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Enhancement of thermoelectric efficiency in triple quantum dots by the Dicke effect
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We theoretically study thermoelectric transport through a quantum dot coupled to two side quantum dots in the
linear response regime by the nonequilibrium Green’s function technique. Our results show that thermoelectric
properties are strongly influenced by the Dicke effect. At low temperature, for small (very large) level shift and
large interdot coupling the subradiant state contributes a sharp peak to the Dicke spectral line in the electrical
and thermal conductance spectrum and leads to a strong violation of the Wiedemann-Franz law. As a result, the
thermoelectric efficiency is strongly enhanced near the subradiant state. At relatively high temperature, the large
tunneling coupling may be used to compensate the attenuation of the interference effect so that a considerable
thermoelectric efficiency can still be obtained around the subradiant state. Moreover, the thermoelectric efficiency
is also strongly dependent on the asymmetry parameter and intradot Coulomb interaction.

DOI: 10.1103/PhysRevB.87.075102 PACS number(s): 73.50.Lw, 65.80.−g, 85.80.Lp, 73.63.Kv

I. INTRODUCTION

Recently, due to the potential for applications of highly
efficient thermoelectric devices, thermoelectric effects in
quantum dot (QD) systems have been widely studied both
experimentally1–5 and theoretically.6–22 The thermoelectric
efficiency in QD systems can achieve considerable values due
to strong violation of the Wiedemann-Franz (WF) law6,7 and
small phonon contribution to thermal conductance.8–10 From
the experiment point of view, the parameters of QD systems
are more easily controlled, which suggests that QD systems
are promising candidates for better thermoelectric devices.
On the other hand, many novel thermoelectric phenomena
have been observed or predicted in QD systems. For example,
Coulomb blockade oscillations of the thermopower and the
thermal conductance were obtained for Coulomb islands
with the gate voltage.2,11,12 The bipolar effect in the thermal
conductance spectrum at high temperature has been observed
in multilevel QD systems15 and serial-coupled double quantum
dot (DQD).16,17 In addition, the spin Seebeck effect was also
observed in QD systems with ferromagnetic electrodes.19–22

Electron transport through multiple QD systems ex-
hibits a variety of interesting interference effects,23–26 such
as Aharonov-Bohm (AB), Fano, and Dicke effects. More
recently, some works have concerned the interplay between
the thermoelectric effects and the interference effects.27–36 For
a QD embedded in an AB ring, the interference effect results
in AB oscillations of the thermopower due to the modulation
of the magnetic flux.29 Theoretical studies show that the
interference effects can strongly influence the thermoelectric
coefficients in parallel-coupled DQD systems by tuning the
asymmetry of dot-lead coupling and the magnetic flux.
Since the thermopower is extremely sensitive to the slope
of the transmission function in the vicinity of Fermi level, a
large enhancement of thermoelectric efficiency by Fano effect
have been obtained.30,32,35,36 The coupled triple quantum dot
(TQD) systems have more complex geometrical configuration
and more tunable parameters, and the electronic transport
through them can exhibit various interference behaviors,37–41

which can be used to improve thermoelectric efficiency of the
systems. However, to the best of our knowledge, up to now

thermoelectric transport through TQD system remains less
studied, particularly taking into account the influence of the
interference effects.

The Dicke effect in quantum optics means the presence
of a strong and narrow spontaneous emission line in addition
to much broader lines of a collection of atoms, which are
separated by a distance smaller than the wavelength of the
emitted light.42 The Dicke effect in the mesoscopic system
was first predicted in two-channel resonant tunneling,43 since
then the analogies to the Dicke effect have been found in some
other mesoscopic systems. In a coupled DQD system under
a magnetic field, the conductance shows Dicke effects that
can be controlled by the magnetic flux.44 The properties of
transmission spectrum and the local density of states (LDOS)
in a QD side coupled to a quantum wire can also be attributed
to the electronic Dicke effect.45 More recently, the Dicke effect
has been predicted in a QD coupled to two side QDs structure
in the Coulomb blockade regime46 and Kondo regime,47,48

in which the effective coupling between localized levels and a
conduction channel gives rise to effectively fast supertunneling
and slow subtunneling modes. Since the LDOS can exhibits
almost a δ-like shape for appropriate parameters due to the
Dicke effect, one expects a significant enhancement of the
thermal efficiency.

