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Critical thermodynamics close to a metamagnetic quantum critical end point (QCEP) in a metal is discussed
within the framework of spin-fluctuation theory. We analyze the effective potential for the Ising order parameter
that is renormalized by spin fluctuations and acquires a characteristic temperature dependence. The resulting
magnetic field, H , and temperature, T , dependence of the magnetization, specific heat, thermal expansion,
magnetostriction, susceptibility, and Grüneisen parameter are determined, and the crossover lines in the (H,T )
phase diagram are specified. We point out that the metamagnetic QCEP is intrinsically unstable with respect to
a magnetoelastic coupling.
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I. INTRODUCTION

In metamagnets the magnetization exhibits a superlinear
rise as a function of the applied magnetic field H or even
jumps at a first-order transition.1 In the (H,T ) plane such a line
of first-order metamagnetic transitions terminates in a critical
end point (H ∗,T ∗) beyond which metamagnetism reduces to
a crossover phenomena. Interestingly, an isolated quantum
critical end point (QCEP) arises if the end-point temperature
T ∗ can be tuned to zero by some external control parameter.

The notion of a metamagnetic QCEP was introduced in
the context of the layered perovskite Sr3Ru2O7 (Refs. 2,3) to
account for its peculiar metamagnetic properties. Here, the
line of first-order metamagnetic transitions can be tuned to
zero either using the orientation of the magnetic field4 or by
applying pressure.5 In the former case, however, the putative
QCEP is preempted by the formation of a nematic phase;6,7

see Ref. 8 for a review. Subsequently, the metamagnetic
crossover in the single-layer ruthenate Ca2−xSrxRuO4 (Ref. 9)
as well as the heavy-fermion system CeRu2Si2 (Refs. 10,11)
was discussed in terms of metamagnetic quantum criticality
motivated by the thermal expansion that is similar for the three
compounds.12 Note, however, that the metamagnetism of the
latter system is in vicinity to a tricritical point associated with
antiferromagnetic ordering,13,14 and alternative interpretations
have been also proposed.15–17

In fact, the presence of metamagnetic QCEPs might be
generic to itinerant ferromagnets. It has been suggested that
the ferromagnet transition in metals generally becomes first
order upon tuning the Curie temperature towards zero.18 The
resulting tricritical point gives rise to surfaces of first-order
metamagnetic transitions at finite H that terminate in a QCEP.
There are indications that such a scenario applies to a number
of ferromagnets, for example, ZrZn2 (Ref. 19) and UGe2

(Ref. 20). In a recent study, Aoki et al.21 demonstrated that
UCoAl exhibits a first-order ferromagnetic instability, and its
metamagnetic QCEP can be reached by applying a pressure
p = 1.5 GPa.

In a previous publication, we theoretically discussed the
universal critical thermodynamic signatures expected close
to a metamagnetic QCEP.11 The metamagnetic instability is
defined by a diverging differential susceptibility χ (T ) at a
finite Hm, which together with the Ising symmetry of the
end point implies a number of characteristic phenomena.

In the presence of a magnetoelastic coupling, one finds a
diverging Grüneisen parameter, a sign change of thermal
expansion as a function of field, α(H ), and a minimum in the
specific-heat coefficient γ (H ). Moreover, the susceptibility,
magnetostriction, and compressibility should exhibit the same
metamagnetic singularity and, as a result, one should expect a
pronounced crystal softening.

In this work, we illustrate and compute these signatures
within a specific model, i.e., the spin-fluctuation theory for
quantum critical metamagnetism, which was put forward
by Millis et al.22,23 extending earlier work by Moriya24

and Yamada.25 We derive the detailed magnetic field and
temperature dependence of thermodynamic quantities, specify
the crossover lines in the phase diagram, and give details for the
predicted behavior of thermal expansion that already appeared
in a short publication.12

The outline of the paper is as follows. In Sec. II we introduce
the model of Millis et al.,22,23 derive the phase diagram,
and compute the free-energy density. In Sec. III we present
the result for thermodynamic quantities, and we conclude in
Sec. IV with a summary and discussion.

II. SPIN-FLUCTUATION THEORY FOR ITINERANT
METAMAGNETISM

We follow Millis et al.22,23 and consider spin fluctuations in
a metal close to a metamagnetic instability. We concentrate on
the immediate vicinity of the instability where the longitudinal
part of the Pauli magnetization M becomes critical. The
fluctuations around its mean value, φ = M − 〈M〉, identify
an Ising order parameter that is governed by the potential

V0(φ) = −h0φ + r0

2!
φ2 + u30

3!
φ3 + u40

4!
φ4 + u50

5!
φ5 + · · · .

(1)

The potential V0(φ) has no specific symmetries and contains
in principle all powers of φ. However, later we will use the
freedom to shift the field φ by a constant in order to eliminate
the cubic term from the renormalized effective potential. Close
to the metamagnetic QCEP, the renormalized parameters in
front of the linear and quadratic terms, i.e., h and r , are small.
The linear term is proportional to the deviation of H from the
critical field, h ∝ H − Hm.
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The potential for the Ising order parameter is promoted to
a quantum critical theory by allowing for spatial and temporal
variations. The resulting action reads22,23

S =
∫ β

0
dτ

∫
ddx

[
1

2
φ �(−i∂x,i∂τ )φ + V0(φ)

]
(2)

with the gradient terms given by

�(k,ωn) = k2 + |ωn|
kz−2

, (3)

where ωn is a bosonic Matsubara frequency and the dynamical
exponent is z = 3. Similar to ferromagnetic paramagnons, the
dynamics of the metamagnetic fluctuations is dominated by
Landau damping due to the excitation of particle-hole pairs in
the metal. In Eq. (3) and in the following, we use dimensionless
units for lengths and energies as well as for the Ising order
parameter φ.

