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Full counting statistics applied to dissipative Cooper pair pumping
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We calculate the charge transport in a flux-biased dissipative Cooper pair pump using the method of full counting
statistics (FCS). This is used instead of a more traditional technique of integrating a very small expectation value
of the instantaneous current over the pumping period. We show that the rotating wave approximation (RWA),
which fails in the traditional technique, produces accurate results within the FCS method.
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I. INTRODUCTION

Mesoscopic quantum systems evolving periodically and
adiabatically in time provide an opportunity to study geometric
effects, e.g., the Berry phase,1,2 in a dissipative environment.
In particular, normal3,4 and superconducting5 charge pumping
devices belong to this class of systems. The relation between
the pumped charge and the Berry phase was proved for
superconducting pumps by Aunola et al.6 In experiments with
qubits7,8 and atoms,9 in order to observe the Berry phase,
superpositions of energy eigenstates must be generated. In
contrast, in charge pumping devices, the system remains all the
time close to the ground state. What is, then, being measured
is the variation of the ground state’s Berry phase with the
change of the phase bias of the system. The first experimental
determination of the Berry phase in a superconducting Cooper
pair pump (CPP) was performed by Möttönen et al.10

The adiabatically controlled CPPs are susceptible to en-
vironmental noise and dissipation. These effects have been
investigated theoretically11,12 and experimentally.13 One com-
mon approach to describe the influence of dissipation in such
systems is to employ the quantum master equation technique.
This way one obtains the time evolution of the reduced density
matrix of the system. However, employing RWA in order to
obtain a Markovian master equation in Lindblad form,14 which
grants complete positivity, leads to incorrect results for the
pumped charge.15,16 To obtain the correct pumped charge one
has to go beyond the RWA,15 i.e., include the fast rotating terms
of the interaction picture master equation. The very simple
reason for this is the fact that the tiny instantaneous value of
the current is determined by the tiny off-diagonal elements of
the density matrix dropped within RWA.

In this paper, we employ an alternative formalism of
FCS.17 This is achieved by including (theoretically) an ideal
measuring apparatus in our description of the electrical circuit,
i.e., a capacitor with infinite capacitance. Such a capacitor has
zero impedance at all frequencies, i.e., it does not disturb the
circuit’s dynamics. Yet it allows to introduce formally the
number of Cooper pairs that have passed through the system
and the conjugate counting field. It turns out, that within this
approach the RWA can be used safely and we obtain a master
equation for the combined system of CPP and the measuring
device in a Lindblad form. Thus we develop a formalism that
results simultaneously in the correct pumped charge and a
positive definite reduced density matrix of the system. We

use the results of Ref. 15 as a benchmark (obtained by going
beyond the RWA) and obtain a perfect matching with our
current results. In this context, it should be mentioned that in
superconducting phase biased devices the interpretation of the
higher FCS cumulants is tricky.18

After providing a brief introduction to the CPP system
in Sec. II, in Sec. III, we introduce a gedanken measuring
device that allows us to use the methods of FCS. We briefly
demonstrate the power of this approach by reproducing the
connection between the Berry phase and the pumped charge for
a closed system.6 In Sec. IV, we derive a Markovian quantum
master equation for the reduced density matrix of the combined
system consisting of CPP and the measuring device. It should
be emphasized that in the derivation the RWA was used with
respect to the fast rotating terms in the interaction picture,
while the slow rotating elements of the density matrix, which
are off-diagonal with respect to the counting field variable,
are retained. In Sec. V, we present and discuss the obtained
results and compare them with previous calculations, which
have been done via integrating the expectation value of the
current.15 In Sec. VI we conclude.