In this paper we present a systematic investigation of the
influence of the Dicke effect on the thermoelectric transport
through a TQD system. The basic thermoelectric coefficients in
the linear response regime are obtained by the nonequilibrium
Green’s function technique. Our results show that at low
temperature, the electrical and thermal conductances exhibit
characteristics of the Dicke effect, which can be used to
improve the thermoelectric properties of the system. Small
(or very large) level shift and large interdot coupling may
enhance thermoelectric efficiency near the subradiant state,
where density of states almost exhibits a δ-like shape, due to
a strong violation of the WF law. With increasing temperature
the interference effect is weakened, however, the attenuation
can be compensated by enhancing tunneling coupling so that
considerable figure of merit is still obtained near the subradiant
state for large interdot coupling. Moreover, the influence of the
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FIG. 1. A schematic picture of a QD (QD2) coupled to two metal
leads and to two side QDs (QD1 and QD3).

asymmetry parameter and the interdot Coulomb interaction
will also be discussed.

The rest of this work is organized as follows. In Sec. II,
we introduce the model of a QD side coupled to two QDs and
derive the basic analytical formulas. In Sec. III, we present the
corresponding numerical results in detail. Finally, In Sec. IV
we summarize the work.

II. MODEL AND FORMALISM

The system under consideration consists of a central
QD (QD2) coupled to two metal leads and to two side
QDs (QD1 and QD3), as shown schematically in Fig. 1,
which can be described by a multi-impurity Anderson Hamil-
tonian as H = Hl + Hd + HT . The first term is for the
noninteracting electrons in the leads and written as Hl =∑

α=L,R

∑
kσ εkαc

†
kασ ckασ , where c

†
kασ (ckασ ) creates (annihi-

lates) an electron with energy εkα , momentum k, and spin σ

in the lead α. The second term of Hamiltonian describes the
TQD and takes the form46,47

Hd =
∑
mσ

εmσ d†
mσ dmσ + U

∑
m

nmσnmσ̄

−
∑

σ

∑
j=1,3

[tj2d
†
1σ d2σ + H.c.], (1)

where d
†
mσ (dmσ ) denotes the creation (annihilation) operator of

an electron with spin σ in QDm (m = 1,2,3). We assume that
each QD has only a single energy level εmσ . nmσ = d

†
mσ dmσ is

the electron number operator in QDm. U indicates the strength
of intradot Coulomb interaction and the interdot Coulomb
interaction is negligible. tj2 (j = 1,3) describes the tunneling
coupling between two side QDs and the central QD2. The
last term HT describes the tunneling coupling between the
central QD2 and the electrodes, and can be expressed as HT =∑

kασ (Vα2σ c
†
kασ d2σ + H.c.), where Vα2σ is the tunneling ma-

trix element between the central QD2 and the electrode α.
Using the nonequilibrium Green’s function technique, we

can calculate the electric and heat currents flowing from the
left lead to the right with the formulas

I =
∑

σ

e

h̄

∫
dω

2π
[fL(ω) − fR(ω)]Tσ (ω), (2)

IQ =
∑

σ

1

h̄

∫
dω

2π
(ω − μα)[fL(ω) − fR(ω)]Tσ (ω), (3)

where fα = [e(ω−μα )/kBTα + 1]−1 is the Fermi distribution
function in the lead α with chemical potential μα and temper-
ature Tα . Tσ (ω) is the transmission function of electron with
spin index σ , and is given by Tσ (ω) = Tr[Ga

σ (ω)�σ
RGr

σ (ω)�σ
L],

where �σ
α (α = L,R) is the linewidth matrix with the matrix

element defined as �σ
nmα = Vαnσ V ∗

αmσ

∑
k 2πδ(ω − εkα). In

the wide-band limit, �σ
α is independent of the energy and has

the form

�σ
α =

⎛
⎜⎝

0 0 0

0 �σ
22α 0

0 0 0

⎞
⎟⎠ . (4)