The spin-fluctuation theory for metamagnetic quantum
criticality rests on the assumptions that (i) the Taylor expansion
of the bare potential in Eq. (1) exists and (ii) the static suscep-
tibility is analytic in momenta such that indeed �(k,0) = k2.
This requires in particular that the electronic density of states
is sufficiently smooth as the expansion coefficients of Eq. (1)
are directly related to the derivatives of the density of states
at the Fermi level. For example, when the Fermi level is
exactly located at a Van Hove singularity the effective bosonic
theory (2) is not applicable. In addition, nonanalyticities in a
critical Fermi liquid can also be induced by interaction effects,
which have been intensively investigated in recent years; see,
e.g., Refs. 26–28. It is established that for a ferromagnetic
instability, i.e., a magnetic instability at zero magnetic field
H = 0, virtual particle-hole pairs can mediate long-range
interactions between the fluctuations of the order parameter
which in turn result in nonanalyticities of the Landau potential
that render the transition first order.18 At a metamagnetic
instability at finite field Hm > 0, however, spin-flip processes
are frozen out at low temperatures due to the finite Pauli
magnetization, and the Ising order parameter only couples
to the relative density fluctuations of the spin-majority and
spin-minority Fermi surfaces. It was argued in Ref. 27 that
in this case the interaction mediated by particle-hole pairs is
less singular, and the spin-fluctuation theory remains analytic.
Consequently, it is believed that the assumptions (i) and (ii)
hold and that the theory (2) is well defined.

A. Fluctuation corrections to the effective potential

The fluctuations of the field φ will dominate the low-
temperature thermodynamics close to the metamagnetic
QCEP. These fluctuations can be treated in a perturbative
manner. It is nevertheless convenient to apply the method
of the renormalization group to incorporate these corrections
in a systematic self-consistent fashion.22 For the problem
of a QCEP, we find it convenient to apply the functional
renormalization group (RG) and consider the RG flow of the
effective potential V itself.

The potential V at some RG scale λ can be expressed as a
line integral along an RG trajectory29,30

Vλ(φ) = V0(φ) +
∫ λ

0
dλ′e−Dλ′

f (T ezλ′
,V ′′

λ′ (φ)e2λ′
), (4)

where V ′′ is the second derivative of the potential with respect
to the field φ. The effective dimensionality is D = d + z > 4
with the spatial dimension d = 2 or d = 3, and z = 3. The
function f is given by

f (T ,R) = �
∂

∂�

1

2

∫
ddk

(2π )d
1

β

∑
ωn

log [R + �(k,ωn)] .

(5)

The momentum integral and the sum over bosonic Matsubara
frequencies is here understood to be regularized with some
UV cutoff �. Replacing the Matsubara sum with an integral
along the branch cut singularity and employing a hard cutoff
regularization, one obtains

f (T ,R) = −Kd

2π
�

∂

∂�

∫ �z

0
dε

∫ �

0
dk kd−1 coth

ε

2T

× arctan
ε k2−z

R + k2
, (6)

where Kd = [2d−1πd/2�(d/2)]−1.
The effective potential is obtained after incorporating all

fluctuation corrections by integrating over the full RG trajec-
tory, V ≡ V∞. Two different types of fluctuation corrections
can be distinguished corresponding to the separation of the f

function into two parts,

f (T ,R) = f0(R) + f∞(T ,R), (7)

with

f0(R) = f (0,0) + f (0,1)(0,0)R + 1
2f (0,2)(0,0)R2, (8)

where f (0,n) is the nth derivative with respect to the second
argument. The correction arising from f0 contributes consid-
erably only at the initial stage of the RG flow, i.e., for small
values of λ in Eq. (4). These corrections can be conveniently
absorbed into a renormalization of the bare parameters of the
potential (1),

Vren(φ) ≡ V0(φ) +
∫ ∞

0
dλ e−Dλf0(V ′′

0 (φ)e2λ)

= −hφ + r

2!
φ2 + u

4!
φ4 + u5

5!
φ5 + · · · . (9)

In the last line we disregarded an uninteresting constant. As
announced, the freedom to shift the field φ allows us to
eliminate the cubic coupling term.

On the other hand, the contribution of the fluctuations
attributed to f∞ only develops at the final stage of the
RG trajectory, i.e., for large λ, and comprises the universal
fluctuation corrections. So we finally obtain for the effective
potential

V(φ) = Vren(φ) + T D/zAd (V ′′(φ)T −2/z), (10)

where we introduced the function

Ad (x) =
∫ ∞

− log �/T 1/z

dμ e−Dμ�−Df∞(�zezμ,�2e2μx).

(11)

The effective potential is determined by a differential equation
(10). However, it turns out that this differential equation can
be easily solved perturbatively for small temperatures T . The
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expression (10) for the effective potential is the fundamental
equation of this paper.

We will need the limits of Ad for small and large
arguments. For dimension d = 2,3 the limiting behavior can
be summarized as follows:

Ad (x)

=
{−a1 + a2x − a3x

d/2 + · · · x 	 1,

xD/2(ā1 − ā2 x−z + ā3 x−z(d−z+4)/2 + · · · ) x 
 1,

(12)

where the coefficients might depend logarithmically on x. The
nonanalytic term with coefficient a3 originates from the zero
Matsubara mode. The term with coefficient ā3 will give rise
to nonanalytic Fermi liquid corrections. The explicit forms of
the coefficients are given in Appendix B.

