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We study an unconventional two-dimensional, two-component classical plasma on a sphere, with emphasis
on detecting signatures of melting transitions. This system is relevant to Ising-type quantum Hall states, and
is unconventional in the sense that it features particles interacting via two different two-dimensional Coulomb
interactions. One species of particle in the plasma carries charge of both types (Q1,Q2), while the other species
carries only charge of the second type (0,−Q2). We find signatures of a freezing transition at Q2

1 � 140. This
means that the species with charge of both types will form a Wigner crystal, whereas the species with charge of
the second type also shows signatures of being a Wigner crystal, due to the attractive intercomponent interaction
of the second type. Moreover, there is also a Berezinskii-Kosterlitz-Thouless phase transition at Q2

2 � 4, at
which the two species of particles bind to form molecules that are neutral with respect to the second Coulomb
interaction. These two transitions appear to be independent of each other, giving a rectangular phase diagram.
As a special case, Q2 = 0 describes the (conventional) two-dimensional one-component plasma. Our study is
consistent with previous studies of this plasma, and sheds new light on the freezing transition of this system.
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I. INTRODUCTION

Multicomponent quantum condensates with novel types
of intercomponent interactions are of considerable interest
in contemporary physics. For example, they are relevant to
widely disparate systems, including low-dimensional spin-1/2
quantum antiferromagnets,1–5 Bose-Einstein condensates,6–8

multicomponent superconductors,9–11 and non-Abelian quan-
tum Hall states and topological superconductors.12 These
systems have the remarkable property of possessing a mapping
to a classical multicomponent plasma system with highly
unusual intra- and intercomponent interactions. The statistical
properties of these unconventional plasmas—especially their
phase diagrams—have important ramifications for the physics
of their corresponding fractional quantum Hall systems.12

The statistical physics of such systems has only recently
begun to be explored. In a previous paper, we investigated
the metal-insulator transition in a particular version of such
a plasma.13 In this paper, we will extend these investigations
to a study of the freezing of such a plasma from a liquid to a
Wigner crystal.

The canonical partition function of the unconventional two-
component plasma that we investigate is given by12,13

Z =
∫ (

N∏
i=1

d2zi

)(
N∏

a=1

d2wa

)
e−V , (1)

where the potential energy

V = −Q2
2

N∑
a<b=1

ln |wa − wb| + Q2
2

N∑
a,i=1

ln |zi − wa|

− (
Q2

1 + Q2
2

) N∑
i<j=1

ln |zi − zj| + Vz,BG (2)

describes two species (components) of particles interacting
via two different types of two-dimensional (2D) Coulomb
interactions, which are logarithmic. Here, the zi are coordinate
vectors for the N particles of component z, which carry
charge Q1 of the first interaction (type 1) and charge Q2

of the second interaction (type 2). The wa are coordinate
vectors for the N particles of component w, which carry no
charge of type 1 and charge −Q2 of type 2. The term Vz,BG

describes the interaction of the z particles with a uniform
density neutralizing background charge. Note that the form
given in Eq. (1) implies that the temperature T = 1.

This plasma is related12 to inner products of quantum-
mechanical trial wave functions of Ising-type quantum Hall
states, such as the Moore-Read Pfaffian,14 anti-Pfaffian,15,16

and Bonderson-Slingerland hierarchy states.17 For the charge
values relevant to these states, the plasma was shown to be
in its metallic liquid phase,13 which allows for the calculation
of the braiding statistics of quasiparticle excitations of these
states,12 confirming their conjectured non-Abelian statistics.
This plasma is also related to rotating two-component Bose-
Einstein condensates (BECs) in two dimensions.13