Besides, Gr,a
σ (ω) are the retarded and advanced Green’s

functions in the frequency space. By using the equation of
motion method and adopting the Hartree-Fock truncating
approximation, we can calculate the retarded Green’s function
from the Dyson equation41

Gr
σ (ω) = gr

σ (ω) + gr
σ (ω)	r

σGr
σ (ω), (5)

where the self-energy can be expressed as 	r
σ = − i

2 [�σ
R +

�σ
L], and gr

σ (ω) is the retarded Green’s function of the isolated
QD without coupling to leads and can be given by

gr
σ (ω) =

⎡
⎢⎣

C11 t12 0

t12 C22 t32

0 t32 C33

⎤
⎥⎦

−1

, (6)

where Cmσ = (ω − εmσ − U )(ω − εmσ )/(ω − εmσ − U +
Unmσ̄ ) with nmσ̄ = 〈d†

mσ̄ dmσ̄ 〉. The average electron
occupation number in QDm can be calculated self-consistently
by the relation nmσ̄ = −i

∫
dω
2π

G<
mmσ̄ (ω), in which the lesser

Green’s function G<
σ (ω) can be calculated from the Keldysh

equation G<
σ (ω) = Gr

σ (ω)	<
σ (ω)Ga

σ (ω) with the lesser
self-energy 	<

σ (ω) = i[fL(ω)�σ
L + fR(ω)�σ

R], while the
advanced Green’s function Ga(ω) can be obtained via
a relation Ga(ω) = [Gr (ω)]†. Note that the operating
temperature for the above calculation should be restricted in
the region higher than the Kondo temperature.

In the linear response regime, the electric and heat currents
through the system can be transformed to the following form

I = e2L0
V + eL1

T

T, (7)

IQ = −eL1
V − L2

T

T (8)

with Ln = −∑
σ

1
h̄

∫
dω
2π

(ω − μ)n ∂f (ω,μ,T )
∂ω

Tσ (ω). On the basis
of linear response, the chemical potential and temperature
in two leads satisfy the relation μL = μR , TL = TR = T .
The electrical and thermal conductances can be calculated
as G = e2L0 and κe = 1

T
[L2 − L2

1
L0

], respectively. The ther-

mopower is defined as S = 
V

T

= − 1
eT

L1
L0

. And the efficiency
of heat-electricity conversion of the system is described by
the dimensionless figure of merit ZT = GS2T

κe+κph
, where κph is

the phonon contribution to the thermal conductance. In QDs
systems, the heat current carried by phonons can be blocked
effectively by some particular materials or designs,1,4,8–10

for example, adding a vacuum layer between the tunneling
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junction. So in the following calculation we ignore the
influence of κph.

III. NUMERICAL RESULTS

In the following we assume that QD levels are independent
of electron spin and chosen as ε1 = ε − 
, ε2 = ε, ε3 = ε +

, where 
 describes the level spacing between two side
QDs and the central QD, and the parameters of the leads are
μL = μR = 0. Based on the above formulas, we carry out the
numerical calculation to investigate thermoelectric transport
through the TQD system. The couplings between the central
dot and the leads, �σ

22L = �σ
22R = �, are generally used as

the energy unit. In typical QDs, � can reach approximately
the order of meV. In addition, we introduce a new parameter
α = t12/t32, which describes the asymmetry of the couplings
of two side QDs to the central QD. Since the properties of
the thermoelectric transport through the system depend on the
level shift 
, the interdot tunneling coupling t and Coulomb
interaction U , our discussions will be presented according to
the influences of these three major tuning parameters.