We will limit ourselves to situations where all parameters
of the potential Vren are positive except the tuning parameter h,
which can have either sign. We will therefore not discuss first-
order metamagnetic transitions, which are realized for r < 0.
In the limit r = 0 one obtains the QCEP. The quartic, u, quintic,
u5, and higher order couplings are formally irrelevant in the RG
sense as the model is above its upper critical dimension, D > 4.
The fourth-order term is however needed in order to stabilize
the potential. The influence of the quintic term is negligible
at lowest temperatures close to the QCEP and can be omitted;
see Appendix A 1. The most relevant coupling is h. It is the
tuning parameter of the metamagnetic transition h ∝ H − Hm,
where Hm is the critical magnetic field. After disregarding
the quintic and higher order terms an Ising symmetry of the
potential emerges with respect to the transformation h → −h.
This implies that the critical free-energy density will be an
even function of h, Fcr(−h) = Fcr(h), in the limit of lowest
temperatures.

The critical free-energy density Fcr is obtained by taking
the effective potential at its minimum value, Fcr = V(φ̄). In
the following the solution φ̄ will be discussed.

B. Classical field configuration

The classical field configuration minimizes the effective
potential, V ′(φ̄) = 0. The tuning parameter h couples linearly
to the field φ and thus acts as a force. The field within
the potential adjusts to this force so that the system is in
equilibrium. The restoring force which counterbalances h

depends on the strength of the potential. In the following we
distinguish a linear and a nonlinear regime for the stiff and soft
potential, respectively.

1. Linear regime R3 � uh2

In the linear regime, the effective potential is simply
obtained by expanding (10) in the field φ. Retaining only the
leading temperature correction we obtain

V(φ) ≈ V(0) − hφ + R

2!
φ2 + u

4!
φ4. (13)

For a short discussion of subleading temperature corrections
see Appendix A 1. In the linear regime, R3 
 uh2, the
quadratic dominates over the quartic term and the classical

field configuration is given by

φ̄ = h

R
, R3 
 uh2. (14)

The stiffness of the potential R is defined by the equation

R = r + u T (D−2)/zA′
d (R T −2/z) (15)

with the first derivative of the function Ad defined in
(11). Keeping only the leading temperature correction, R is
approximately given by

R = r + u

{
r1 T (d+1)/3 R 	 T 2/3,

r2 T 2r (d−5)/2 R 
 T 2/3,
(16)

with positive coefficients ri , and we set z = 3 explicitly.
Note that a finite temperature enhances the stiffness. For
small arguments of A′

d , the stiffness R obtains a temperature
dependence T (D−2)/z. In the opposite limit, R 	 T 2/z, the
thermal fluctuations lead to a temperature correction of Fermi
liquid type, T 2.

Taking the effective potential at the minimum V(φ̄), we
obtain the free-energy density. In lowest order in the tuning
parameter h we get

Fcr = T D/zAd (R T −2/z) − h2

2R
, for R3 
 uh2. (17)

The first term is due to the Gaussian fluctuations around the
local minimum; the second term is the energy stored in the
potential V , and it is quadratic in h in the linear regime. Note
that this latter contribution is temperature dependent due to
fluctuation corrections to the potential’s stiffness, R.

2. Nonlinear regime R3 � uh2

In the nonlinear regime R3 	 uh2 the potential (10) is soft
and its curvature is determined by the field itself,V ′′(φ) ≈ u

2 φ2.
So we get

V(φ) ≈ −hφ + u

4!
φ4 + T D/zAd

(
u

2
φ2T −2/z

)
. (18)

The restoring force is now determined by the quartic term. In
lowest order in temperature, the potential is minimized by

φ̄ =
∣∣∣∣6h

u

∣∣∣∣
1/δ

sign(h), R3 	 h2u, (19)

with mean-field exponent, δ = 3. The resulting free energy
reads

Fcr = T D/zAd

(
62/3u1/3|h|2/3

2T 2/z

)
− 34/3

25/3

|h|4/3

u1/3
. (20)

The term proportional to |h|4/3 reflects the nonlinear nature
of the restoring force, and it is temperature independent in
the nonlinear regime. This scaling only applies as long as
|h| 	 h� where the cutoff field h� is determined by the
quintic coupling; see Appendix A 1. Moreover, the corrections
to the free energy arising from the temperature correction
to the classical field configuration (19) is subleading; see
Appendix A 2.

The crossover boundaries in the (h,T ) plane between the
linear and nonlinear regimes are shown in Fig. 1. In the
limit r 	 u T (D−2)/z, when R is dominated by the thermal
fluctuations the boundaries follow T ∼ (h/u)2/(d+1). At a
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linear regime

nonlinear

regime
nonlinear

0 r3/u− r3/u

T ∼ (h/u)
2

d+1

h

T

r
u

3
d+1

regime

FIG. 1. The linear regime, R3 
 uh2, is centered around h =
0. The crossover lines are bent outwards from the center. At large
temperatures the boundary follows an asymptotic power law in h. At
a temperature T ∼ (r/u)3/(d+1) the boundaries start to repel and hit
the zero-temperature axis with an infinite slope.

temperature T ∼ (r/u)3/(d+1) the boundaries start to repel each
other and hit the zero-temperature axis with an infinite slope,
h ∼ ±

√
r3/u + O(T 2).

