) data were obtained
by taking the low-field limit of dρH /dH ; given the weak,
low-field, signal of ρH , the error bars for RH (H → 0) are
large. In the low-magnetic-field (H → 0 and 2.5 kOe) results,
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FIG. 22. (Color online) (a) ρH /H at selected temperatures. For clarity, the data sets have been shifted by different amounts vertically.
Arrows indicate the position of local minimum. The positions of H ∗ are plotted in the H -T plane in the inset. For comparison, dρH /dH at
selected temperatures are plotted in (b) and (c). Vertical arrows in (b) indicate the position H ∗ used in (a) as the local minimum.

RH shows a clear change near 0.4 K and ∼70 K. The steep
increase by factor of ∼2.3 below 0.4 K in RH (H → 0) agrees
with the behavior observed from resistivity measurements and
is consistent with a partial gapping of the Fermi surface (see
Fig. 5). The temperature dependence of RH depends strongly
on the applied magnetic field below ∼100 K, whereas above
∼100 K RH is basically magnetic-field-independent for H �
140 kOe, as shown in Fig. 23(b).

As temperature decreases, the zero-field-limit RH (H → 0)
data below 10 K show a very weak temperature dependence,
and the opening of the SDW gap below TN = 0.4 K gives rise
to an abrupt enhancement of RH (H → 0). A steep increase
of RH below TN implies a significant carrier density reduction
associated with the Fermi surface gapping. For H = 5 kOe
RH becomes almost temperature-independent below 10 K.
Similar results have been observed in URu2Si2 compound.55

Below T0 = 17.5 K, RH of URu2Si2 increases by a factor of
5–20 because of the opening of a gap over the Fermi surface.
It should be noted, though, that since the Hall sample was
mounted with GE varnish, there is a possibility that the steep
increase by factor of ∼2.3 in RH below 0.4 K may be altered by
strain (as was the resistivity). Thus, in order to further clarify
the actual reduction of carrier density due to the gapping of
Fermi surface below TN , Hall data and resistivity data would
need to be collected at the same time on a sample secured by
contact wires and dental floss (i.e., minimal strain anchoring).

F. Thermoelectric power

The TEP as a function of temperature, S(T ), for LuPtBi
is plotted in the inset of Fig. 24. The positive sign of TEP
indicates that holes are dominant carriers, which is consistent

FIG. 23. (Color online) (a) Temperature dependence of the Hall coefficient (RH = ρH /H ) of YbPtBi at various magnetic fields, applied
along the [100] direction. Closed and open symbols are taken from temperature and field sweeps of ρH , respectively. The open-diamond
symbols (
) of RH (T → 0) are obtained from the initial slope of ρH vs H . The dashed line is a guide for the eye. (b) RH for H = 10, 40, 90,
and 140 kOe in linear scale of T .
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FIG. 24. (Color online) Temperature-dependent TEP, S(T ), of
YbPtBi at selected magnetic fields, applied along the [100] direction.
(Inset) The zero-field S(T ) of LuPtBi.

with RH results. As temperature increases, S(T ) increases
monotonically, after passing through a broad peak structure
around 40 K, probably due to the phonon drag, and then S(T )
gradually increases to 8 μV/K at 250 K. Above 250 K S(T )
shows an essentially temperature-independent behavior up to
300 K. The observed TEP of LuPtBi is not consistent with the
behavior expected from simple metals and the origin of the
strong break in slope near 40 K is unknown at present.

Figure 24 shows the evolution of S(T ) for YbPtBi with
magnetic fields applied along the [100] direction. In zero field
the observed TEP is positive, indicating that holes are dominant
carriers, which is consistent with RH results and with previous
TEP results6 above 2 K. However, the positive sign of TEP for
YbPtBi is opposite to that generally observed in Yb-based HF
systems, which is negative due to the location of a narrow
Kondo resonance peak slightly below the Fermi energy.56

The broad shoulder structure, centered around 70 K, can be
associated with excited CEF energy levels of Yb3+ ions. This

can be also related to the appearance of a high-temperature
broad maximum around 70 K in ρH/H and an inflection
point near 85 K in ρ(T ). In these cases the temperature of
the CEF-related features corresponds to a fraction of the CEF
splitting (0.4–0.6�CEF) as evidenced in many other Ce- and
Yb-based compounds and alloys.57–60

S(T ) changes very little with applied magnetic field for
T � 20 K. For T � 20 K S(T ) shows a rather complex
behavior, with the emergence of new broad peak structures
as magnetic field increases. In Figs. 25(a) and 25(b), the
low-temperature TEP data for YbPtBi are plotted as S(T ) vs T

for selected magnetic fields. In contrast to the high-temperature
behavior, S(T ) data reveal complex and strong magnetic-field
dependencies. In zero field, the sign of TEP is positive down
to 0.35 K (the base temperature of the 3He system used) and
S(T ) exhibits a broad feature around 2 K. No clear signature
of the AFM phase transition near 0.4 K is observed. As
presented in the inset there is a weak change in slope near TN .
Generally, for a SDW antiferromagnet such as Cr (Ref. 43),
the TEP measurements revealed a sudden enhancement due
to the opening a gap below SDW state, similar to what was
seen in the zero-field limit Hall data [RH (H → 0)] in Fig. 23.
Unfortunately, at 0.35 K S(T ) is just starting to change; lower
temperature measurements (e.g., in a dilution refrigerator) will
be needed to fully define the zero-field S(T ) feature. When
a magnetic field is applied along the [100] direction, S(T )
curves shift toward a negative direction and a local minimum,
T0, develops for H > 5 kOe. The position of T0 continuously
shifts to higher temperature as magnetic field increases up
to 90 kOe, indicated by arrows in Figs. 25(a) and 25(b).
For 30 < H < 70 kOe, the low-temperature behavior changes
significantly; the TEP shows the development of a new, broad
feature, TFL, below which S(T ) ∝ T is indicated by arrows in
Fig. 25(b). For H > 70 kOe, an additional local maximum,
Tmax, develops with Tmax < T0. The positions of both TFL and
Tmax shift to higher temperature with increasing magnetic field.