A. Influence of level shift

First we consider the case of fixed interdot tunneling
coupling and vanishing Coulomb interaction. The couplings
between two side QDs to the central QD are set to be
symmetric, i.e., α = 1 and t32 = t12 = t . We first consider
the low-temperature regime. In Fig. 2, the thermoelectric
quantities are plotted as a function of the level ε for several
values of 
 with kBT = 0.01�. The dependence of the
electronic Dicke effect in conductance spectrum on 
 is
shown in Fig. 2(a), which is consistent with the results in
Ref. 46, where the central dot couples to two ferromagnetic
leads. In the low-temperature regime, the behavior of electrical
conductance is determined by the transmission function

T (ω) = [ω̃2 − 
2]2�2

[ω̃2 − 
2 − 2t2]2ω̃2 + �2[ω̃2 − 
2]2
, (9)

where ω̃ = ω − ε. Equation (9) shows that in the transmission
function there are three resonant peaks appearing at ω̃ =
±√


2 + 2t2, ω̃ = 0 and two zeros located at ω̃ = ±
 due
to the quantum destructive interference effect, resulting in two
antiresonance points in spectrum of electrical conductance.
The width of resonant peaks is determined by the effective
coupling between local levels and leads, which changes with
variation of 
. For 
 = 0, the central QD can be equivalent
to decoupling from the leads, leading to the vanishing of the
central peak. For very small (but nonzero) values of 
, the
width of the central peak becomes much narrower. The narrow
central peak arises from the subradiant state, whereas the other
two wide peaks from corresponding superradiant states. With

 increasing, the width of the central peak increases, while
the one of two satellite peaks decreases. It can be clearly
seen that the subradiant mode can transform to superradiant
mode by tuning 
. For very large level shift, two side peaks
are much narrower while the central peak is wide. At low
temperature, the thermal conductance is mainly dominated
by the contribution of electron and thus depends on the
transmission function. As a result, Dicke effect also appears

FIG. 2. (Color online) (a) Electrical conductance, (b) thermal
conductance, (c) Lorentz ratio, (d) thermopower, and (e) figure of
merit as a function of level position ε for different level shift 


with kBT = 0.01�. Other parameters are chosen as α = 1, t = 0.8�,
U = 0, and � = 1 meV.

in the spectrum of thermal conductance due to the quantum
interference, as shown in Fig. 2(b), which exhibits similar
behavior as the one of the electrical conductance. In order
to clearly see the influence of Dicke effect on thermoelectric
properties, we compare Lorentz ratio L = κ/GT with Lorentz
number L0 = (kBπ )2/3e2 in Fig. 2(c). It can be found from
Fig. 2(c) that Lorentz ratio strongly deviates from Lorentz
number in the vicinity of antiresonance, indicating strong
violation of the WF law. In particular, for small level shift
(
 ∼ 0) and very large level shift (
 � √

2t), the Dicke
effect is more pronounced, and L also deviates from L0 in the
vicinity of subradiant state. Since the subradiant state and the
antiresonance points are close to each other, a strong violation
of the WF law can be obtained.

The quantum interference has a significant impact on
the thermopower S and figure of merit ZT as well. The
thermopower S, shown in Fig. 2(d), has five zero points corre-
sponding to three resonant points and two antiresonance points
in the spectrum of electrical conductance. The magnitude
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of S changes sign whenever ε passes a zero point, which is
similar to the case of the single QD and DQD systems.15,20,32,35

When the level ε is above one of these zero points the
main carriers are electrons and then the thermopower is
negative. When ε is below the zero point the main carriers
are holes and thus the thermopower is positive. The consider-
able enhancement of the thermopower appears in the vicinity
of the antiresonance points since the transmission function
changes sharply near these points. For very small (or very
large) 
, the thermopower also changes sharply near the
subradiant state and the density of states exhibits a δ-like shape.
Because the subradiant state and the antiresonance points are
close to each other, the thermopower is strongly enhanced. The
property of the figure of merit ZT is shown in Fig. 2(e). When

 = 0, ZT presents only one single double-peak structure
near ε = 0. For nonzero 
, the spectrum of ZT is mainly
dominated by two double-peak structures in the vicinity of the
antiresonance points on both sides of Fermi level. Both peaks
in each double-peak structure have different 
 dependence: the
peak farther away from Fermi level decreases with decreasing

, whereas the one close to Fermi level increases. These
behaviors are consistent with the variation of the slope of
the transmission function. The degree of asymmetry of the
double-peak structure in the ZT spectrum is also changed with
the transition of resonant peaks from subradiant to superradiant
mode. It is obvious that for small level shift 
 ∼ 0 (or very
large level shift 
 � √

2t), the thermoelectric efficiency is
significantly enhanced near the subradiant state where the WF
law is strongly violated.