C. Free-energy density

The free energy is determined by the effective potential at
the position of its minimum, Fcr = V(φ̄). The argument of
the function Ad in the expression for the effective potential
(10) identifies a second important crossover scale in the phase
diagram, V ′′(φ̄) ∼ T 2/z. The local curvature is approximately
given by V ′′(φ̄) ≈ R + u

2 φ̄2 with the stiffness R of the
potential; see Eq. (15). For large local curvature, V ′′(φ̄) 

T 2/z, the free energy has a standard Fermi liquid form,
Fcr = F0 − (T/T0)2, and thermodynamics is conventional for
a metal. In the limit of small curvature, V ′′(φ̄) 	 T 2/z, thermal
fluctuations induce nonanalytic T dependencies resulting in
unusual thermodynamic behavior. The crossover line between
this Fermi liquid and quantum critical regime is shown in
Fig. 2.

√
r3/u

quantum critical

regime

regime

T ∼ √
uh

Fermi liquid

h

r3/2

T

−
√

r3/u 0

FIG. 2. The local curvature near the potential minimum, T ∼
[V ′′(φ̄)]z/2, defines a crossover scale between a quantum critical and a
Fermi liquid regime. The QCEP obtains in the limit r → 0 when the
quantum critical regime touches the zero-temperature axis at h = 0.
For large |h| 
 √

r3/u the crossover boundary increases linearly
with h.

IV
I

III

I

II II

0 r3/u− r3/u h

T

r
u

3
d+1

r3/2
T ∼ √

uh

T ∼ (h/u)
2

d+1

FIG. 3. Different regimes resulting from the two crossover lines
of Figs. 1 and 2. In the limit r → 0 the regime IV shrinks to a point
coinciding with the QCEP. At finite r all critical divergencies are cut
off upon entering regime IV.

The intersection between the crossover lines of Figs. 1 and
2 defines four different regimes; see Fig. 3. Note that within
regime III there is an additional crossover at r ∼ uT (D−2)/z

depending on whether the stiffness R, (15), is dominated by
r or the thermal fluctuations. For dimensions d = 2,3 the
leading behavior of the free energy in the four regimes can
be summarized as follows:

Fcr =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−f1 T 2(uh2)(d−3)/6 − f2
|h|4/3

u1/3 I,

−f3 T d/3+1 + f4 T (d+1)/3(uh2)1/3 − f2
|h|4/3

u1/3 II,

−f5 T d/3+1 − h2

2R
III,

−f6 T 2r (d−3)/2 − h2

2R
IV,

(21)

where we set explicitly z = 3. The coefficients fi are all
positive and depend only logarithmically on the external
parameters; see Appendix B. It is important to realize that R

is temperature dependent (16). It is in fact this temperature
dependence which leads to some strong thermodynamic
signatures in the vicinity of the metamagnetic transition.

III. THERMODYNAMICS OF THE QUANTUM CRITICAL
METAMAGNETIC CROSSOVER

Thermodynamics measures the response of the free en-
ergy upon variation of external control parameters such as
temperature T , pressure p, or magnetic field H . There are
several interesting second-order derivatives of the free energy
whose behavior is discussed in the following. The specific-heat
coefficient quantifies the change of the free energy upon tem-
perature variations and is defined as γ = − ∂2F

∂T 2 . The thermal
expansion is a mixed derivative with respect to temperature
and pressure, α = 1

V
∂V
∂T

|p = 1
V

∂2F
∂T ∂p

. The compressibility is

given by κ = − 1
V

∂V
∂p

|T = − 1
V

∂2F
∂p2 , the magnetostriction is

a mixed derivative with respect to pressure and magnetic
field, λ = 1

V
∂V
∂H

= − 1
V

∂2F
∂p∂H

, and the magnetic susceptibility is

χ = − ∂2F
∂H 2 . We will also discuss the Grüneisen ratio � = α/C

and its magnetic analog �H = − ∂M
∂T

/C where C = γ T .34
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A. Dependencies of the scaling fields

In order to determine thermodynamics of metamagnetism,
we have to discuss the dependence of the free energy (21) on
pressure, magnetic field, and temperature. The latter plays a
special role as it appears explicitly in the effective theory via
the dynamics of the metamagnetic order parameter, see Eq. (3),
resulting in an explicit T dependence of the free energy (21)
that is responsible for the leading low-T behavior. Besides this
explicit T dependence, there is also an implicit dependence via
the scaling fields, i.e., the coefficients of the effective potential;
see Eq. (9). They also depend on pressure and magnetic field.
We have to consider the implicit dependence of the linear and
the quadratic coefficient of the potential, h and r , respectively:

h = h(H,p,T ) ≈ h(H,p) + hT T 2, (22)

r = r(H,p,T ) ≈ r(H,p). (23)

In principle, their dependence can be obtained from micro-
scopic calculations.35 Within our effective theory, we assume
that the pressure and magnetic field dependence is sufficiently
weak such that the derivatives of h and r with respect to p or H

can be treated as a constant near the metamagnetic transition;
e.g., ∂ph ≈ constant. In addition, the intrinsic temperature
dependence is assumed to be of Fermi liquid type, T 2. The
temperature dependence of the quadratic coefficient r can be
neglected close to the QCEP. However, as we will see, the T 2

dependence of the linear coefficient with amplitude hT leads
to important corrections although hT is formally irrelevant in
the RG sense.