While Ref. 13 focused on the cases Q1 = 0,2, which are
particularly relevant for Ising-type quantum Hall states, here
we will investigate the plasma for large values of Q1. In the
limit in which Q2 = 0, the w particles do not interact, and
the plasma thus reduces to the standard 2D one-component
Coulomb plasma (OCP). It is generally believed that, at high
values of Q1, the OCP will be in a 2D solid state in which
the charges form a triangular lattice with quasi-long-range
translational and long-range orientational order,18 as found
in the simulations in Refs. 19–22. However, some studies
have claimed that there is no low-temperature (high-Q1)
crystalline state in the OCP, due to the proliferation of screened
disclinations.23–26
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If we assume that the generally held view is correct (and we
present evidence supporting this view), so that there is a low-
temperature crystalline state, then the melting of this crystal
can occur according to either of two possible scenarios. One
possibility is the Kosterlitz-Thouless-Halperin-Nelson-Young
theory (KTHNY),27–30 according to which dislocation pairs
unbind via a vector-defects version of the BKT transition at
a Berezinskii-Kosterlitz-Thouless (BKT) like transition. The
system then enters a hexatic liquid phase in which there is no
translational order, but there is quasi-long-range hexatic order.
Then, there is a second BKT transition at which disclination
pairs unbind, hexatic order is lost, and the system enters
an isotropic liquid phase. The other possibility is a direct
first-order melting transition at a lower temperature than the
KTHNY theory predicts.28 There have been considerable
efforts to investigate 2D melting, both experimentally and
by numerical simulations. Some studies have found KTHNY
transitions while others have found a weakly first-order
melting transition.31–39 It appears that the nature of 2D melting
depends on details of the interatomic potential. In the case of
logarithmic interactions, most numerical simulations find a
first-order transition.19–22

Before proceeding to a description of our simulations, we
mention that, in principle, there is one other possibility: a Lif-
shitz transition from the liquid to a striped or “microemulsion”
phase and then later to a Wigner crystal, as discussed by Kivel-
son and Spivak.40 Such a scenario must be considered when
there is a linear coupling between the order parameter and the
uniform density (i.e., between the order parameter at wave vec-
tor q and the density at wave vector −q) or, equivalently, when
the first derivative of the energy with respect to the density is
discontinuous at the transition. However, in our case, the order
parameter is the density at nonzero wave vector, so no such
linear coupling can occur. Furthermore, the order parameter
vanishes on both sides of the transition since the crystalline
phase is only quasi-long-range ordered, so there would be no
discontinuity even if there were a linear coupling. However,
even in systems to which the Kivelson-Spivak40 argument
applies, there are two possible scenarios, similar to the ones
that we consider: a direct first-order phase transition (which
is permitted for the case of logarithmic interactions) and a
continuous transition via one or more intermediate phases.

II. MODEL AND SIMULATION

The system described in Eqs. (1) and (2) is studied by means
of large-scale Monte Carlo simulations on a sphere of radius
R. In this geometry, the distance between two points r1 and r2

is taken to be the chord length

|r1 − r2| =
√

2R (1 − r̂1 · r̂2)1/2, (3)

and the term Vz,BG is simply a uniform constant that can be
disregarded. Hence, the model in Eq. (2) may be written in the
form (up to constant terms)13,20,41,42

V = 1

2

[
Q2

2

N∑
a,i=1

ln(1 − ẑi · ŵa) − Q2
2

N∑
a<b=1

ln(1 − ŵa · ŵb)

− (
Q2

1 + Q2
2

) N∑
i<j=1

ln(1 − ẑi · ẑj )

]
. (4)

Here, ŵa , ẑi are the positions of the particles on the surface
of the unit sphere. Details of the derivation, as well as on the
technicalities of the Monte Carlo simulations, are presented
in Ref. 13. Moreover, to improve sampling at high values of
Q1, we used the parallel tempering algorithm,43,44 where the
set of couplings was found by measuring first-passage times
as described in Ref. 45.

In addition to the logarithmic interactions, we regularize
the attractive interactions by adding a short-range hard-core
repulsion such that particles are not permitted to be closer
than the particle diameter d. Hence, there is a nonzero
dimensionless density η = 2Ns/A where s = πd2/4 and A

is the area of the system.