II. THE SYSTEM

The system we are studying is the so-called Cooper pair
sluice10,19–21 depicted in Fig. 1(a). It consists of two super-
conducting quantum interference devices (SQUIDs) enclosing
a superconducting island. The island is controlled via a
gate voltage Vg , whereas the SQUIDs are manipulated by
external fluxes �i . The system is well studied theoretically20

and was also realized experimentally.10 The Hamiltonian is
given by19

H = EC(n̂ − ng)2 − EJ,1(φ1) cos

(
φext

2
+ ϕ

)

−EJ,2(φ2) cos

(
φext

2
− ϕ

)
. (2.1)

Here, n̂ is the operator of number of excess Cooper pairs
on the island, ng = CgVg is the gate charge, EC = (2e2)/(C)
denotes the charging energy with C being the capacitance of
the island, EJ,i(φi) are the tunable Josephson energies of the
SQUIDs, φext is the total phase of the circuit and ϕ = (ϕ1 −
ϕ2)/2 corresponds to the phase on the superconducting island.
The connection between the fluxes and phases is given by
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FIG. 1. (Color online) (a) Flux-biased Cooper pair pump consist-
ing of two SQUIDs enclosing a superconducting island. The SQUIDs
are controlled by external fluxes �i and �ext. The charge on the island
is controlled by the gate voltage Vg . (b) Evolution of parameters EJ1,
EJ2, and ng during a pumping cycle of period τ = 80ps.

φi = 2π�i/�0 with �0 = h/2e being the (superconducting)
magnetic flux quantum. Since the phase ϕ and the number
operator n̂ are conjugated variables, the commutation relation
[n̂,eiϕ] = eiϕ holds.

To pump Cooper pairs through the device, the external
parameters EJ,i and ng have to be altered cyclically and
adiabatically. An example of a pumping cycle is given in
Fig. 1(b). In the beginning of the cycle, the SQUIDs are closed
and there is no gate voltage applied to the island. First, the left
SQUID is opened by increasing its Josephson energy to the
value of Emax

J . After the left SQUID is opened, the gate charge
ng is increased to pull a Cooper pair onto the island. In the
next step, the left SQUID is shut off and the right SQUID is
opened. Decreasing the gate charge finally pushes the Cooper
pair into the right lead, so that altogether one Cooper pair is
pumped through the device.

Real SQUIDs are not perfectly closable, therefore, we
consider a residual Josephson energy Emin

J = 0.03Emax
J , which

is a realistic experimental value. This causes a supercurrent
flowing through the island in addition to the pumped current.

III. IMPLEMENTATION OF THE MEASURING DEVICE

To calculate the transferred charge, we use the technique
of full counting statistics17 (FCS). In particular, we consider a
gedanken experiment in which we add25 a charge measuring
device to the circuit. This device is a capacitor Cm described by
a phase variable ϕm (see Fig. 2). To minimize the disturbance
of the circuit by the measuring device, we choose Cm → ∞,
such that no charging energy term is added to H . One
could be worried by the fact that the capacitor interrupts the
superconducting loop and, thus, the flux biasing is no longer

FIG. 2. Cooper pair pump as in Fig. 1. An infinite capacitor Cm

has been added as a gedanken measuring device of the transferred
charge. The phase ϕm across Cm serves as a counting field.

possible. However, in the limit Cm → ∞, the phase across
the capacitor ϕm (which turns out to serve as a counting field)
is a constant of motion, which is just formally added to the
external flux.

To demonstrate the functionality of the capacitor as a
measuring device, we have a closer look at the (reduced)
density matrix ρM of the measuring device. Whenever N

Cooper pairs reach the capacitor, its state changes as |ϕm〉 →
eiNϕm |ϕm〉. Hence the off-diagonal element |ϕm〉〈ϕ′

m| of the
density matrix changes as

|ϕm〉〈ϕ′
m| N Cooper pairs transported−−−−−−−−−−−−−→ eiN(ϕm−ϕ′

m)|ϕm〉〈ϕ′
m|. (3.1)

If we now assume a probability distribution PN of N

transferred charges, the corresponding transformation of the
density matrix of the measuring device reads

|ϕm〉〈ϕ′
m| →

∑
N

PNeiN(ϕm−ϕ′
m)

︸ ︷︷ ︸
χ(λ)

|ϕm〉〈ϕ′
m|, (3.2)

where χ (λ) is the desired cumulant generating function (CGF)
to calculate the transferred charge. For the counting field we
get λ = ϕm − ϕ′

m. In analogy to Ref. 17, the CGF is obtained
as

χ (λ) = TrP [〈ϕm|ρP (t)|ϕ′
m〉]