The following discussion is divided into two parts. In the
first part the implicit p and H dependence of only the most
relevant parameter, h(H,p), is considered and hT and the
dependencies of r are neglected. In this case, the emergent
Ising symmetry of the potential (9) will be directly reflected in
the physical phase diagram spanned by temperature T and
magnetic field H . In a second step, we will consider the
corrections induced by hT and the dependencies of r(p,H ).

B. Emergent Ising symmetry in thermodynamics

Taking into account only the p and H dependence of
the control parameter, h(H,p) ∝ H − Hm(p), the critical free
energy is of the form

Fcr(H,p,T ) ≈ Fcr(H − Hm(p),T ). (24)

Near the metamagnetic transition the control parameter mea-
sures the distance to the critical field, h ∝ H − Hm(p), where
the critical field is assumed to depend smoothly on pressure,
∂pHm ≈ constant. With these assumptions it is clear that the
derivative of the free energy with respect to magnetic field
or pressure yields the same thermodynamic information. As a
consequence, the second-order derivatives of the free energy
are related,

∂2Fcr

∂T 2
∝ γ ;

∂2Fcr

∂h∂T
∝ α,

∂M

∂T
;

∂2Fcr

∂h2
∝ χ,λ,κ. (25)

For example, the susceptibility χ is asymptotically propor-
tional to the critical part of the compressibility κ . In fact, their
proportionality can be taken as a criterion for the assumption
(24) to be valid. Note that the free energy Fcr only accounts

for the critical metamagnetic contributions. There might exist
noncritical background contributions as, for example, for the
compressibility.

Another immediate consequence of the form (24) for
the free energy is that the emergent Ising symmetry of the
potential (9) results in a reflection symmetry with respect to
the metamagnetic field Hm,

Fcr(H − Hm(p),T ) = Fcr(Hm(p) − H,T ). (26)

The asymptotic Ising symmetry of the problem thus becomes
explicit in the thermodynamic signatures. This symmetry
implies for example that the thermal expansion as a function of
H changes its sign at the critical field Hm, and that specific heat
and susceptibility are even functions of H − Hm. Deviations
from this symmetry is an important indicator for additional
contributions to the reduced form of Fcr, (24).

In the following, the magnetization and the behavior of the
second-order derivatives (25) in the four regimes of Fig. 3
are discussed in detail for general dimensions d = 2,3 using
the expression for the free energy given in Sec. II C, which
is correct up to logarithmic corrections. Readers who are
interested in these logarithmic corrections should consult
Appendix B.

1. Magnetization

The hallmark of metamagnetism is the strong increase of
magnetization M as a function of magnetic field. From the free
energy (21) we obtain a mean-field behavior for the change in
the magnetization, δM = M − Mm; see the inset of Fig. 4(a).
Close to the metamagnetic field in the linear regime of Fig. 1,
the magnetization increases linearly as a function of H with
a susceptibility determined by the stiffness R; see Eq. (15).
For larger distances, h ∝ H − Hm, the magnetization crosses
over into the nonlinear regime and follows δM ∼ |h|1/δ with
a mean-field exponent δ = 3. The Ising symmetry is reflected
in a point symmetry of the change in magnetization δM as a
function of h.

2. Susceptibility, magnetostriction, and compressibility

Magnetic susceptibility, magnetostriction, and compress-
ibility asymptotically follow the same behavior near the
metamagnetic field and are proportional to −∂2

hFcr. They are
even functions of the control parameter; e.g., χ (−h) = χ (h).
In Fig. 4 a sketch of the temperature dependence is shown.
The temperature trace in Fig. 4(a) is located within the linear
regime, |h| <

√
r3/u, see Fig. 3, and here the susceptibility

increases monotonously with decreasing temperature. In this
regime the susceptibility is simply given by the inverse
stiffness of the potential, R−1, see Eq. (16). In Fig. 4(b)
a temperature trace for larger h is shown that crosses the
boundary to the nonlinear regime. At the crossover between
III and II the behavior changes qualitatively leading to a
characteristic peak in the susceptibility as already discussed in
Ref. 22. The difference between the height of the peak and the
saturation value at T = 0 increases as the metamagnetic field
is approached.

As the QCEP is approached, the derivative −∂2
hFcr diverges.

Note that this implies a diverging negative correction to the
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IV III
(a)

−u T 2r
d−9
2

1/r

∼ T−d+1
3 /u

−u T
d+1
3 /r2

(r/u)
3

d+1

∼ (h/u)1/3

h

∼ h
R

δM

0

0

−∂2
hFcr

Tr3/20

IIII II

(b)

1
(uh2)1/3 +u

d−3
6 T 2h

d−9
3

√
uh

+u
1
3T

d+1
3 h−4

3

(h/u)
2

d+1

∼ T−d+1
3 /u

∼ 1
(uh2)1/3

−∂2
hFcr

T0

FIG. 4. Sketch of the temperature dependence of the suscepti-
bility −∂2

hFcr, that is an even function of h, for (a) fields very
close to the metamagnetic transition, |h| <

√
r3/u, and (b) larger

fields such that the nonlinear regime is entered for low T (assuming
h > 0); see Fig. 3. Magnetostriction and compressibility are expected
to follow the same behavior. Inset: Behavior of the magnetization
change δM = M − Mm; the crossover lines separate the linear from
the nonlinear regime; see Fig. 1.

compressibility. This indicates that the QCEP is inherently
unstable in the presence of a magnetoelastic coupling.32,33

3. Thermal expansion, temperature derivative of magnetization

We discuss the mixed derivative ∂h∂TFcr representatively in
terms of the thermal expansion, α. Due to the Ising symmetry,
the thermal expansion is an odd function of h, α(−h) = −α(h),
and changes its sign across the metamagnetic transition. As
detailed in Ref. 31 a sign change of the thermal expansion
and, as a consequence, of the Grüneisen parameter, is a generic
property of pressure-tuned quantum critical phenomena. The
emergent Ising symmetry in the present case implies that
the sign change is located exactly at the metamagnetic field
H = Hm. Corrections to the positions of vanishing thermal
expansion are discussed below in Sec. III C.