In order to investigate the low-temperature behavior, a plot
of S(T )/T is presented in Figs. 26(a) and 26(b) as a function

FIG. 25. (Color online) (a) Low-temperature S(T ) of YbPtBi at selected magnetic fields for H � 15 kOe. Vertical arrows indicate a
local minimum T0. (Inset) The zero-field S(T ) below 1 K. The vertical arrow represents the AFM ordering temperature at which the slope,
dS(T )/dT , is changed. (b) Low-temperature S(T ) for 15 � H � 90 kOe. Vertical arrows indicate the characteristic features corresponding to
a local minimum temperature T0, a slope change at TFL, and a local maximum Tmax for H � 70 kOe.

075120-16



MAGNETIC-FIELD-TUNED QUANTUM CRITICALITY OF . . . PHYSICAL REVIEW B 87, 075120 (2013)

FIG. 26. (Color online) Temperature-dependent TEP divided by
temperature, S(T )/T , in a logarithmic scale; S(T )/T vs log(T ).
(a) The dashed line on the curve for H = 2.5 kOe is a guide for
the eye, representing a logarithmic increase of S(T )/T below 4 K.
(b) Dashed lines on the curves for H = 30, 40, and 50 kOe indicate
a saturation of S(T )/T , which corresponds to the linear temperature
dependence of S(T ) below TFL, shown in Fig. 25(b).

of log(T ) for selected magnetic fields. In zero field, S(T )/T

exhibits a logarithmic temperature dependence between TN

and ∼3 K. For H = 2.5 kOe the log(T ) dependence of
S(T )/T holds below 4 K. This log(T ) dependence of S(T )/T

has been observed for YbRh2Si261 and YbAgGe31 in the
vicinity of the QCP, as a signature of nFL-like behavior.
As magnetic field increases S(T )/T moves toward negative
direction for H > 4 kOe, and the low-temperature behavior
changes dramatically. At higher fields, for H = 30, 40, and
50 kOe, and for T < TFL (Fig. 25) S(T )/T = α, indicating
the onset of FL behavior. For H = 90 kOe S(T )/T deviates
from a constant, indicating a deviation from FL behavior, due
to the development of the local maximum, Tmax (see Fig. 25).

Figure 27 shows the magnetic field dependence of TEP,
S(H ), for YbPtBi. As magnetic field increases, S(H ) curves
initially decrease steeply and then increase after passing

FIG. 27. (Color online) Magnetic field dependence of TEP, S(H ),
of YbPtBi at selected temperatures.

FIG. 28. (Color online) S(H ) of YbPtBi below 1.5 K. For clarity,
the data sets have been shifted by every −3 μV/K vertically. Solid
circles HSR indicate a sign change of TEP from positive to negative.
Down arrows H ∗ represent the determined position of the local
minimum. Up arrows indicate a slope change, dS(H )/dH , above
which S(H ) follows a linear field dependence.

through a minimum, H ∗. For H > 110 kOe at T = 2 K,
the oscillatory behavior corresponds to quantum oscillations,
which is consistent with Shubnikov de Haas (SdH) results.
As temperature increases from 0.4 K, H ∗ shifts to higher
magnetic fields and the absolute TEP value at H ∗ increases
up to 2 K and then decreases. The sign of TEP changes
from positive to negative around HSR = 4.2 kOe at 0.4 K and
recovers a positive sign near 43 kOe; both HSR values move
to higher magnetic fields with increasing temperature. For
H > 100 kOe and T > 10 K a sign reversal on TEP is no
longer visible.

Figure 28 shows the T � 1.5 K S(H ) data, where each
S(H ) curve is shifted by −0.3 μV/K, for clarity. In addition
to the lower HSR and H ∗, there is a slope change, HFL, near
20 kOe, above which S(H ) is linear in magnetic field. The
lower sign reversal (HSR), the local minimum (H ∗), and the
slope change (HFL) on S(H ) move to higher magnetic fields
with increasing temperatures, indicated by solid circles, down
arrows, and up arrows, respectively, in Fig. 28.

The features, collected from the S(T ) and S(H ) measure-
ments, are plotted in the H -T plane in Fig. 29. In zero field a
weak signal as a small drop near 0.4 K is consistent with the TN

determined from resistivity (not shown in the figure). The sign
reversal temperatures determined from S(T ) are well matched
with the sign reversal fields determined from S(H ), where
the higher field sign reversal is not plotted. The line of sign
reversal terminates near 4 kOe by simple linear extrapolation
of the data below 1 K. The H ∗ line determined from the local
minimum in S(H ) is not matched with the T0 line obtained
from the local minimum in S(T ). Two lines linearly rise with
increasing of magnetic field.

By carefully examining S(T ) and S(H ) data, as shown in
bottom panels in Fig. 29, there are signatures corresponding
to H ∗ and T0 in both figures even though one of the features
is very weak. Below 30 kOe S(H ) for T = 1 K (a horizontal
cut through the H -T plane) shows a sign change at HSR =
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FIG. 29. (Color online) Features from S(T ,H ) measurements
plotted in a H -T diagram: TSR and HSR represent the sign reversal
extracted from the position of S(T ,H ) = 0; H ∗ marks the position
of the local minimum in S(H ); T0 indicates the position of the local
minimum in S(T ); Tmax represents the position of the local maximum
developed at low temperatures for H � 70 kOe; and TFL and HFL

represent the slope change in S(T ) (Fig. 25) and S(H ) (Fig. 28),
respectively. The bottom panels show the horizontal and vertical cut
through the H -T plane. (Left) Below 30 kOe S(H ) at T = 1 K hits
all three characteristic lines of HSR, H0, and H ∗. (Right) Below 2.5 K
S(T ) at H = 15 kOe indicates both T ∗ and T0 line. See details in the
text.