TrP [〈ϕm|ρP (0)|ϕ′
m〉] . (3.3)

With the CGF, the cumulants of the number of Cooper pairs
transferred onto the capacitor Cm are calculated as

〈Qn〉 = (1/i)n∂n
λ ln (χ (λ))|λ=0. (3.4)

In particular, we are interested in the charge Q = −2e 〈Q1〉
(we assume e > 0). After the incorporation of the capacitor
Cm into the system, the new Hamiltonian for the system plus
measuring device reads

HPM =
∫

dϕmHP (ϕm) ⊗ |ϕm〉〈ϕm|, (3.5)

with

HP (ϕm) = EC(n̂ − ng)2 − EJ,1(φ1) cos

(
φext

2
+ ϕ − ϕm

2

)

−EJ,2(φ2) cos

(
φext

2
− ϕ − ϕm

2

)
. (3.6)

The property of HPM being diagonal in ϕm, i.e., the absence
of the conjugate charge is due to Cm → ∞. This means that
ϕm is a constant of motion.

In the limit of EC � Emax
J and ng ∈ [0,1], it is possible

to restrict the Hamiltonian to a two-level Hilbert space of
two charge states20 {|0〉,|1〉}, where |0〉(|1〉) correspond to
zero (one) excess Cooper pair on the island. The two-level
Hamiltonian reads

H 2ls
P = −1/2

[
EC(1 − 2ng)σz

+ (EJ1 + EJ2) cos

(
φext − ϕm

2

)
σx

+ (EJ1 − EJ2) sin

(
φext − ϕm

2

)
σy

]
. (3.7)
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By diagonalizing this Hamiltonian, we get the energies Eg/e

for the corresponding ground and excited states:

|g(ϕm)〉 = aeiγ |0〉 + b|1〉, (3.8)

|e(ϕm)〉 = beiγ |0〉 − a|1〉. (3.9)

Here, the amplitudes a and b as well as the phase γ are
real numbers satisfying a2 + b2 = 1, which depend on the
controlled parameters of the Hamiltonian (EJ1,EJ2,ng) as well
as on the “measuring” phase ϕm. They are explicitly given by

a2 = 1 − b2 = 1

2

⎡
⎢⎣1 − (ng − 1/2)√

(ng − 1/2)2 + E2
12

4E2
C

⎤
⎥⎦, (3.10)

γ = arctan

[
EJ2 − EJ1

EJ1 + EJ2
tan

(
φext − ϕm

2

)]
, (3.11)

where we introduced the abbreviation E12 =√
E2

J1 + E2
J2 + 2EJ1EJ2 cos(φext − ϕm). A similar repre-

sentation without the measuring device was used in Ref. 20.
As a first verification of the technique of FCS, we calculate

the transferred charge in the closed system, i.e., without
coupling to an environment. We consider one pumping cycle
of period τ . It follows from Eq. (3.3), that the CGF is given by

χ (λ) = e−i
D(ϕm)e−i
B(ϕm)ei
B(ϕ′
m)ei
D(ϕ′

m), (3.12)

where we assume an adiabatic ground-state evolution,
i.e., |�(τ,ϕm)〉 ≈ e−i
D(ϕm)e−i
B(ϕm)|g(0,ϕm)〉. Here, 
D =∫ τ

0 dtEg(ϕm,t) is the dynamical phase of the ground state of
the system and 
B = − ∮ 〈g(�q)|∇�q |g(�q)〉d �q is the geometric
Berry phase of the ground state.1 The vector �q belongs to
the reduced parameter space spanned by two parameters
�q = (a2(ϕm),γ (ϕm)). From the first cumulant, we find for the
transferred charge,

Qtot = −2e 〈Q1〉 = 2e
(
∂ϕm


D + ∂ϕm

B

)
. (3.13)

We identify the first term of Eq. (3.13) as the charge QS =
2e∂ϕm


D due to the super-current. The pumped charge is solely
due to the time dependence of the system’s parameters. Thus
the second term of Eq. (3.13) QP = 2e∂ϕm


B corresponds to
the pumped charge. Thus we reproduce the results of Ref. 6.