A sketch of ∂h∂TFcr is shown in Fig. 5. In panel (a), a
temperature trace within the linear regime is shown. Here,
the thermal expansion is dominated by the contribution of the
condensate, ∂h∂TFcr = −h∂T R−1, and is thus proportional to
h. First, it increases with lowering temperature; at the crossover
T ∼ (r/u)3/(d+1) within the regime III the thermal corrections
cease to dominate the stiffness R of the effective potential
resulting in a peak in α. Upon entering the Fermi liquid regime
IV the thermal expansion vanishes linearly with T . In panel (b)
the behavior is shown for |h| >

√
r3/u where the temperature

(a)

IV III

∼ uhr
d−9
2 T

∼ uhT
d−2
3 /r2

(r/u)
3

d+1r3/2

∼ hT−d+4
3 /u

∂h∂TFcr

T0

IIIII

(b)

I

√
uh

∼ u
1
3h−1

3T
d−2
3

∼ u
d−3
6 Th

d−6
3

(h/u)
2

d+1

∼ hT−d+4
3 /u

∂h∂TFcr

T0

FIG. 5. Sketch of the temperature dependence of the derivative
∂h∂T Fcr that is proportional to the thermal expansion α. It is an odd
function of h, α(−h) = −α(h), and has a characteristic maximum.
(a) Behavior very close to the metamagnetic transition |h| <

√
r3/u

and (b) for larger h > 0.

trace crosses into the nonlinear regime. The maximum follows
here the boundary between III and II. Moreover, in regimes I
and II the thermal expansion is not simply proportional to h

anymore. The behavior in Fig. 5(b) was already discussed in
Ref. 12 including a comparison to experiments on Sr3Ru2O7.

4. Specific-heat coefficient

The specific heat is like the susceptibility an even function
of the distance to the metamagnetic transition, h. In Fig. 6 the
specific-heat coefficient, −∂2

TFcr, as a function of h is shown.
In panel (a) the h trace is located within the Fermi liquid
regime; see Fig. 3. The specific-heat coefficient increases
monotonously with lowering h and saturates in regime IV
at a value determined by r . The trace in panel (b) shows the
behavior for larger temperatures as one enters the quantum
critical regime. Similarly to the susceptibility and the thermal
expansion, the specific-heat coefficient as a function of h

shows a characteristic peak at the boundary between regimes
II and III. The peak is attributed to the contribution of the
condensate, (h2/2)∂2

T R−1. For small h and large temperatures
it yields a positive correction giving rise to a peak. As a
function of temperature this correction changes its sign at T ∼
(r/u)3/(d+1) and, as a consequence, for lower temperatures the
peak is absent in the h trace. The peak height decreases as
T = h = 0 is approached in contrast to the peak height of the
susceptibility.

As detailed in Ref. 11, such a double-peak structure close to
the critical field is generally expected whenever the critical sus-
ceptibility increases with lowering temperature, ∂2

T χ (T ) > 0.
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(a)

IV I

−u h2 r
d−9
2

r3/u

r
d−3
2

∼ (uh2)
d−3
6

−∂2
TFcr

|h|0

III II I

(b)

T
d−3
3

+u−1h2T−d+7
3

∼ (uh2)
d−3
6

−∂2
TFcr

0 u T
d+1
2 T/

√
u |h|

FIG. 6. Specific-heat coefficient as a function of the tuning
parameter h, that is an even function of h. In panel (a) the behavior
is shown for temperatures within the Fermi liquid regime; see Fig. 3.
Panel (b) displays the behavior for larger temperatures where the
quantum critical regime is entered with a peak at the corresponding
crossover.

It follows from the Maxwell relation ∂2
Hγ = ∂2

T χ (T ) that
the curvature of the specific-heat coefficient as a function
of H coincides with that of the susceptibility as a function
of T . Consequently, the specific-heat coefficient γ (H ) has a
minimum at Hm that is framed by a two peaks.

5. Grüneisen parameters

Within the approximation (26), the thermal expansion
is proportional to ∂T M so that the singular parts of the
Grüneisen parameter and its magnetic counterpart coincide,
� ∝ �H ∝ ∂h∂TFcr/(T ∂2

TFcr). Due to the Ising symmetry, the
Grüneisen parameter changes sign and thus vanishes at the
critical field Hm at any finite temperature. In regime III the
behavior �H ∼ h/(uT (4+2d)/3) is obtained. In regime I the
Grüneisen parameter is simply proportional to the inverse of
the tuning parameter, h ∝ H − Hm,

�H = −∂T M

C
= 3 − d

3

1

H − Hm

, (27)

as expected from general scaling arguments.34 Note, however,
that the prefactor does not obey scaling predictions because
the QCEP for d = 2,3 is above the upper critical dimension. In
spatial dimension d = 3 logarithmic corrections are present,
1/�H = (H − Hm) log �3√

u|h| ; see Appendix B.