As is well known, the thermoelectric coefficients are
strongly dependent on the temperature. In Fig. 3 we show the
thermoelectric quantities as a function of ε at different tem-
perature. With increasing temperature the interference effect is
weakened. As shown in Figs. 3(a) and 3(b), Dicke resonance
(central peak) is strongly suppressed and the antiresonance
points in the electrical (thermal) conductance disappear. At
high temperature, due to broadening of Fermi distribution
function, more states participate in the heat transport, as a
result the central narrow peak of κ at low temperature changes
to a minimum (a valley) at high temperature, and meanwhile,
on both sides of the minimum the two local maxima appear
at the positions where the electrical conductances are minima,
which can be attributed to local bipolar effect. In Fig. 3(c), we
show L/L0 as a function of ε at different temperature. It can
be clearly seen that the increase of the temperature extends the
range of the violation of the WF law. The behaviors are helpful
for obtaining large thermopower and figure of merit in a large
level range. At high temperature the maximum L appears at
the locations where the thermal conductance presents local
maximum and the magnitude decreases with increasing T .
The magnitude of thermopower S and figure of merit ZT ,
shown in Figs. 3(d) and 3(e), first increase to achieve the
largest value, and then decrease with increasing temperature.
Both peaks of S and ZT become broader and flat with
increasing T due to broadening of Fermi distribution function.
Interestingly, at relatively high temperature (kBT = 0.1�), the
maxima of thermopower appear near the positions where
the thermal conductance presents the local minimum and thus
the maximum of the spectrum of ZT occurs at these positions.
To show this more explicitly, we present the temperature

FIG. 3. (Color online) (a) Electrical conductance, (b) thermal
conductance, (c) Lorentz ratio, (d) thermopower, and (e) figure of
merit as a function of level position ε for different temperature with

 = 0.2�. Other parameters are the same as in Fig. 2.

and level position dependencies of ZT in Fig. 4. It can be
clearly seen from Fig. 4 that ZT is significantly enhanced
in the vicinity of the antiresonance points at relatively low
temperature kBT ∼ 0.05� and with increasing T , two peaks
in the center gradually disappear while two side peaks start to
dominate the spectrum.

As shown above, at relatively high temperature, the max-
imum of thermoelectric efficiency is suppressed. However,
one also might expect a considerable thermal efficiency by
tuning the level shift 
. In Fig. 5(a) we present ZT versus
the level position ε and the level shift 
 for kBT = 0.1�.
For relatively small (large) values of 
, corresponding to the
subradiant (superradiant) mode being located in the center
while the superradiant (subradiant) modes being on both sides,
ZT is mainly dominated by two side peaks located around the
positions where the thermal conductance presents the local
minimum. For large 
 (>0.1�) the positions of the side peaks
in ZT change linearly with the variety of 
. The intensities
of side peaks increase monotonically with increasing 
 in
a wide range of 
 and so a relatively large efficiency can
be obtained at large 
. To show the influence of 
 and
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FIG. 4. (Color online) Figure of merit as functions of level
position ε and temperature kBT for 
 = 0.2�, other parameters are
taken as in Fig. 2.

T more explicitly, in Fig. 5(b) we present the temperature
dependence of ZT for different 
 and corresponding ε near
the antiresonance points. Nonmonotonic variation of ZT with
temperature can be clearly observed. With increasing 
,
the temperature corresponding to the maximum of ZT first
increases and then decreases. One can find from Fig. 5(b)
that when interdot tunneling is fixed, in order to obtain large
thermoelectric efficiency the appropriate match of 
,ε, and

FIG. 5. (Color online) (a) Figure of merit ZT as functions of level
position ε and the level shift 
 for kBT = 0.1�. (b) ZT as a function
of kBT for indicated values of level position ε and level shift 
. Other
parameters are the same as in Fig. 2.