III. RESULTS FOR THE ONE-COMPONENT PLASMA

First, we consider the case in which Q2 = 0. This is
motivated by the fact that previous studies of the OCP on
the surface of a sphere are not consistent. In Ref. 20, a
freezing transition at Q2

1 � 140 was found by comparing
the free energy of the solid and liquid state. However, in
Ref. 25, the absence of a finite-temperature crystalline state
was claimed and numerical evidence supporting this was
provided, essentially by showing that the correlation length for
crystalline order was nondivergent, ξ ∝ Q1 for all Q−1

1 > 0.
We will return to this below.

The structure function is given by

S(q) ≡ 1

N

∫∫
drdr′eiq·(r−r′)〈n(r)n(r′)〉

= 1 + 1

N

∑
i 	=j

〈eiq·(ri−rj )〉. (5)

Here, 〈n(r)n(r′)〉 is the density-density function, where n(r) =∑
j δ(r − rj ) is the local density, and 〈· · ·〉 denotes a statistical

average. Furthermore, {rj } denotes the positions of the point
particles in the problem and q is the Fourier space vector. In
this work, we measure the azimuthal average of S(q) modified
for a spherical geometry, given by20,25,46

S(q) = 1 + 2πnR2
∫ π

0
dθ [g(Rθ ) − 1] sin θJ0(qRθ ), (6)

where n is the number density, R is the radius of the sphere
on which the particles live, g(Rθ ) is the pair distribution
function with θ as the chord angle, J0(x) is a zeroth-order
Bessel function, and q is the magnitude of q.

The inset of Fig. 1 shows a plot of S(q). We assume that the
correlation length ξ is inversely proportional to the width of the
first peak in S(q), and may thus be determined by a Lorentzian
fit. The procedure is identical to that used in Ref. 25, and the
result is given in Fig. 1. For small values of Q1 our results
are similar to Fig. 2 in Ref. 25. However, when Q1 ≈ 12, a
value that corresponds well with the critical coupling of the
freezing transition, we find a kink developing with increasing
N , that clearly violates ξ ∝ Q1. This kink is not seen in Fig. 2
of Ref. 25. However, we note that the markers of that figure
exhibit large scattering. Moreover, the authors did not consider
larger values of Q1.

A hallmark of a 2D solid is that translational correlations
have a power-law decay, 〈eiG(r−r′)〉 ∼ |r − r′|−ηG , where G
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FIG. 1. (Color online) Correlation length ξ as a function of Q1 for
8 different system sizes in the range 100 � N � 4800. The inset is a
plot of S(q) for the specific case when N = 3200 and Q1 = √

120.

is the reciprocal lattice vector, r, r′ are lattice points in the
2D solid, and ηG is a temperature-dependent exponent.29,47

Consequently, the first-order Bragg peak in S(q) will, as seen
by Eq. (5), scale as S(G) ∼ L2−ηG , where L ∝ N1/2 is the
spatial linear extent of the system. Now, by integrating over
the Bragg peak of a 2D solid,48 the finite-size scaling of the
azimuthally averaged first peak in S(q) is given by

S(G) ∼ L1−ηG ∼ N (1−ηG)/2. (7)

Figure 2 shows the results for the maximum value of the first
peak in S(q) for a wide range of system sizes and for different
values of Q2

1. As for ξ , we find that the peak value also exhibits
a kink at Q2

1 ≈ 140 that should be associated with an abrupt
change in the translational correlations in the plasma. Indeed,
when studying the finite-size behavior more closely in the
lower panel of Fig. 2, the results show that when Q2

1 � 130,
S(G) ∼ constant when N increases. This is the behavior
expected in the liquid phase, with exponentially decaying
translational correlations where S(G) ∼ ξ 2. However, when
Q2

1 � 150, the results clearly show that there is a positive
slope that develops with increasing N , thus confirming the
finite-size behavior of the 2D solid given in Eq. (7). When
Q2

1 = 140, it is difficult to determine whether the system is in
the solid phase or not, suggesting that Q2