5.6 kOe, a slope change near H0 = 11 kOe, and a local
minimum around H ∗ = 15 kOe, where the signature of H0

is very weak. Below 2.5 K S(T ) for H = 15 kOe (a vertical
cut through the H -T plane) indicates a slope change around
T ∗ = 1 K and a local minimum near T0 = 1.3 K, where the
signature of T ∗ is very weak. Thus, the H ∗ line is sensitive to
the magnetic field sweeps and T0 is sensitive to the temperature
sweeps. Because of the weak signal, T0 and H ∗ were taken
only from temperature sweeps and magnetic field sweeps,
respectively, and these are plotted in Fig. 29. T0 seems to
extrapolate to the origin (T = 0 and H = 0) of the H -T plane
and H ∗ tends toward H = 8 kOe at T = 0. The crossover
TFL (Figs. 25 and 28) is well overlapped with HFL and is
almost linear in magnetic fields above 0.4 K. As mentioned
above, for H = 30, 40, and 50 kOe, the TEP shows a linear
temperature dependence, S(T ) = αT , which is an indication
of FL behavior. Between 20 and 30 kOe the boundary of TFL

is overlapped with the boundary of the FL region determined
from T 2 dependence of ρ(T ). Therefore, TEP below 0.4 K
is expected to follow S(T ) = αT for H < 30 kOe. The local

maximum developed in S(T ) for H > 70 kOe is plotted in
Fig. 29 as stars. Because of the very weak TEP signal in this
regime the signature is not discernible in S(H ) data. Since the
TEP is known to be particularly sensitive to Kondo and CEF
effects, the development of Tmax can be related to the effect
of further CEF splitting via Zeeman effect. In such a high
magnetic field the Kondo effect with TK ∼ 1 K for YbPtBi is
expected to be suppressed.

IV. DISCUSSION

A. Antiferromagnetic order

In zero field the observed ρ(T ) below TN depends on the
measurements conditions, but the TN remains approximately
the same for all cases. Similar behavior has been reported
in Ref. 3, where ρ(T ) data for several rod-shaped samples
show either an increase or a decrease below TN . The different
relative height of ρ(T ) below TN was explained due to the
partial gapping of the Fermi surface. In addition, the results
of ρ(T ), measured by the Montgomery arrangement,62 reveal
anisotropy for current directions between the high-temperature
[100] and [010] directions, which indicated a broken cubic
symmetry below TN (Ref. 3). In this study, for testing the
anisotropy with respect to the different current directions,
several resistivity samples were cut from a plate-shaped sample
with a wire saw parallel to both the [100] and the [010]
crystallographically equivalent directions. The results indicate
that the anisotropy of ρ(T ) below TN does not depend on
the different current directions but highly depend on the
sample mounting conditions. In the earlier studies it has
been speculated that the anisotropy was caused either by the
highly oriented domains or by internal stress developed during
material growth.3 In this study, however, the anisotropy is
caused by the external parameters and expected to be due to
the external stress (anisotropic pressure), which is consistent
with earlier specific-heat results.41 Similar results have been
found in cubic chromium (Cr),43,63 which is the canonical
example of SDW material with TN = 311 K, that magnetic
field cooling and compressive stress cooling profoundly
change the magnetic structure.63 The application of a uniaxial
stress (∼0.07 kbar) to a single crystal of Cr, while cooling
through TN , prohibits the development of domains with a
SDW vector (−→q ) parallel to the direction of stress, where the
shifts of TN and magnitude of the −→

q vector were detected.63

In YbPtBi, for stress cooling through TN , it is suspected
that the anisotropic distortion of the Fermi surface under
external strain can cause the radical variation of the resistivity
below TN .

One of the interesting aspects of antiferromagnetism in
YbPtBi is the rapid suppression of TN by the application
of hydrostatic pressure,3 where a pressure as low as 1 kbar
suppresses the signature of the phase transition in resistivity
measurements. On the other hand, the specific-heat mea-
surements have shown41 that the phase transition feature,
shown in C(T )/T for the single-crystal samples, is completely
smeared out for the pressed pellet samples, prepared from
ground single crystals, which were mixed with GE-7301
varnish. In addition to the resistivity results in this study, the
drastic difference of the specific-heat results between single
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crystals and pressed pellet samples suggests that the results of
the pressure dependence of resistivity are caused mainly by
the external stress applied and also possibly nonhydrostatic
components in pressure experiments.

The temperature dependence of the electrical resistivity
shows a sharp rise below TN which is reminiscent of a
SDW antiferromagnet Cr (Ref. 43) and URu2Si2 (Ref. 55).
From a simple point of view, we expect that parts of the
high-temperature Fermi surface disappears when the gap is
opened. As shown in Fig. 23, the opening of the SDW gap
below TN gives rise to an abrupt enhancement of RH (H → 0),
enhanced by roughly a factor of two compared to the value
above TN . From the earlier study of the electrical resistivity
and specific heat,3 it has been shown by the analysis of these
data, based on BCS theory, that the Fermi surface is removed
roughly 16% by the formation of the SDW state. Thus, the
steep increase of RH below TN implies a carrier density
reduction with Fermi surface nesting of highly renormalized
bands. Although previous neutron scattering experiments have
not confirmed AFM order,5 the μ-SR experiments suggested
tiny ordered moment.4 Therefore, a SDW ground state is
supported by compelling evidence from ρ(T ), Cp(T ), and
RH (T ) as well as the μ-SR measurements. Note that very
similar results have been observed in URu2Si2 (Ref. 55).
The carrier concentration of URu2Si2 estimated from RH is
0.05 holes per formula unit which is close to the value of
YbPtBi, and about 40% of the Fermi surface, calculated
from specific heat, is removed by the formation of the
hidden ordered state at T0 = 17.5 K (Ref. 64). Below T0,
RH of URu2Si2 increases by factor of 5–20 because of
the opening of a gap over the Fermi surface. Recently, ρH

measurements in a pulsed magnetic field show that the steep
enhancement of RH below T0 is completely suppressed across
the QCP by order of 40 T (Ref. 65). Similarly, the sharp
rise of RH for YbPtBi is completely suppressed near Hc

(Fig. 23).