C. Corrections to thermodynamic Ising symmetry: Locations
of entropy accumulation

Often, the underlying Ising symmetry of a transition is
hidden and not explicit, as for example in the usual liquid-gas
transition, because the scaling fields are not simply related
to the physical parameters. In the present case, the Ising
symmetry is almost explicit close to the metamagnetic field
near T = 0 as the leading temperature dependencies are
explicitly generated within the theory (2). Nevertheless, there
are corrections which are especially important whenever the
critical leading contribution for some reason vanishes. This is
for example the case for the locations of entropy accumulation
and thus for the positions of vanishing thermal expansion as
discussed in the following.

As mentioned above, the reduced form of the free energy
(26) implies that the thermal expansion changes its sign exactly
at the critical field Hm. The locations of vanishing thermal
expansion or, equivalently, of the maxima of entropy31 in the
(H,T ) plane are thus a very sensitive probe for corrections
to the reduced form (26). In the following we will study the
most important corrections which will shift the position of
vanishing thermal expansion away from h = 0; i.e., H = Hm.
To this end, we can limit ourselves to the linear regime, i.e.,
regimes III and IV in the phase diagram of Fig. 3.

The most important corrections derive from the intrinsic
temperature dependence of h, i.e., the coefficient hT in the
expansion (22) and the pressure dependence of the quadratic
coefficient of the effective potential r = r(p). The latter gives
rise to a finite value of the thermal expansion α at h = 0 that
in regime III reads

δα ∝ ∂2F
∂r∂T

∝ T (d+z−2)/z. (28)

A temperature dependence of this form is familiar from
second-order quantum phase transitions.34 Nevertheless, we
will not consider it further here as it is subleading compared
with the one induced by hT as we explain in the following.

The thermal expansion within the linear regime is domi-
nated by the condensate contribution to the free energy

α ∝ ∂2F
∂h∂T

= − ∂

∂T

h(T )

R
, R3 
 uh2, (29)

with h(T ) = h + hT T 2. The coefficient hT gives rise to an
additive correction to thermal expansion. For temperatures
T 
 (r/u)3/(d+1) this correction simplifies to

δα ∝ hT

u
T −(d−2)/3. (30)

The two parameters hT and u are formally irrelevant in the
RG sense but they combine to give a singular correction.
This contribution leads to a shift of the positions of vanishing
thermal expansion away from H = Hm thus destroying the
explicit, thermodynamic Ising symmetry (26). The importance
of the intrinsic Fermi liquid temperature dependence for the
thermal expansion near the critical field was noticed before in
Ref. 36.

In the presence of a finite hT , the locations of vanishing
thermal expansion are shifted away from the critical magnetic
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field, h ∝ H − Hm = 0; these locations now follow

h|α=0 ≈ 5 − d

1 + d
hT T 2 (31)

for temperatures T 
 (r/u)3/(d+1).

IV. SUMMARY AND DISCUSSION

We discussed the critical thermodynamics of an itinerant
metamagnetic QCEP that is dominated by spin fluctuations.
These fluctuations generate a temperature dependence of the
effective potential for the Ising order parameter that reflects
the z = 3 dynamics of the Landau-damped collective spin fluc-
tuations. The effective potential was systematically evaluated
with the help of the functional renormalization group, and we
identified different regimes in the phase diagram; see Fig. 3.
We derived the H and T dependence of the critical free-energy
density analytically in the different regimes, see Eq. (21) and
Appendix B, and discussed the resulting thermodynamics in
Sec. III.

In a previous work,11 we discussed the universal thermo-
dynamic signatures expected on general grounds close to a
metamagnetic QCEP. The present calculations confirm and
illustrate these signatures within the spin-fluctuation model.
In particular, we find a diverging Grüneisen parameter, a sign
change of the thermal expansion α(H ), and a minimum in the
specific-heat coefficient γ (H ). Moreover, the susceptibility,
magnetostriction, and compressibility share the same critical
singularities.

This latter finding has some interesting consequences. The
diverging critical correction to the compressibility implies that
the metamagnetic QCEP is intrinsically unstable with respect
to a magnetoelastic coupling. Sufficiently close to the putative
QCEP, the critical metamagnetic fluctuations will strongly
renormalize the elastic constants and destabilize the crystal.
We thus expect that the metamagnetic QCEP will be preempted
by a structural instability whose properties will be the subject
of a future publication.33

Our results are in particular relevant for itinerant ferro-
magnets with a tricritical point at zero field.18 In such a case
there exists a metamagnetic QCEP at some finite Hm whose
critical thermodynamics might obey the predictions of spin-
fluctuation theory. Such ferromagnets with a metamagnetic
QCEP, such as UCoAl (Ref. 21), are thus promising candidates
for a quantitative test of spin-fluctuation theory for critical
metamagnetism.
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APPENDIX A: SUBLEADING CORRECTIONS

1. Quintic coupling

The Ising symmetry of the potential (9) emerges when the
corrections due to quintic coupling u5 can be neglected. At

nonzero temperatures, the coupling u5 will generate a cubic
term which in turn renormalizes the linear coupling h. With
these additional thermal corrections the expanded potential in
the linear regime (13) obtains the modifications

V(φ) = V(0) − Hφ + R

2!
φ2 + U3

3!
φ3 + u

4!
φ4 + · · · , (A1)

where

−H = −h + U3T
(D−2)/zA′

d (R T −2/z), (A2)

U3 = u5T
(D−2)/zA′

d (R T −2/z), (A3)

with the same function A′
d as in the expression for the stiffness

R, (15).
In regime III, see Fig. 3, the resulting temperature correction

to the tuning parameter h is of order O(u5T
8/3) in d = 3

and O(u5T
2 log2 T ) in d = 2. The correction is thus smaller

(d = 3) or of the same order (disregarding the logarithmic
enhancement in d = 2) as the intrinsic Fermi liquid tempera-
ture dependence that the parameter h possesses anyway. These
corrections to h are thus not considered further. (The correction
to thermodynamics due to an intrinsic T 2 dependence of h is
discussed in Sec. III C.) Moreover, it can be easily checked
that the presence of the cubic term U3 leads only to subleading
corrections to the classical field configuration φ̄; see Eq. (14).