1 = 140 is close to
the melting point of the OCP. Note that in Fig. 2, the height
of the first-order peak in S(q), S(G) ≈ 5 when Q2

1 = 140.
This is consistent with the 2D freezing criterion for a crystal
with long-range interactions (characterized by a divergent bulk
modulus18).20,49

A key prediction of the KTHNY theory is that ηG � 1/3
in the solid phase, where the limiting value of 1/3 is reached
at the critical point of melting from a triangular lattice to the
hexatic phase.18,22,29 As a result, in this scenario, S(G) grows
more rapidly with N than N1/3 for all Q2

1 greater than the
critical value; S(G) grows as N1/3 at the transition point; and
S(G) saturates in the liquid phase. Meanwhile, if the transition
were first-order, the limiting value of ηG would be smaller than
1/3, so that S(G) would grow more rapidly than N1/3 at the
transition point; i.e., the slowest possible growth of S(G) in
the crystalline phase would be faster than N1/3. Consequently,

S(G) ∼ N1/3
Q2
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FIG. 2. (Color online) Finite-size behavior of the peak value of the
structure factor, S(G), as a function of coupling Q2

1 and size N . The
upper panel shows S(G) as a function of Q2

1 for eight different sizes in
the range 100 � N � 4800. The lower panel is a log-log plot of S(G)
as a function of N for seven fixed values of Q2

1. The dashed line is a
reference line that yields the expected finite-size behavior at the melt-
ing point according to KTHNY theory. Lines are guide to the eyes.

we expect the slope of ln S(G) vs ln N to be steeper than 1/3
for all Q2

1 in the crystalline phase or, by the results above, for
all Q2

1 > 140. By determining the slope of ln S(G) vs ln N

at Q2
1 ≈ 140, we could then determine if the transition is of

KTHNY type or is first order. However, as may be seen in
Fig. 2, the slopes of ln S(G) vs ln N in the putative crystalline
phase are not steeper than 1/3 in our simulations. However, the
slopes steepen with increasing N , possibly converging towards
the expected behavior in the thermodynamic limit. Therefore,
we are unable to determine which type of transition occurs, nor
whether melting proceeds via an intermediate hexatic phase
(see below).

It is worth emphasizing that for Q2
1 < 140, S(G) appears

to saturate to a finite value, as expected in a liquid, while
for Q2

1 > 140, S(G) does not appear to saturate, as expected
in a crystal (although, as noted above, it does not grow as
rapidly as expected). Therefore, the lower panel of Fig. 2 is
also qualitatively consistent with a crystalline phase of the 2D
OCP, which melts at Q2

1 ≈ 140. Taken together with Fig. 1 and
the upper panel of Fig. 2, this provides clear evidence for the
existence of a low-temperature crystalline state of the OCP on
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a sphere, in agreement with previous studies.19–22 Our results
contradict the claims made in Ref. 25 for the nonexistence of
a crystalline phase. The present work considers larger values
of Q1 and provides considerably better statistics than Ref. 25.

The transition from the hexatic to the isotropic liquid
phase is governed by fluctuations in the orientational order
parameter. These can be computed by the bond-orientational
susceptibility which exhibits a peak at this transition. When
this peak is obtained at a different point than the onset of
quasi-long-range translational order, it indicates the existence
of an intermediate hexatic phase in between the crystalline
and isotropic liquid phase.50,51 On a sphere, we compute the
bond-orientational susceptibility

χ6 = N
(〈∣∣�2

6

∣∣〉 − 〈√∣∣�2
6

∣∣〉2). (8)

Here, we have

�2
6 = 1

N2

N∑
i,j=1

ei6(θj |i−θi|j )ψ̃∗
6,i ψ̃6,j . (9)