B. Quantum criticality

The results of the low-temperature thermodynamic and
transport experiments are summarized in the H -T phase
diagram shown in Fig. 30. (For clarity, only the resistivity
data from sample #13 are used to plot AFM phase boundary.)
The magnetic-field dependence of the AFM phase boundary,
TN , was mainly determined from the sharp peak position in
dρ(T )/dT and dρ(H )/dH (Fig. 12), the sharp peak position
in α100, and the slope change in λ100 (Fig. 18). For comparison,
the temperatures of the maximum in Cp [and the minimum in
ρ(T )] are higher than those of α100 and dρ(T )/dT (Fig. 31)
but, as discussed above, the position of the higher field slope
change in λ100 is well matched with the sharp peak position in
dρ(H )/dH .

Figure 30 clearly shows that the AFM order can be
suppressed to T = 0 by an applied magnetic field of less than
4 kOe. This being said, it is worth discussing that there is not
perfect agreement between the temperature and magnetic-field
sweep data below 0.2 K and there is an approximately 0.8 kOe
difference between them at 0.02 K. No noticeable hysteresis
was observed between the up- and downsweeps of magnetic
field. However, the field dependence of ρH at 0.06 K shows

FIG. 30. (Color online) H -T phase diagram of YbPtBi in config-
uration H ‖ [100]. The TN was derived from dρ(T )/dT , dρ(H )/dH ,
α100, and λ100. For the phase boundary the ρ(T ,H ) results for sample
#13 are only included. The solid line on the AFM phase boundary
represents the fit of equation TN = [(H − Hc)/Hc]0.33 to the data. The
dashed line represents the fit of equation TN = [(H − Hc)/Hc]2/3 to
the data. The TFL represents the upper limit of the T 2 dependence of
ρ(T ), where the results of samples #13, #14, and #3 are plotted. The
solid line is a guide for the eye. The local maximum of dρ(H )/dH

and the local minimum of λ100 are assigned to H ∗(T ). It should be
noted that the width of each of these H ∗ features decreases with
decreasing temperature, as shown by horizontal bars. For each data
set the width monotonically decreases with decreasing temperature.

a clear feature at H = 3.9 kOe (inset of Fig. 20), which is
close to the AFM boundary determined from the temperature
sweeps. It has been shown in earlier studies that the AFM order
can be suppressed by an external magnetic field of 3.1 kOe
(Ref. 3), which is mainly based on magnetic field sweeps. It is
not clear at this point that whether this discrepancy is merely

FIG. 31. (Color online) Criteria for determining TN . (a) Zero-field
specific heat Cp and the coefficient of linear thermal expansion
α100. (b) Zero-field electrical resistivity ρ(T ) and the derivative
dρ(T )/dT . (c) Linear magnetostriction �L/L and the coefficient
λ100 = d(�L/L)/dH at T = 0.02 K. (d) Magnetoresistivity ρ(H )
and the derivative dρ(H )/dH at T = 0.02 K. Solid lines are guides
for the eye.
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FIG. 32. (Color online) High temperature H -T phase diagram
for YbPtBi. The S(T ,H ) = 0 and the slope change from ρH /H

are assigned to TSR(H ). The local maximum in dρ(H )/dH , the
local minimum of λ100, the local minimum of ρH /H , and the local
minimum in S(H ) are assigned to H ∗(T ). The TFL was derived from
the upper limit of the T 2 dependence of ρ(T ) and the upper limit of
the T dependence of S(T ). The slope change in S(H ) is also assigned
to TFL. All lines and shaded area are guides for the eye.

based on the criteria for determining the TN or whether the
AFM order splits into two different phases below 0.2 K and
for H > 2 kOe.

Based on the scaling properties near QCP, the phase
transition temperature is expected to follow a characteristic
power-law dependence; TN ∝ (−r)ψ , where r is the distance to
the QCP and ψ is the exponent.66 In Fig. 30 the solid line on the
AFM phase boundary represents the best fit of equation TN ∝
[(H − Hc)/Hc]ψ to the data with TN (0) = 0.38 ± 0.02 K,
Hc = 3.6 ± 0.2 kOe, and ψ = 0.33 (� 1/3) ± 0.03, where
the error bar depends on the fitting range. For (SDW) antiferro-
magnets with three-dimensional critical fluctuations (d = 3)
the boundary of the ordered phase varies as TN ∝ (−r)2/3

(Refs. 7 and 8). When the exponent is fixed to ψ = 2/3, the
fit curve is represented by a dashed line (Fig. 30) on the phase
boundary with TN = 0.4 K and Hc = 4.6 kOe. Apparently, for
YbPtBi the AFM phase boundary can be better described with
ψ � 1/3, which deviates from the theoretical prediction for a
three-dimensional AFM QCP of SDW scenario.

In addition to TN , measurements indicate a crossover region
of H ∗(T ). The features in dρ(H )/dH (Fig. 12), λ100 (Fig. 18),
ρH /H (Fig. 22), and S(H ) (Fig. 29), associated with H ∗, are
assigned to H ∗(T ) and are plotted in the H -T plane as shown
in Fig. 30 for lower T and H and in Fig. 32 over a wider
range. The error bars are rough estimates of the crossover
widths, based on the widths of those features. The width of
the H ∗ crossover region is wider as temperature is increased.
However, in the zero-temperature limit each H ∗ sharpens and
tends to converge near H ∗ ∼ 7.8 kOe. For other field-induced
QCP systems, Ge-doped32 and parent YbRh2Si2 (Refs. 20) and
YbAgGe (Ref. 27), a similar crossover field has been observed
from various thermodynamic and transport measurements. The
FL region is consistently inferred from S(T ) and ρ(T ) data
below 30 kOe; for H > 30 kOe, the FL region determined from

S(T ) and S(H ) is not consistent with the one inferred from
ρ(T ). Given that TFL represents a cross over, differences in its
value, inferred from different data sets, are not unexpected.