IV. LINDBLAD MASTER EQUATION

In this section, we derive a Markovian master equation
of the Lindblad form to describe the influence of dissipation

on our system. The derivation is performed along the lines
of Ref. 15, a detailed calculation including the RWA can be
found in the Appendix. The main source of dissipation are
fluctuations δVg of the gate voltage Vg = V 0

g + δVg , which
results in a coupling proportional to σz in the charge basis.
These are, e.g., due to the dissipative parts of the controlling
circuit impedance. Also material dielectric losses can be effec-
tively modeled this way. In previous calculations,15 the secular
approximation (RWA), well-known from the field of quantum
optics, turned out to be inadequate (noncharge conserving).16

Our starting point is a Markovian master equation in the
interaction picture:14

d

dt
ρPM(t) = −

∫ ∞

0
ds TrB[HI (t),[HI (t − s),ρPM(t) ⊗ ρB]].

(4.1)

Here, ρPM(t) is the density matrix of the combined system of
pump (P) plus measuring device (M) and HI (t) = APM(t) ⊗
B(t) describes the interaction between the system, represented
by APM(t) and the bath, represented by B(t). The explicit form
of APM in the Schrödinger picture is

APM =
∫

dϕmECσz ⊗ |ϕm〉〈ϕm|. (4.2)

The density matrix ρB of the bath is assumed to correspond to
a thermal equilibrium state.

To perform the RWA, we need to consider Eq. (4.1) in
an explicit basis. Because of the cyclic time dependence of
the control parameters with period τ , we use the Floquet states
|φn(t)〉 for this purpose. These states are cyclic solutions (up to
a phase) of the Schrödinger equation with the property |φn(t +
τ )〉 ∝ |φn(t)〉. They can be obtained numerically and have the
useful property15 that they implicitly contain superadiabatic
corrections to the instantaneous eigenstates.23 For a review on
Floquet theory, see Ref. 22.

In order to compute the CGF according to Eq. (3.3), it
is necessary to evaluate the time evolution of the reduced
density matrix of the Cooper pair pump including the off-
diagonal elements with respect to the measuring (counting)

phases 〈ϕm|ρPM(t)|ϕ′
m〉 = ρ

ϕmϕ′
m

P (t). In the limit Cm → ∞, the
counting fields ϕm and ϕ′

m are constants of motions. This means

that the time evolution factorizes, i.e., ρ
ϕmϕ′

m

P (t) depends only
on matrix elements with the same ϕm and ϕ′

m. This significantly
simplifies the analysis of the master equation as we only have
to deal with 2 × 2 matrices. We obtain

ρ̇
ϕmϕ′

m

P = −i
(
H 2ls

P + HLS
)
ρ

ϕmϕ′
m

P + iρ
ϕmϕ′

m

P

(
H ′2ls

P + H ′
LS
) + γ (0)

[
L0ρ

ϕmϕ′
m

P L′
0
† − 1

2

(
L
†
0L0ρ

ϕmϕ′
m

P + ρ
ϕmϕ′

m

P L′
0
†
L′

0

)]
+

∑
j �=k∈{e,g}

{
γ (ωjk) + γ (ω′

jk)

2
Ljkρ

ϕmϕ′
m

P L′
jk

† + i
ξ (ωjk) − ξ (ω′

jk)

2
Ljkρ

ϕmϕ′
m

P L′
jk

†

− 1

2

[
γ (ωjk)L†

jkLjkρ
ϕmϕ′

m

P + γ (ω′
jk)ρ

ϕmϕ′
m

P L′
jk

†
L′

jk

]}
. (4.3)

Here, γ (ω) and ξ (ω) are the real and imaginary parts of the
half-sided Fourier (Laplace) transform of the bath correla-

tion function γ (ω)/2 + iξ (ω) = ∫ ∞
0 〈B(s)B(0)〉 eiωs ds. The

transition frequencies are given by ωjk ≈ Ek(t) − Ej (t) [the
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explicit form is given in Eq. (A5)], and we introduced the
Lindblad operators