Furthermore, the quantity

ψ̃6,i = 1

ni

ni∑
a=1

ei6φia (10)

may be thought of as the local bond-orientational order
parameter of particle i, where all bond angles φia are measured
with respect to the closest nearest neighbor in the tangential
plane of particle i. The sum is over all ni nearest neighbors as
determined by Voronoi construction. In Eq. (9), the angle θi|j
is the bond angle of the bond to the closest nearest neighbor
of particle i, measured with respect to the i,j chord in the
tangential plane of particle i. Thus, the chord line combining
the two particles for every term in the sum of Eq. (9) serves as
a line of reference for bond-orientational order.52,53

In Fig. 3, the results for χ6 are given. When the system size is
large (N � 800), a peak is found. However, the value of Q1 at
which the peak occurs appears to converge towards Q2

1 ≈ 140.
Thus, with the resolution available, we cannot confirm the
existence of a hexatic phase since the position of the peak in χ6
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FIG. 3. (Color online) Bond-orientational susceptibility χ6 as a
function of Q1 for 7 different system sizes in the range 100 � N �
3200. The position of the peak appears to converge to Q2

1 ≈ 140.

does not appear to converge to a coupling significantly different
from Q2

1 ≈ 140. Our findings are consistent with earlier works,
which also have found no traces of an intermediate hexatic
phase in these systems.19–22

IV. RESULTS FOR AN UNCONVENTIONAL
TWO-COMPONENT PLASMA

We now turn our attention to the full model in Eq. (2), i.e.,
when both Q1 and Q2 are nonzero. In particular, we consider
how the translational ordering of both w and z particles is
affected as we increase the coupling constant in the second
interaction channel, Q2. As for the OCP, we study translational
correlations by measuring the structure factors Sw(q), Sz(q)
defined by Eq. (6) with S(q), g(Rθ ) → Sw/z(q), gw/z(Rθ ). In
addition, we also measure the inverse dielectric constant for
charges with interaction of type 2, given by

ε−1
22 = 1 − πQ2

2R
2

A

〈(
N∑

i=1

ẑi −
N∑

a=1

ŵa

)2〉
. (11)

This quantity measures the screening properties for charges in-
teracting with Q2, and it signals a charge-unbinding transition
involving z and w particles.13

In Fig. 4, results are given for the height of the first-order
peak in the structure factor for component z and w, for the case
when Q2

2 = 1. Apart from the fact that the height of the peak
in the structure factor is much larger for the z particles than
the w particles, the size dependence and Q2

1 dependence of the
peaks are qualitatively very similar for the two components. In
particular, they both exhibit a kink at Q2

1 ≈ 140, which should
be associated with melting of a 2D solid, similar to the OCP
case in the upper panel of Fig. 2. Specifically, when we extract
the finite-size behavior in the log-log plots in Fig. 5, we find
that both components exhibit S(G) ∼ constant, consistent with
being in the liquid phase, when Q2

1 � 130. When Q2
1 � 150,

the results clearly show that there is a power-law dependence
on N , consistent with the finite-size behavior of a 2D solid.
These results are consistent with the phase diagram in Fig. 6.

The inverse dielectric constant ε−1
22 is measured to be zero

to the left of the red line in Fig. 6. Thus, the w and z particles
are in a metallic state regardless of the change in the structural
properties when Q2

1 ≈ 140. This is most salient with respect to
the second type of Coulomb interaction (which has an effective
strength that is determined by ε−1

22 ). In the liquid phase, it is
clear that w and z particles are in a metallic state. In the
crystalline phase, there are interstitials and vacancies in the
crystal, so that a finite fraction of w and z particles should
be considered as unbound particles that are able to screen test
particles interacting with charges of type 2, thereby leading to
ε−1

22 = 0. At larger values of Q2
2, there is a transition at which

w and z particles are bound into molecules. For Q2
2 above

this transition point, which is at Q2
2,c ≈ 4, ε−1

22 has a nonzero
value, as found in Ref. 13. Although the w particles are able to
screen the type 2 interaction when z particles form a Wigner
crystal, their translational correlations exhibit signatures of a
2D solid (as seen in Fig. 4), attributed to a higher probability
of the w particles to be co-centered with z particles due to the
attractive intercomponent interactions of type 2. On average, a
finite fraction of the w particles should be considered as bound
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FIG. 4. (Color online) Results from the Monte Carlo simulations
when Q2