Even though the physical meaning behind the experimental
signature is not clear and the primary experimental signature
comes from TEP data, there is an another crossover scale of
TSR (Fig. 32). The lower magnetic field signature in ρH/H ,
which corresponds to the slope change in ρH/H emerging
from Hc, overlaps the sign reversal in S(T ,H ). Thus, in the
T → 0 limit, TSR is expected to converge to Hc by tracking
the ρH/H feature. For YbAgGe this TSR crossover line has
also been observed with similar behavior.31

One of the interesting issues is the magnetic-field mod-
ification of the power-law dependence of the resistivity
(Figs. 8 and 11), ρ(T ) = ρ0 + AT n, which describes the
low-temperature quasiparticle behavior. In Fig. 30, for H >

8 kOe, the characteristic scale of TFL marks the upper limit
of the observed T 2 dependence of the resistivity below
which the FL state is stabilized. In Fig. 30 the results for
samples #13, #14, and #3 are plotted and the solid line is a
guide for the eye. The TFL region shrinks quasilinearly with
decreasing magnetic field from the paramagentic state. By us-
ing simple linear extrapolation, the TFL line terminates at H ∼
5.2 ± 0.5 kOe, based on the results of three samples, which
is close to but distinct from Hc. Below H ∼ 8 kOe, the ρ(T )
curve is better fitted to the T 1.5 than T 2 dependence, indicating
nFL-like behavior (4 kOe < H < 8 kOe). A detailed analysis
of ρ(T ) (Fig. 11) reveals that as magnetic field decreases a
nFL-like behavior [�ρ(T ) ∝ T 1.5] of resistivity above the T 2

region is also observed, which shrinks progressively towards
H ∼ Hc. Although the question of whether ρ(T ) ∝ T 2 exists
at very low temperature down to Hc ∼ 4 kOe is still open
(although not strongly supported by the data), a clear nFL
region between 4 and 8 kOe is strongly indicated.

The observation of these two distinct, low-temperature
regimes, FL and nFL, in YbPtBi raises the question of whether
the FL state survives in the magnetic-field range between
Hc and H ∗ at T = 0 and what is the physical origin of the
crossover scale H ∗. The H ∗ line seems to block the extension
of the FL state below 8 kOe, but for unambiguous conclusions
it will be necessary to perform high-resolution measurements
of the resistivity to temperatures even lower than 0.02 K.
In any case, it is natural to interpret the constructed H -T
phase diagram as showing that TN is suppressed to T = 0 for
Hc � 4 kOe and the FL state is stabilized for H � 8 kOe.
The TSR and TN lines vanish at Hc and the H ∗ vanishes near
the magnetic field of 7.8 kOe at T → 0, which is not directly
connected to TN . It currently seems likely that TFL terminates
at H ∗ in the zero-temperature limit.

Since TFL seems to be detached from the TN , it would be
interesting to assess whether the quasiparticle effective mass
diverges at the critical field of Hc via a strong magnetic field
dependence of the FL coefficients A and γ . The coefficient
A rapidly increases with decreasing magnetic field from the
paramagnetic state [Fig. 33(a)]. Indeed, the steep variation of
the A value can be well described by a scaling analysis with a
form of A(H ) − A0 ∝ (H − Hc)−β , where A0 is the adjustable
parameter, Hc is the critical field, and β is the exponent. In
Fig. 33(a) the solid line on A values for sample #13 represents
a fit of the scaling form, where the fit was performed between
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FIG. 33. (Color online) (a) Fermi liquid coefficient A = �ρ(T )/T 2 and γ = C(T )/T |T →0. The solid line through the higher field A values
represents a fit of equation A − A0 ∝ 1/(H − Hc), performed up to 50 kOe with the constant offset A0 � 0.03μ� cm/K2 and Hc = 4.2 kOe.
The vertical line represents the critical field (Hc). (b) A−1 (left axis) vs H for three different samples (samples #3, #13, and #14 in Fig. 11) and
γ −0.5 (right axis) vs H . Solid lines represent the linear fit to the data. See text for details.

8 and 50 kOe, yielding a critical field Hc = 4.2 ± 0.5 kOe,
an exponent β = 1 ± 0.05, and A0 � 0.03 μ� cm/K2. The
power-law dependence of A can be clearly seen, when it is
plotted as A−1 vs H , as shown in Fig. 33(b). From a linear fit to
the data the critical field is obtained to be Hc ∼ 4.4 kOe, which
is close to the critical field of power-law fit. Similar critical
fields for samples #3 (Hc � 4.3 kOe) and #14 (Hc � 4.2 kOe)
with β � 1 can be obtained with the adjustable parameter
A0. Note that without A0 the critical field and the exponent,
obtained from the fit to three different sets of A value,
vary between 3.5 kOe � Hc � 4.7 kOe and 0.92 � β � 1.12,
respectively; thus, the adjustable parameter A0 is necessary
to allow the three data sets to converge to the same Hc and
β values in the same magnetic field range, but even with
A0 = 0, the value of Hc is much closer to Hc ∼ 4.5 kOe than
to H ∗ ∼ 8 kOe and β is closer to 1.0 than to 0.5 or 1.5. Since
the A value diverges at near ∼4 kOe, the scattering cross
section between quasiparticles becomes singular at Hc. The
observed divergence of A assigned Hc as the QCP and β = 1 as
the exponent characterizing quantum criticality. A power-law
divergence of the A value near QCP has been observed from
other field-induced QCP systems such as YbRh2Si2 (Ref. 22),
CeCoIn5 (Ref. 67), and CeAuSb2 (Ref. 68) with exponent
β = 1 or close to 1.