L0(ϕm,t) = EC

∑
n

〈φn|σz|φn〉|φn〉〈φn|, (4.4)

Ljk(ϕm,t) = EC〈φj |σz|φk〉|φj 〉〈φk|, (4.5)

as well as the Lamb shift

HLS(ϕm,t) = E2
C

∑
j,k

ξ (ωjk)|〈φj |σz|φk〉|2 × |φj 〉〈φj |. (4.6)

Quantities labeled with and without prime depend on ϕ′
m and

ϕm, respectively. The Lindblad operator L0(ϕm,t) describes
the pure dephasing, whereas Ljk(ϕm,t) cause relaxation and
excitation. The coherent part of the master equation consists

of a “commutator” between ρ
ϕmϕ′

m

P and H 2ls
P + HLS (this is

not exactly a commutator since the counting phase in the
Hamiltonian H 2ls

P + HLS is different depending on which side
of the density matrix it is placed).

It should be emphasized that, in contrast to Refs. 12 and 15,
we did perform the secular approximation (RWA) concerning
fast rotating terms in the interaction picture. The resulting
master equation for ϕm = ϕ′

m is therefore a Lindblad master

equation. For ϕm �= ϕ′
m, the matrix ρ

ϕmϕ′
m

P (t) has neither trace
of unity nor is it Hermitian, therefore, a Lindblad form cannot
be expected for the off-diagonal entries.

V. RESULTS

A typical description of the gate voltage fluctuation is
provided by an ohmic bath, where the spectral density is
linear in frequency. Furthermore, we assume the bath to be
in thermal equilibrium, γ (ω) = γ0ω[1 − exp(− h̄ω

kBT
)]−1. For

comparison with previous work,15 the duration of a pumping
cycle is assumed to be τ = 80 ps, the charging energy of
the island is EC/(2πh̄) = 21 GHz with the ratio between the
maximal Josephson energy of the SQUID and the charging
energy given by Emax

J /EC = 0.1. The external phase is chosen
to be φext = −π/2. In this parameter regime, the two-level
description as well as adiabaticity are well justified. The
energy splitting of the system along the pumping contour is
shown in Fig. 4(a). Temperatures of order of the minimal
energy splitting ωmin/(2π ) ≈ 2 GHz should be sufficient to
significantly influence the system.

We now go on to numerically solve the master equation. In
order to compare with experiments, where multiple pumping
cycles are performed, we allow the system to reach the
quasistationary state.15 To do so, we start pumping in the
ground state. After a certain number N of pumping cycles
(N depends on temperature and the coupling strength to the
dissipative bath), the system approaches a quasistationary state
in which the density matrix is periodic, ρP (t + τ ) = ρP (t). We
then investigate the charge transferred during time t after the
quasistationary state is reached. It is obtained from Eqs. (3.3)
and (3.4) and is given by

Q(t)tot = −2e
∂

∂λ

1

i
ln

{
TrP

[
ρ

ϕmϕ′
m

P (Nτ + t)
]

TrP
[
ρ

ϕmϕ′
m

P (Nτ )
]

} ∣∣∣∣
λ=0

, (5.1)

where we numerically approximate the differentiation with
respect to λ by a finite difference quotient.
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FIG. 3. (a) Charge QP pumped through the system as a function
of time. The whole time span of the plot corresponds to a single
pumping cycle. For all curves, kBT /(2πh̄) = 2 GHz, while the
coupling strengths are chosen to be E2

Cγ0 = 0.2 (solid), E2
Cγ0 = 0.1

(dashed), and E2
Cγ0 = 0.05 (dotted). As expected, charge is only

pumped when the gate voltage is varied. The weaker the coupling
to the environment, the stronger is the decrease of the pumped
charge. (b) The total charge Qtot transferred through the system. The
temperature is kBT /(2πh̄) = 2 GHz, and it is plotted for different
coupling strengths E2

Cγ0 = 0.2 (solid), E2
Cγ0 = 0.1 (dashed), and

E2
Cγ0 = 0.05 (dotted). The total charge also tends to decrease as the

coupling strength is decreased.