2 = 1 and η = 10−3. Panel (a) shows the height of the first-
order peak in the structure factor for the z particles, Sz(G), as a
function of the coupling Q2

1 for seven different sizes in the range
100 � N � 3200. Panel (b) shows the height of the first-order peak
in the structure factor for the w particles, Sw(G), as a function of the
coupling Q2

1 for seven different sizes in the range 100 � N � 3200.
In order to give an impression on how a typical structure factor looks,
the insets of panels (a) and (b) show plots of Sz(q) and Sw(q) for the
specific case when N = 800, Q2

1 = 180, and Q2
2 = 1.

to the z particles, thus adapting to the 2D crystalline structure
that is created by the strong repulsive interactions among the
z particles, when Q2

1 > 140. The signatures of freezing of the
w particles is thus an effect which is induced by the freezing
of the z particles.

Hence, we can summarize the situation as follows, as
depicted in Fig. 6. In phase I, the w and z particles are unbound
and are separately in a liquid state. In phase II, the w and z

particles are bound into molecules that are neutral with respect
to the second type of Coulomb interaction, and these molecules
form a liquid. In phase III, the w and z particles are unbound;
the z particles form a Wigner crystal while the w particles
form a liquid, albeit one with modulated density due to its
interaction with the Wigner crystal. In phase IV, the w and z

particles are bound into molecules forming a Wigner crystal.
In the Appendix, we explain the details of how the transition
lines were obtained.

We consider phase III to be a 2D counterpart of the situation
that was reported for a three-dimensional system in Ref. 8.
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FIG. 5. (Color online) Log-log plots of the results in panels (a)
and (b) in Fig. 4. Both panels show the height of the first-order peak
in the structure factor as a function of size N . In the lower panel,
S ′

w(G) is the height of the peak of Sw(G) when we have subtracted
the regular part in order to properly extract the singular finite-size
behavior of Sw(q) in a log-log plot. The solid lines are reference
lines that yield the expected finite-size behavior at the melting point
according to KTHNY theory. Lines are guides to the eyes.

This work considered a two-component rotating BEC with a
negative dissipationless Andreev-Bashkin drag.54 It was found
that in this mixture, a situation may arise where the component
with the smallest stiffness will be a modulated vortex liquid.
That is, the soft component breaks translational symmetry
while exhibiting an unbroken symmetry in order parameter
space. The vortices of the soft component are likely to be
co-centered with the vortices of the stiffest component, and
will thus adapt to the spatial structure of the latter. As shown
in Ref. 13, the plasma described by Eq. (2) corresponds to a 2D
two-component rotating BEC with negative drag, where the z

component is stiffer than the w component when Q2
1 > 0.

V. SUMMARY AND CONCLUSIONS

In summary, we have considered the melting of an uncon-
ventional 2D two-component plasma on a sphere with particles
interacting in two different channels, which may be viewed
as an analogous plasma describing a non-Abelian Ising-type
quantum Hall state or a realization of a two-component
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FIG. 6. (Color online) The phase diagram as a function of Q2
1 and

Q2
2. The dashed red (vertical) line is the charge unbinding transition,

to the right of which z and w particles are bound together. The dotted
blue line is the melting line of the Wigner crystal. In phases I and II,
the z particles are in a liquid state; in phases III and IV, the z particles
form a Wigner crystal. In phases I and III, the w and z particles
are unbound; in phases II and IV, they are bound into molecules
comprised of one z and one w particle. See the text for details.