A FL state can be characterized by the Kadowaki-Woods
(K-W) ratio,69 A ∝ γ 2, where γ is a direct measure of the
effective mass, m∗, of quasiparticles. Thus, the dramatic
variation of γ was also analyzed with a relation of γ (H ) −
γ0 ∝ (H − Hc)−β , which is the same form as A, where
γ0 is the adjustable parameter. The power-law fit to the
γ (H ), performed between 8 and 50 kOe, yields a critical
field Hc = 4.6 ± 0.4 kOe, an exponent β = 1 ± 0.2, and
γ0 = 0.55 J/mol K2. Although this analysis gives a consistent
critical field with that obtained from the fit of A, the required
value of γ0 = 0.55 J/mol K2 is very high. Without γ0 the
fit yields a critical field of 1.5 ± 0.5 kOe and an exponent
β = 2 ± 0.4. This result can be clearly seen in the γ −0.5

vs H plot [Fig. 33(b)], which is close to the linear in H ,
and thus β ∼ 2. In this plot, the critical field is estimated to
be Hc ∼ 1.8 ± 0.5 kOe from the linear fit to the data. The
observed exponents, 1 � β � 2, are striking deviations from
the K-W ratio, where the exponent β = 0.5 is expected in
the FL regime. It is worth noting, though, that γ (H ) diverges
near or below 4.5 kOe in all cases. Note that such a deviation
from the K-W ratio across the field-tuned QCP has also been
observed in Ge-doped YbRh2Si2 (Ref. 70).

To clarify the observed, anomalous power-law dependence
of resistivity below 8 kOe, the measured resistivity was
compared to the predicted T 2 dependence of resistivity based
on the power-law analysis of A values. In Fig. 34 the
measured resistivity for samples #13 and #3, together with the
calculated resistivity curves, are plotted after subtracting ρ0

value [�ρ(T )]. For H = 6, 7, and 8 kOe, predicted A values,
obtained from the power-law fit [A ∝ 1/(H − Hc), Fig. 33] to
the experimental A values, are used to generate �ρ(T ) curves.
For sample #13 as shown in Fig. 34(a), the measured �ρ(T ) for
H = 8 kOe is in good agreement with the calculated �ρ(T )
below ∼0.11 K (indicated by an arrow), whereas the observed
�ρ(T ) for H = 6 kOe cannot be reproduced by the predicted
�ρ(T ) fundamentally due to the large, predicted A value used.
For sample #3 [Fig. 34(b)], the calculated curves for both
H = 6 and 7 kOe shows no agreement with the measured
�ρ(T ). Therefore, as shown in Fig. 33, there seems to be a
disruption of high-field FL behavior near H ∗ (∼8 kOe) rather
than going down to Hc (∼4 kOe). This analysis suggests that
the T 1.5 dependence of resistivity below 8 kOe can be from
the electronic system entering a new kind of state such as
nFL state that has less scattering. This result is consistent with
the behavior of γ (H ), which clearly shows a deviation from
the power-law dependence below 8 kOe (Fig. 33). It is worth
noting that there is the possibility of having T 2 dependence of
the resistivity between 4 and 8 kOe at very low temperatures,
i.e., below 0.08 K, as discussed earlier. In this field region the
obtained A value for T 2 fit is far smaller than the predicted A
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FIG. 34. (Color online) The temperature dependence of the resistivity, �ρ(T ) = ρ(T ) − ρ0, of YbPtBi for (a) sample #13 and (b) sample #3.
(a) The solid and dash-dotted lines represent the calculated �ρ(T ) with A � 76.7 μ� cm/K2 for H = 6 kOe and with A � 32.4 μ� cm/K2

for H = 8 kOe, respectively. (b) The solid line and dashed line represent the calculated �ρ(T ) with A � 76.7 μ� cm/K2 for H = 6 kOe
and with A � 46.7 μ� cm/K2 for H = 7 kOe, respectively. The A values used to generate �ρ(T ) were obtained from the power-law fit
[A ∝ 1/(H − Hc)] to the A values shown in Fig. 33. See text for details.

value. Thus, although the FL state might be stabilized below
8 kOe, the electronic state would be distinct from that above
8 kOe.

It has been shown that the A/γ 2 ratio depends on
the ground-state degeneracy.71 A clear dependence of the
A/γ 2 ratio on the degeneracy, N , is shown in Fig. 35(a).
The experimental A/γ 2 ratio continuously shifts from high
degeneracy (near N = 6 at 8 kOe) toward low degeneracy
(N = 2 at 20 kOe). A clear variation of K-W ratio in the
presence of magnetic field is better seen when A/γ 2 is directly
plotted as a function of magnetic field [Fig. 35(b)]; the ratio,
A/γ 2, continuously increases as the magnetic field increases.
In zero field and at ambient pressure, it has been shown72

that the K-W ratio for YbPtBi is located close to the N = 8
curve [not plotted in Fig. 35(a)]. Because of the AFM order,
the A value at ambient pressure was estimated by linearly
extrapolating pressure dependence of A values between 4
and 19 kbar (Ref. 72). In this pressure range the resistivity
data followed �ρ(T ) = AT 2 below 0.3 K. The observed
behavior of the K-W ratio suggests that the variation of
A/γ 2 values is due to magnetic-field-induced changes in N , a
supposition that seems plausible because the ground-state CEF
degeneracy in zero field can be lifted by an applied magnetic
field.

However, there are several points about K-W scaling
and YbPtBi that need to be considered. First, in zero field
the ground-state degeneracy of YbPtBi should be N = 2
(doublet) or N = 4 (quartet) in cubic CEF.73 Based on this
we would expect N = 4 at most, not 6 or 8. Second, the
K-W ratio not only depends on the degeneracy but also
on the carrier concentration, n, as n−4/3 (Refs. 71 and
74), which is an important correction in low-carrier-density
systems. Thus, it is necessary to consider the carrier density
for lower carrier systems. Although a single-band model
will ultimately be inadequate for YbPtBi, it does provide
a useful starting point; when the carrier density, 0.04 hole

per formula unit (in a single-band model) for YbPtBi at
300 K, is considered, the N = 2, 4, 6, and 8 manifold shown
in Fig. 35(a) shifts downward with the N = 2 line falling
well below the data. Thus, the carrier concentration within a
single-band model cannot explain the observed behavior of
the K-W ratio. For YbPtBi the K-W ratio may depend on CEF
splitting, low carrier density, and details of the multiple Fermi
surfaces.