The pumped charge can be distinguished from the super-
current by the fact that the former changes sign when the
pumping cycle is traversed in the opposite direction, while
the latter does not. The pumped charge was calculated as
QP = (Qtot − Q̄tot)/2, where Q̄tot is the charge transferred
when the pumping cycle is traversed in the opposite direction.
It is plotted as a function of time within one pumping cycle in
Fig. 3(a).

To understand the behavior of the pumped charge as a
function of the coupling strength E2

Cγ0 to the gate voltage
fluctuations, we analyze energy splitting during the pumping
cycle [see Fig. 4(a)] and the matrix element |〈φe(t)|σz|φg(t)〉|
[see Fig. 4(b)]. In a time independent situation, the relaxation
rate would be proportional to |〈φe(t)|σz|φg(t)〉|2. Upon inspec-
tion of Figs. 4(a) and 4(b), it is obvious that the influence of
dissipation reaches a maximum whenever the energy splitting
is minimal. On the other hand, whenever the energy splitting is
large, the relaxation rate is low and the system has not enough
time to relax. This indicates that a stronger coupling to the
environment should support ground-state pumping.12 We note
that the pumped current is largest at times when the voltage
parameter ng crosses the charging energy degeneracy point
at ng = 0.5. The reason is that at these times the state of the
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FIG. 4. (a) Energy splitting within the two-level approxima-
tion during a single pumping cycle. (b) The matrix element
|〈φe(t)|σz|φg(t)〉| is plotted for the time span of a single pumping
cycle. The dissipation rate is determined by this matrix element and
reaches its maximum at times where the energy splitting reaches its
minimum.
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FIG. 5. (Color online) (a) Pumped charge QP as a function
of coupling strength E2

Cγ0. The charge is plotted for different
temperatures kBT /(2πh̄) = 0,1,2,3 GHz (from top to bottom). The
solid red lines represent calculations for perfectly closable SQUIDs,
i.e., Emin

J = 0, whereas the dashed black lines were made for realistic
SQUIDs. The weaker the coupling to the environment, the more the
pumped charge tends to decrease. In (b), the total charge is depicted
as a function of the coupling strength for different temperatures
kBT /(2πh̄) = 0,1,2,3 GHz (from top to bottom).

system changes at the highest rate. Furthermore, we see that
decreasing the coupling to the environment leads to a smaller
pumped charge. This can be explained by the fact that with a
low coupling to the environment the system gets easily excited
during the times with low energy splitting. At times with high
energy splitting, the relaxation rate becomes too small for the
excitation to relax. After several cycles, the quasistationary
population of the excited state can therefore be quite large. As
the excited state carries charge in the opposite direction, the
total pumped charge is reduced.

A similar trend is also visible in the total charge transferred
through the island as depicted in Fig. 3(b). We see that a
supercurrent flows through the island at all times. It reaches
its maximum at t = 20,60 ps where the gate voltage is
ng = 0.5. Comparing both figures in detail we observe that the
transferred charge due to the super current is also influenced by
the dissipative environment. This is apparent, as the decrease
of the pumped charge is smaller than the decrease of the total
transferred charge.

In Fig. 5(a), the pumped charge QP (τ ) for one complete
pumping cycle is plotted as a function of the coupling strength
for different temperatures. As mentioned before, for weaker
coupling strengths as well as for higher temperatures, the
pumped charge tends to decrease. As was expected,12 a zero
temperature environment stabilizes the adiabatic theorem, i.e.,
does not influence the pumped charge.

The solid red lines in Fig. 5(a) represent the calculation
with perfectly closable SQUIDs, i.e., Emin

J = 0, whereas the
dotted black lines where calculated for realistic SQUIDs
with Emin

J /Emax
J = 0.03. Since both curves almost perfectly

match, the pumped charge is hardly influenced by the residual
Josephson energy Emin

J of the SQUID. Increasing the coupling
to the environment supports the charge transfer which is in
agreement with the conclusions of Ref. 12. Figure 5(b) depicts
the total charge Qtot(τ ) transferred in one complete pumping
cycle. As was expected, even for zero temperature environment
the total charge is not quantized. It shows a similar behavior as
the pumped charge when varying in temperature and coupling
strength. Comparing both figures, the charge transferred due
to supercurrent only is also affected by varying temperature
or coupling strength. The decrease of transferred charge for

higher temperatures is due to a higher population of the excited
state, which is responsible for a back flowing current. Finally,
it should be mentioned that the results obtained here are in a
very good agreement with the results of Ref. 15.24 However,
in Ref. 15 these results could only be obtained by including
the nonsecular terms, while our method using FCS allows for
the use of the RWA.