T is needed. ZT can present considerable value for very
small and large 
 at appropriate low temperature (kBT <

0.05�), and relatively large value for large 
 at relatively
high temperature (kBT > 0.05�), for optimizing condition of
thermoelectric efficiency.

B. Influence of interdot tunneling

Next, we study the influence of interdot tunneling with
fixed 
. The interdot tunneling provides the channels that
the quantum interference requires and may influence the
interference effect by adjusting the effective coupling between
local levels and leads, and then influence thermoelectric
effects in TQD system. We first consider the case that the
central QD couples symmetrically to side QDs. In Fig. 6,
the thermoelectric quantities are plotted as a function of ε

for several values of t at low temperature. The behaviors of
thermoelectric coefficients with the variation of the interdot
tunneling are analogous to the ones by changing the level shift.
With increasing t , the central peak in the thermal conductance
becomes narrow, while the satellite peaks become broad [see
Fig. 6(a)]. However, the positions of the antiresonance points
are unchanged. The transition from subradiant to superradiant

FIG. 6. (Color online) (a) Thermal conductance, (b) Lorentz ratio,
(c) thermopower, and (d) figure of merit as a function of level
position ε for different the interdot tunneling t with 
 = 0.8� and
kBT = 0.01�. Other parameters are the same as in Fig. 2.
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FIG. 7. (Color online) Figure of merit as a function of level
position ε for different the interdot tunneling t with 
 = 0.8� and
kBT = 0.1�. Other parameters are the same as in Fig. 2.

mode can also be achieved by tuning the interdot tunneling.
With increasing t , the central peak in thermal conductance
changes from superradiant to subradiant state. It is obvious
that a strong violation of the WF law emerges not only near
antiresonance points but also near the subradiant state for large
t , as shown in Fig. 6(b). The thermopower S and figure of merit
ZT , shown in Figs. 6(c) and 6(d), are also strongly dependent
on the interdot tunneling. For t = 0 the side QDs are decoupled
to the central QD, the interference effect disappears and
thermoelectric quantities S and ZT approach zero. When t �=
0, electric Dicke effect emerges. For small t , the thermopower
is strongly enhanced in the vicinity of the antiresonance
points resulting in two high double-peak structures in the
spectrum of ZT . With increasing t , the central peak in thermal
conductance changes from superradiant to subradiant state.
Meanwhile the thermopower starts to change sharply near
this state where the WF law is also strongly violated. So a
new double-peak structure appears in the ZT spectrum. In
particular, for very large t the density of states around Fermi
energy exhibits a δ-like shape, and then ZT is significantly
enhanced. Although with increasing temperature the quantum
interference is weakened so that ZT is attenuated, enhancing
the tunneling coupling may compensate the attenuation. In
Fig. 7 we present the dependence of ZT on the interdot
tunneling at relatively high temperature (kBT = 0.1�), which
clearly shows ZT is suppressed for small interdot tunneling,
but can be strongly enhanced near the central resonances point
with large interdot tunneling. For very large interdot tunneling,
ZT is mainly dominated by double peaks in the vicinity of
the central resonances point, and can achieve considerable
value (e.g., close to 10 for t = 4�). This is a consequence
of the compensation of interference effect due to the interdot
tunneling and due to the temperature. For the large interdot
tunneling, the electronic interference effect is quite strong. In
order to weaken the interference effect, a higher temperature
is needed.