The multiband nature of YbPtBi is clearly evidenced from
quantum oscillations75 (the analysis of the quantum oscillation
is beyond the scope of this paper) and can be supported
from the TEP results. Many metals, including HF compounds,
have shown correlations between C(T )/T and S(T )/T in
the zero-temperature limit, linking these two quantities via
the dimensionless ratio, q = SNAe

γ T
∼ ±1, where NA is the

Avogadro number and the constant NAe is called the Faraday
number.76 At finite temperature, near 0.4 K, this relation seems
not to be relevant for YbPtBi. Taking the values of S(T )/T =
1.2 μV/K at the onset of TN and γ = 7.4 J/mol K2 yields
q = 0.015. Since the dimensionless ratio holds for a single
carrier per formula unit, generally a larger q value is expected
when the carrier density is as low as this is; the carrier density
of 0.04 hole per formula unit implies q = −25. Therefore,
S(T )/T ∼ −20 μV/K2 is expected for γ = 7.4 J/mol K2. As
seen in Fig. 26 the absolute value of S(T )/T up to 8 kOe
is considerably lower than this value, where γ remains the
same order of magnitude. Therefore, the low carrier density of
YbPtBi cannot, by itself, provide a natural explanation for this
small magnitude of q. This again points toward the multiband
nature of this material as a likely explanation. In order to
clearly address this issue, further experimental investigations
are required below 0.35 K. In multiband metals, the TEP for
each band can be positive or negative; therefore, in principle,
the absolute value of the weighted sum of the overall TEP
could be considerably reduced, compared to the single-band
picture. When the same amount of entropy is carried by
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FIG. 35. (Color online) (a) log-log plot of A vs γ . Solid lines represent the Kadowaki-Woods (K-W) ratio for different ground-state
degeneracy (Ref. 71) for N = 2–8. (b) A/γ 2 vs H , where the horizontal arrow indicates the K-W ratio for N = 2. The solid line is a guide for
the eye.

each type of carrier a reduction of S(T )/T is expected.
Therefore, in addition to the ground-state degeneracy and
carrier concentration, the multiband (multi-Fermi surface)
effect and/or the strong anisotropy of the Fermi surfaces
should be considered in the K-W ratio as well as the q value.
It is worth noting that a deviation from K-W relation and
q ratio has been observed in the semimetallic HF system
CeNiSn and such a deviation has been qualitatively explained
by considering carrier density.76,77 However, the low carrier
density of YbPtBi, on its own, cannot explain the observed
behaviors.

Based on the scaling analysis of A for a magnetic field
higher than H ∗, the quasiparticle mass shows a power-law
divergence near Hc. However, the experimentally observed γ is
essentially constant for H < 8 kOe (close to H ∗) [Fig. 15(a)].
An intriguing question to raise is if the QCP is at Hc, what is
the physical origin of the crossover line H ∗(T ), which seems to
cut off the divergence of quasiparticle mass enhancement; and
why do specific-heat measurements indicate no pronounced
nFL behavior, −log(T ) or

√
T , for H � Hc down to lowest

temperature measured? The resistivity results reveal a nFL
state with �ρ(T ) = T 1.5 and the TEP measurements indicate
a logarithmic temperature dependence, S(T ) ∝ − log(T ), for
H < Hc and T > TN . Based on these transport results one
should ask whether an extended regime of nFL state is caused
by purely quantum fluctuations or whether other effects, such
as a magnetic-field-induced metamagneticlike state or the
modification of the CEF ground state with a characteristic
field of H ∗, need to be considered.

The H -T phase diagram, constructed from several experi-
mental results, for YbPtBi will now be compared to the other
Yb-based, field-induced QCP systems: YbRh2Si2 (Ref. 22),
Ge-doped YbRh2Si2 (Ref. 32 and 70), and YbAgGe (Ref. 27).
Each of these systems shows AFM order being suppressed
to T = 0 by an external magnetic field and beyond a given
critical field a FL state, exists below a TFL crossover. However,
the details of characteristic crossover scales, such as H ∗,
are different. Note that the crossover scale H ∗ used in this

paper represents the T ∗ used in the references. For YbRh2Si2
H ∗ has been interpreted as a characteristic energy scale
below which the quasiparticles break down, involving a Fermi
surface volume change from small to large across the QCP
(Ref. 20). The sign reversal in TEP, TSR, has been observed
from both YbRh2Si2 (Ref. 61) and YbAgGe (Ref. 31) across
the quantum critical region. Whereas the TSR for YbAgGe
emerges at the critical field and persists up to high temperature,
the TSR for YbRh2Si2 exists inside the AFM region and
terminates at the critical field as the system is tuned through
the QCP. For YbPtBi, considering these two crossovers,
H ∗ and TSR, the constructed phase diagram is more similar
to YbAgGe.

For both YbRh2Si2 and YbAgGe the resistivity, specific
heat, and TEP in the vicinity the QCP manifest a clear
�ρ(T ) ∝ T , C(T )/T ∝ − log(T ), and S(T )/T ∝ − log(T )
behaviors as signatures of strong quantum fluctuations, which
can be understood within the conventional SDW scenario with
z = 2 and d = 2 (Refs. 7,8, and 78), and are also compatible
with the unconventional Kondo breakdown scenario.11,14,15,79

Note that the dimensionality of these systems needs to be
clarified. For YbPtBi no consistent nFL behavior is observed
in thermodynamic and transport measurements: The resistivity
measurements show a T 1.5 dependence between TSR and H ∗
in which the strongest signature (longest temperature range of
this power law) is observed near H ∗, the specific heat shows
a −log(T ) dependence over only limited temperature range,
and TEP measurements show a −log(T ) dependence below
the critical field. In the paramagnetic region, for Ge-doped70

and parent YbRh2Si222 a divergence of the effective mass at
the QCP has been inferred from the power-law analysis of
the FL coefficients of A. For YbPtBi a power-law analysis
of the A coefficient shows an indication of divergence at the
critical field; however, the specific heat remains finite (and
near constant) for H < H ∗ at which the divergence nature
of the effective mass is essentially cut off. For YbAgGe
the power-law dependence of these coefficients has not been
analyzed.
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FIG. 36. (Color online) Global phase diagram for HF materials,
adopted from Refs. 33 and 34, displaying the combined effects of
Kondo coupling (JK ) and magnetic frustration (G). The large circle
is the hypothetical location of YbPtBi. In order to destroy the AFM
order, a small applied magnetic field (∼4 kOe) is required. Beyond
the AFM QCP, the T 1.5 dependence of resistivity is observed passing
through a finite magnetic-field range (4 kOe < H < 8 kOe). For
H � 8 kOe, passing through the f -electron localized-to-delocalized
line, the T 2 dependence of resistivity is clearly observed.