VI. CONCLUSIONS

We explored an alternative way to calculate the amount of
charge transferred in Cooper pair pumps. It turned out that
introducing the counting fields allows us to perform the usual
RWA and use the master equation of the Lindblad form. We
conjecture that FCS is, in general, the instrument of choice for
charge calculation, whereas charge calculations via the current
operator require a much more careful treatment. Our results are
obtained numerically at this stage. A general analytic argument
for why FCS in combination with RWA produces accurate
results, will be the subject of future work.
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APPENDIX: DERIVATION OF THE MASTER EQUATION

As the system evolves periodically in time, we use the basis
of modified adiabatic Floquet states15 |φn(t)〉. For a strictly
adiabatic evolution, the system stays in one of its adiabatic
eigenstates |n(t0)〉. The modified Floquet states originate from
the adiabatic eigenstates but include nonadiabatic corrections
(for details see Ref. 15).

Our starting point is a Markovian master equation in the
interaction picture:14

d

dt
ρPM(t) = −

∫ ∞

0
ds TrB[HI (t),[HI (t − s),ρPM(t) ⊗ ρB]].

(A1)

To describe the time evolution of the system, we introduce
the time-evolution operator U = ∑

n |�n(t)〉〈φn(0)|, where
|�n(t)〉 is the time-dependent state of the system. While using
the adiabatic Floquet states, we rewrite the time evolution
operator as

U =
∑

n

e−i
∫ t

0 dt ′En(t ′)e−i
n
B t/τ |φn(t)〉, (A2)

where En(t) are the instantaneous energies of the system
and 
n

B is the geometric phase. With the help of Eq. (A2)
we are able to perform a Fourier series expansion for
〈φn(t)|AP |φm(t)〉 as

AP (t) =
∑
n,n′,k

ei�ktAnn′,k|φn〉〈φ′
n|e−i

∫ t

0 dt ′ωnn′ (t ′), (A3)

with � = 2π/τ . The Fourier coefficients are given by

Ann′,k = 1

τ

∫ τ

0
dte−i�kt 〈φn(t)|AP |φn′(t)〉, (A4)

and the transition frequencies read

ωnn′ (t) = En′(t) − En(t) + (

n′

B − 
n
B

)
/τ. (A5)
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Equation (A1), thus, becomes

d

dt
ρPM(t) =

∑
nn′,jj ′,k,l

{�(ωjj ′ +�k)Ann′,k(ϕm)Ajj ′,l(ϕ
′
m)ei

∫ t

0 dt ′(ωjj ′ (t ′)−ωnn′ (t ′)−�(k+l))

× [|φn〉〈φn′ |ρPM(t)|φj ′ 〉〈φj | − |φn〉〈φn′ |φj ′ 〉〈φj |ρPM(t)]

+ �∗(ωjj ′ + �k)A∗
nn′,k(ϕm)A∗

jj ′,l(ϕ
′
m)e−i

∫ t

0 dt ′(ωjj ′ (t ′)−ωnn′ (t ′)−�(k+l))

× [|φj 〉〈φj ′ |ρPM(t)|φn′ 〉〈φn| − ρPM(t)|φj 〉〈φj ′ |φn′ 〉〈φn|]}, (A6)

with �(ωjj ′ + �k) being the half-side Fourier (Laplace) transform of the bath correlation functions. These are given explicitly
by

�(ωmm′ + �k) =
∫ ∞

0
ds 〈B(s)B(0)〉ei

∫ t

t−s
dt ′[ωnn′ (t ′)+�k] ≈

∫ ∞

0
ds 〈B(s)B(0)〉ei[ωnn′ (t)+�k]s . (A7)