two-dimensional Bose-Einstein condensate with intercompo-
nent nondissipative drag. In the limiting case where there are
no interactions of type 2 (Q2 = 0), the system is a standard 2D
one-component plasma. Both for the one-component plasma
and the unconventional two-component plasma, we find that
the system freezes on a sphere for large enough interparticle
interactions. For the two-component plasma, the w particles
do not have strong intracomponent interactions, but still show
signatures of forming a 2D solid. This is attributed to the
attractive intercomponent interactions with the z particles that
leads to a higher probability of the w particles to be co-centered
with z particles. The w particles nonetheless form a metallic
state. We have also examined the possible existence of an
intermediate hexatic phase in the one-component plasma. Our
results show that the value of Q1 where disclinations unbind
and orientational order is lost cannot be distinguished from the
value of Q1 where dislocations unbind and quasi-long-range
translational order is lost.
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2,c values obtained for nonzero η, assuming
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APPENDIX: DETERMINATION OF THE
TRANSITION LINES

We now discuss the determination of the phase transition
lines in Fig. 6 in more detail. First, consider the line (red in
Fig. 6) at which the z and w particles unbind. In this work,
we find the critical point of the BKT transition by curve-
fitting the inverse dielectric constant to a logarithmic finite-size
scaling relation with one free parameter (see Appendix C in
Ref. 13). This means that we assume that the transition is a
BKT transition as we use the BKT value of the universal jump
in the finite-size scaling relation. Thus, it is a slightly less
self-consistent approach than what was used in Ref. 13, but
still, one can regard this as a verification of the BKT nature, as
one should not expect a good fit to the scaling relation if the
transition is of a different nature.55

The curve fitting was performed according to the descrip-
tion in Appendix C in Ref. 13 for sizes N = 70, 100, 150,
200, 300, and 500, for Q2

1 = 20, 100, and 160 and for densities
η = 0.001, 0.0004, and 0.0001. In Fig. 7, the results for the
transition point Q2

2,c as a function of η and Q2
1 are given. We

have also included the results for Q2
2 = 0 and 2 from Ref. 13.

In order to obtain a crude estimate of the transition temperature
in the low-density limit, we extrapolate to η = 0 by fitting the
results for finite η to a power law Q2

2,c(η) = Q2
2,c + aηb, where

Q2
2,c, a, and b are free parameters. The estimates we find are:

Q2
2,c = 4.016 ± 0.002 for Q2

1 = 0,

Q2
2,c = 4.015 ± 0.004 for Q2

1 = 2,

Q2
2,c = 4.013 ± 0.101 for Q2

1 = 20, (A1)

Q2
2,c = 4.012 ± 0.060 for Q2

1 = 100,

Q2
2,c = 3.963 ± 0.070 for Q2

1 = 160.

These values are plotted in the phase diagram in Fig. 6, and we
take the phase boundary to be the best-fit straight line running
through them.
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We now consider the Wigner crystal melting transition,
depicted by the blue line in Fig. 6. This transition is found by
measuring the value of Q2

1 at which Sz(G) attains its maximum
second-derivative. (See Figs. 2 and 4 in the paper for example.)
In Fig. 8, we show the estimates of the transition point Q2

1,c as
a function of inverse system size N−1 for Q2

2 = 0, 1, 3, and
5. The transition points are estimated by averaging the results
for N � 800, with errors determined by a bootstrap analysis.
The estimates we find are

Q2
1,c = 140.6 ± 1.5 for Q2

2 = 0,

Q2
1,c = 140.3 ± 2.0 for Q2

2 = 1,
(A2)

Q2
1,c = 144.4 ± 4.9 for Q2

2 = 3,

Q2
1,c = 142.6 ± 8.2 for Q2

2 = 5.

The phase diagram in Fig. 6 is obtained by using these values,
and we take the phase boundary to be the best-fit straight line
running through them.
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Q2
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Q2
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Q
2 1

0.0020.0010

160

150

140

130

120
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FIG. 8. (Color online) The transition point Q2
1,c as a function of

system size for Q2
2 = 0, 1, 3, and 5, estimated by the maximum of

the second derivative of Sz(G). See text for details. Lines are guides
to the eyes.
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