In the nonlinear regime, on the other hand, the quintic
coupling can only be neglected at sufficiently small h. If
the tuning h reaches a threshold |h| � h� with h� ∼ u4/u3

5,
corrections to the scaling of Eq. (19) become important and
Ising symmetry is lost.

2. Corrections to φ̄ in the nonlinear regime

In the derivation of the free energy in the nonlinear regime
(20) the zero-temperature expression of the classical field
configuration φ̄, Eq. (19), was used. Here we compute the
corrections arising from the induced temperature correction
to the classical field. Introducing the deviation δφ = φ − φ̄,
the effective potential separates into two parts V(φ) = V(φ̄) +
δV(δφ) with the correction

δV(δφ) = uφ̄2

4
δφ2 − f δφ. (A4)

The temperature force is given by f = F (T ) − F (0) where

F = −uφ̄ T (D−2)/zA′
d

(
u

2
φ̄2T −2/z

)
. (A5)

The temperature dependence of F possesses similar limits as
the one of R in Eq. (16). By increasing the temperature one
applies an effective force f onto the field that modifies the
position of the minimum. The resulting correction to the free
energy is given by δFcr = −f 2/(uφ̄2). This contribution is
always subleading on the presented level of accuracy.

APPENDIX B: ASYMPTOTIC EXPANSIONS

The asymptotic expansion of the function Ad is presented;
see Eq. (11). Moreover, the numerical coefficients for the
expansion of the potential’s stiffness R, Eq. (15), and the free
energy (21) are given.
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1. Dimension d = 3

In spatial dimension d = 3 the function Ad has the limiting behavior

A3(x) =
{

−b1 log �3

T
− b0 + b2x − b3x

3/2 + · · · for x 	 1,

b̄1x
3 log �3

T x3/2 + b̄0x
3 − b̄2 log �3

T x3/2 + b̄3 x−3 log x + · · · for �2

T 2/3 
 x 
 1.
(B1)

There is a reminiscent dependence on the cutoff �. The coefficients b0 and b̄0 can be absorbed in the nonuniversal logarithmic
dependence of the leading behavior, and both are omitted in the following. The other coefficients read

b1 = 1

36π
, b2 = 1

6
√

3π2
�(4/3)ζ (4/3), b3 = 1

12π
, b̄1 = 1

72π3
, b̄2 = 1

36π
, b̄3 = π

60
. (B2)

The leading temperature correction to the stiffness is given by

R =
{

r + b2 u T 4/3 for R 	 T 2/3,

r + 3
2 b̄2 u T 2

r
for R 
 T 2/3.

(B3)

The limiting form of the free energy in the four different regimes of Fig. 3 reads

Fcr =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−b̄2 T 2 log
√

2�3

3u1/2|h| + b̄3
2
9

T 4

uh2 log |h|2/3u1/3

T 2/3 − (3|h|)4/3

25/3u1/3 I,

−b1T
2 log �3

T
+ b2

62/3

2 T 4/3(uh2)1/3 − (3|h|)4/3

25/3u1/3 II,

−b1T
2 log �3

T
− h2

2R
III,

−b̄2T
2 log �3

r3/2 + b̄3
T 4

r3 log r
T 2/3 − h2

2R
IV.

(B4)

2. Dimension d = 2

In spatial dimension d = 2 the asymptotic form of the function Ad is

A2(x) =
{

−c1 + c3x log 1
x

+ · · · for x 	 1,

c̄1 x5/2 − c̄2 x−1/2 + c̄3x
−2 + · · · for x 
 1.

(B5)

The function is universal in the limit �/T 1/3 → ∞. The coefficients are

c1 = 1

4π
�(5/3)ζ (5/3), c3 = 1

8π
, c̄1 = 1

30π
, c̄2 = π

24
, c̄3 = 1

4π
ζ (3). (B6)

The term with coefficient c3 derives from the zero Matsubara mode whose contribution is logarithmically enhanced in d = 2.
This logarithmic dependence is reflected in the temperature dependence of the stiffness

R =
{

r + c3 u T log T 2/3

R
for R 	 T 2/3,

r + 1
2 c̄2 u T 2

r3/2 for R 
 T 2/3.
(B7)

For T 
 r/u in the quantum critical regime, the temperature determines the stiffness so that asymptotically R =
c3 u T log[1/(uT 1/3)]. The free energy simplifies in the four regimes of Fig. 3 to

Fcr =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−c̄2
21/2

61/3
T 2

(uh2)1/6 + c̄3
4

64/3
T 3

(uh2)2/3 − (3|h|)4/3

25/3u1/3 I,

−c1T
5/3 + c3

62/3

2 T (uh2)1/3 log T 2/3

(uh2)1/3 − (3|h|)4/3

25/3u1/3 II,

−c1T
5/3 − h2

2R
III,

−c̄2
T 2

r1/2 + c̄3
T 3

r2 − h2

2R
IV.

(B8)

The terms of the free energy with coefficients b̄3 and c̄3 that lead to nonanalytic Fermi liquid corrections are omitted in the body
of the paper.
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