When α �= 1, the central QD asymmetrically couples to
two side QDs. In Fig. 8, we present ZT as functions of
level position ε and the asymmetry parameter α for two
distinct temperature regimes: kBT = 0.01� and kBT = 0.1�.
It can be clearly seen that the thermoelectric efficiency is
strongly influenced by the asymmetry parameter α due to the

FIG. 8. (Color online) Figure of merit as a function of the
level position ε and asymmetry parameter α, calculated for (a)
kBT = 0.01� and (b) kBT = 0.1� for 
 = 0.2� and t = 0.8�. Other
parameters are the same as in Fig. 2.

dependence of interference effects on α. Here the role of α is
analogous to the asymmetry parameter of dot-lead coupling
in parallel-coupled DQD systems.32,35 At low temperature,
the dependence of thermal conductance on α is similar to
the one of electrical conductance, which has been shown
in Ref. 46 (see Fig. 2 of Ref. 46). Thereby, here we only
give a figure of ZT . When α = 0, QD1 is decoupled from
QD2 and two QDs form bondinglike and antibondinglike
states, resulting in two resonant peaks in the electrical and
thermal conductance spectra. An antiresonance point appears
at ε = −
 due to the quantum destructive interference and
then ZT exhibits the typical double-peak structure around
this point. It is interesting that the magnitudes of these
peaks are almost invariable with increasing α [see Fig. 8(a)].
When α > 0, a new sharp peak emerges in the conductance
spectrum around the level of QD1. When α ∼ 0.4, a new
antiresonance point starts to appear at ε = 
. Since the
narrow peak and the new antiresonance point are closer to
each other, ZT is significantly enhanced. With increasing α,
the position of the narrow peak moves to Fermi level, and
the thermoelectric efficiency decreases. When α = 1, ZT is
symmetrical with respect to ε = 0. When the temperature
gets higher, the behavior of ZT becomes quite complex, as
shown in Fig. 8(b). This complex behavior mainly comes
from the complex behaviors of the thermal conductance and
thermopower due to broadening Fermi distribution function.
From the above results, at relatively high temperature, ZT

will present peaks located at the positions where the thermal
conductance presents the local minimum but the thermopower
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presents local maximum. It is obvious that previous double
peaks located near ε = −
 appear at the high-energy position.
At relatively high temperature, a relatively large thermoelectric
efficiency can be obtained near α ∼ 0. When α → 1, the ZT

spectrum also becomes symmetrical with respect to ε = 0.

C. Influence of intradot Coulomb interactions

Now we consider the impact of the intradot Coulomb
interaction on the thermoelectric properties in the presence
of Dicke effect. At low temperature the Coulomb interaction
splits the Dicke spectral line into two sets, which give rise
to the richer structure of the thermoelectric coefficients. In
Fig. 9 we show thermoelectric quantities as a function of ε

for different Coulomb interaction at T = 0.01�. For large
U (e.g., = 3�) it is obvious that the Dicke spectral lines
in the electrical and thermal conductance split into two sets
and their centers are located at ε = 0 and U [see Figs. 9(a)
and 9(b)]. When the Coulomb interaction U � 2

√

2 + 2t2,

the two sets of Dicke spectral line can be completely separated

FIG. 9. (Color online) (a) Electrical conductance, (b) thermal
conductance, (c) Lorentz ratio, (d) thermopower, and (e) figure
of merit as a function of level position ε for different Coulomb
interaction with kBT = 0.01� and 
 = 0.2�. Other parameters are
the same as in Fig. 2.

and are symmetric with respect to the electron hole symmetry
point ε = −U/2. Besides four antiresonance points due to
the quantum destructive interference, a new zero point of the
conductance appears at the electron hole symmetry point. Thus
a large deviation from the WF law appears near the electron
hole symmetry point in comparison with the case in absence of
Coulomb interaction, as shown in Fig. 9(c). Moreover, at the
resonant points and zero points of the electrical conductance,
the contributions of electrons to the current are compensated
by the ones of holes, and thus the thermopower disappears
and changes sign when the level passes these points, as
shown in Fig. 9(d). The figure of merit is presented in
Fig. 9(e), the spectrum of ZT is mainly dominated by five
double-peak structures, of which four double peaks are near
the antiresonance points, and one is near the the electron hole
symmetry point. G, κ and ZT are all symmetric with respect
to the electron hole symmetry point ε = −U/2, whereas S

is antisymmetric. When U is small, the Dicke spectral line
and its Coulomb counterpart overlap, leading to the complex
characteristics of S and ZT . In particular, for an appropriate