The biggest difference between YbRh2Si2 and YbAgGe is
that the crossover scales, H ∗ and TFL, are detached from the
AFM phase boundary (TN ) for YbAgGe, whereas TN , H ∗,
and TFL terminate at the QCP for YbRh2Si2. Interestingly, the
H ∗ for Ge-doped YbRh2Si2 is also detached from TN . When
the nFL region is considered, a wide nFL region, determined
from �ρ(T ) ∝ T , is robust for YbAgGe (Ref. 28) and Ge-
doped YbRh2Si2 (Ref. 32), in contrast to the field-induced
QCP in YbRh2Si2 of which the FL behavior is recovered
when TN → 0. From this point of view the constructed H -T
phase diagram of YbPtBi is similar to that of YbAgGe and
Ge-doped YbRh2Si2. For YbAgGe, the two crossover scales,
TSR and H ∗, are evidenced from thermodynamic and transport
measurements, where the wide nFL region has been seen
between these two crossovers, which is similar to that of
YbPtBi. Note the for Ge-doped YbRh2Si2 a TSR line has not
been identified.

However, there are remaining questions when YbAgGe is
compared to other systems. In the zero-temperature limit, both
H ∗ and TFL terminate at the same field for Ge-doped and pure
YbRh2Si2, whereas TFL for YbAgGe is detached from H ∗.
For YbPtBi it is reasonable to assume that TFL terminates at or
near H ∗ at T = 0. In a simple point of view, YbPtBi is very
similar to YbAgGe with regards to the crossover scales of TSR

and H ∗ and is close to that of Ge-doped YbRh2Si2 (Ref. 32)
with regards to the H ∗ and TFL. Therefore, YbPtBi can be
located between YbAgGe and Ge-doped YbRh2Si2 (closer
to the Ge-doped YbRh2Si2) in the global phase diagram33,34

as shown in Fig. 36. The AFM order in YbPtBi can be
suppressed to T = 0 by applying magnetic field of ∼4 kOe
(AFM state in Fig. 36). Further increasing magnetic field
the electrical resistivity follows T 1.5 dependence between
∼4 and ∼8 kOe in which the paramagnetic, small Fermi

surface, phase (possibly spin liquid phase) can be formed in
YbPtBi (PS region in Fig. 36) where the frustration effect,
caused by the fcc structure, may give rise to the spin liquid
state. For H � 8 kOe, after passing through the f -electron
localized-to-delocalized line in Fig. 36, the T 2 dependence of
resistivity is clearly observed. By following the global phase
diagram, the crossover line H ∗ in YbPtBi corresponds to the
f -electron localized-to-delocalized line and the nFL state can
be based on the spin liquid state. It needs to be clarified what
are the characteristics of spin liquid phase in a metallic system.
In order to clarify the proposed Doniach-like diagram, further
theoretical and experimental work is needed. It has to be noted
that our results for YbPtBi appear to be in discord with the
suggested effect of dimensionality alone on the placement of
the material in the global phase diagram.80,81

V. SUMMARY AND CONCLUSION

The H -T phase diagram of YbPtBi has been constructed by
low-temperature thermodynamic and transport measurements.
In zero field the strength of the anomaly developed in ρ(T )
below TN is sensitive to the strain, but the relevant physics
of the field-tuned quantum criticality remains the same for
magnetic field applied along H ‖ [100] up to 140 kOe. The
AFM order can be suppressed to T = 0 by external magnetic
field of Hc � 4 kOe and the temperature dependence of the
resistivity indicates the recovery of the FL state (clearly)
for H � 8 kOe. The two well-separated crossover scales,
TSR and T ∗, have been found, where these crossover lines
show a tendency of converging toward to Hc ∼ 4 kOe and
H ∗ ∼ 7.8 kOe in the zero-temperature limit. Although no clear
nFL behavior is observed in the specific-heat measurements
in the vicinity of the critical field, the electrical resistivity
shows anomalous temperature dependence, ρ(T ) ∝ T 1.5, as a
signature of nFL behavior, between these two crossovers and
S(T )/T exhibits a logarithmic temperature dependence for
H < Hc above the AFM ordering temperature. The observed
γ is finite below H ∼ 8 kOe and the quasiparticle scatter-
ing cross section, A, indicates a power-law divergence as
A ∝ 1/(H − Hc) upon approaching the critical field from
paramagnetic state. As magnetic field decreases from the
higher field side the power-law dependence of both A and γ

show a disruption below H ∗ ∼ 8 kOe. The constructed H -T
phase diagram and the details of the quantum criticality in
YbPtBi turn out to be complicated.
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15I. Paul, C. Pépin, and M. R. Norman, Phys. Rev. B 78, 035109

(2008).
16P. Gegenwart, C. Langhammer, C. Geibel, R. Helfrich, M. Lang,

G. Sparn, F. Steglich, R. Horn, L. Donnevert, A. Link, and
W. Assmus, Phys. Rev. Lett. 81, 1501 (1998).

17S. R. Julian, C. Pfleiderer, F. M. Grosche, N. D. Mathur, G. J.
McMullan, A. J. Diver, I. R. Walker, and G. G. Lonzarich, J. Phys.:
Condens. Matter 8, 9675 (1996).
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