The approximation made in the second step assumes that the eigenenergies of the system do not vary drastically on time scales
of the bath correlation time. For large values of �k ≈ ωnm, the Fourier coefficients vanish, as the states |φn(t)〉 slowly oscillate.
We arrive at

ρ̇
ϕmϕ′

m

P =
∑

n,j,k,l

�(�k)e−i�(k+l)t × [
Ann,k(ϕm)Ajj,l(ϕ

′
m)|φn(ϕm)〉〈φn(ϕm)|ρϕmϕ′

m

P (t)|φj (ϕ′
m)〉〈φj (ϕ′

m)|

−Ann,k(ϕm)Ajj,l(ϕm)δjn|φn(ϕm)〉〈φj (ϕm)|ρϕmϕ′
m

P (t)
]

+
∑

n�=j,k,l

�[ωjn(ϕm) + �k]e−i�(k+l)t
{
Ajn,k(ϕm)Anj,l(ϕ

′
m)ei

∫ t

0 dt ′[ωjn(ϕm,t)−ωjn(ϕ′
m,t)]

× |φn(ϕm)〉〈φj (ϕm)|ρϕmϕ′
m

P (t)|φj (ϕ′
m)〉〈φn(ϕ′

m)| − δjnAjn,k(ϕm)Anj,l(ϕm)|φj (ϕm)〉〈φn(ϕm)|ρϕmϕ′
m

P (t)
}

+
∑

n,j,k,l

�∗(�k)ei�(k+l)t [A∗
nn,k(ϕ′

m)A∗
jj,l(ϕm)|φj (ϕm)〉〈φj (ϕm)|ρϕmϕ′

m

P (t)|φn(ϕ′
m)〉〈φn(ϕ′

m)|

−A∗
nn,k(ϕ′

m)A∗
jj,l(ϕ

′
m)δjnρ

ϕmϕ′
m

P (t)|φj (ϕ′
m)〉〈φn(ϕ′

m)|]
+

∑
n�=j,k,l

�∗[ωjn(ϕ′
m) + �k]ei�(k+l)t

{
Ajn,k(ϕ′

m)Anj,l(ϕm)e−i
∫ t

0 dt ′[ωjn(ϕm,t)−ωjn(ϕ′
m,t)]

× |φj (ϕm)〉〈φn(ϕm)|ρϕmϕ′
m

P (t)|φn(ϕ′
m)〉〈φj (ϕ′

m)| − δjnA
∗
jn,k(ϕ′

m)A∗
nj,l(ϕ

′
m)ρ

ϕmϕ′
m

P (t)|φn(ϕ′
m)〉〈φj (ϕ′

m)|}. (A8)

Assuming adiabatic evolution, only small enough values of �k contribute. Therefore the half-side Fourier (Laplace) transform of
the bath correlation function can be approximated as �[ωjn(ϕm) + �k] ≈ �[ωjn(ϕm)]. Using �(ωnm) = 1/2γ (ωnm) + iξ (ωnm),
we arrive at

ρ̇
ϕmϕ′

m

P = −i
(
H 2ls

P + HLS
)
ρ

ϕmϕ′
m

P + iρ
ϕmϕ′

m

P

(
H ′2ls

P + H ′
LS
) + γ (0)

[
L0ρ

ϕmϕ′
m

P L′
0
† − 1

2

(
L
†
0L0ρ

ϕmϕ′
m

P + ρ
ϕmϕ′

m

P L′
0
†
L′

0

)]
+

∑
j �=k∈{e,g}

{
γ (ωjk) + γ (ω′

jk)

2
Ljkρ

ϕmϕ′
m

P L′
jk

† + i
ξ (ωjk) − ξ (ω′

jk)

2
Ljkρ

ϕmϕ′
m

P L′
jk

†

− 1

2

[
γ (ωjk)L†

jkLjkρ
ϕmϕ′

m

P + γ (ω′
jk)ρ

ϕmϕ′
m

P L′
jk

†
L′

jk

]}
. (A9)
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