FIG. 10. (Color online) (a) Electrical conductance, (b) thermal
conductance, (c) Lorentz ratio, (d) thermopower, and (e) figure
of merit as a function of level position ε for different Coulomb
interaction with kBT = 0.1� and 
 = 0.2�. Other parameters are
the same as in Fig. 9.
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small U (for example, U = 0.5�), Dicke spectral line and its
Coulomb counterpart are very close to each other so that the
two adjacent peaks incorporate into a very sharp peak and lead
to a strong violation of the WF law. Then the thermoelectric
efficiency ZT is strongly enhanced.

The thermoelectric quantities as a function of ε for different
Coulomb interaction at T = 0.1� is presented in Fig. 10.
The behaviors of electrical and thermal conductance with
the variation of temperature are similar to the ones in the
case with vanishing Coulomb interaction. At relatively higher
temperature, since the quantum interference effect is sup-
pressed, the antiresonance points of electrical and thermal
conductance also disappear, see Figs. 10(a) and 10(b). How-
ever, the electrical conductance can approach to zero at the
electron hole symmetry point for large Coulomb interactions
(U = 3�), while the thermal conductance presents a tiny peak
at the same point, which can be attributed to the bipolar
effect.15,16 Then these behaviors of electrical and thermal
conductances determine the properties of the Lorentz ratio
shown in Fig. 10(c). It is obvious that the magnitude of Lorentz
ratio near the antiresonance points becomes smaller than the
one at low temperature, but the magnitude near the the electron
hole symmetry point becomes much larger. The behaviors of S

and ZT , shown in Figs. 10(d) and 10(e), are quite complex with
the variety of Coulomb interactions. For different Coulomb
interactions, due to substantial modifications of the level
spacing, the dependencies of thermoelectric coefficients on the
temperature are quite different. However, for large Coulomb
interactions an evident enhancement of the thermoelectric
efficiency ZT can be obtained near the electron hole symmetry
point due to a strong violation of the WF law.

IV. CONCLUSION

In summary, we theoretically study thermoelectric transport
through a QD coupled with two side QDs. It is found
that thermoelectric properties are strongly influenced by the
Dicke effect which can be controlled by the level shift,
interdot tunneling coupling, and Coulomb interaction. At low

temperature, when two side QDs are symmetrically coupled
to the central QD, the electrical and thermal conductance
exhibit the electronic version of the Dicke effect. For very
small (very large) level shift and large interdot tunneling
coupling, thermoelectric efficiency is strongly enhanced near
the subradiant state, where density of states exhibits a δ-like
shape, due to a strong violation of the WF law. For an
appropriate small Coulomb interaction, the Dicke spectral line
and its Coulomb counterpart form a very sharp peak in the
conductance spectrum and lead to a large enhancement of
figure of merit. For the situation with asymmetrically coupled
dots, the efficiency is significantly enhanced when the new
antiresonance appears for medium value of asymmetry param-
eter. At relatively high temperature, although the interference
effect is weakened, a large tunneling coupling may compensate
the attenuation so that a considerable thermoelectric efficiency
can still be obtained near the subradiant state. Moreover,
the thermoelectric efficiency can also be enhanced near
the electron hole symmetry point for appropriate Coulomb
interaction. Finally, we give an estimation of the magnitude of
the temperature used in our calculations. When � is chosen
as 1 meV, which can be achieved experimentally in typical
QDs, the corresponding low temperature is kBT = 0.01� 

120 mK and the corresponding relatively high temperature
is kBT = 0.1� 
 1.20 K. These temperatures are lower than
room temperature but higher than the Kondo temperature, and
consistent with the thermoelectric experimental parameter.5

Moreover, following the estimation in Ref. 9, the phonon
contribution to the thermal conductance is quite small and
the thermal efficiency can be reduced by 12%.
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