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Confinement effects on electron and phonon degrees of freedom in nanofilm superconductors:
A Green function approach
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The Green function approach to the Bardeen-Cooper-Schrieffer theory of superconductivity is used to study
nanofilms. We go beyond previous models and include effects of confinement on the strength of the electron-
phonon coupling as well as on the electronic spectrum and on the phonon modes. Within our approach, we find
that in ultrathin films, confinement effects on the electronic screening become very important. Indeed, contrary
to what has been advanced in recent years, the sudden increases of the density of states when new bands start to
be occupied as the film thickness increases, tend to suppress the critical temperature rather than to enhance it.
On the other hand, the increase of the number of phonon modes with increasing number of monolayers in the
film leads to an increase in the critical temperature. As a consequence, the superconducting critical parameters
in such nanofilms are determined by these two competing effects. Furthermore, in sufficiently thin films, the
condensate consists of well-defined subcondensates associated with the occupied bands, each with a distinct
coherence length. The subcondensates can interfere constructively or destructively giving rise to an interference
pattern in the Cooper pair probability density.
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I. INTRODUCTION

In 1963, Blatt and Thompson studied theoretically very
thin, nanoscale, films within the Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity.1,2 To study such an
inhomogeneous system, they essentially applied a method first
advanced by Anderson in his study of dirty superconductors.3,4

An interesting finding in their work was that, as a function
of film thickness, the critical temperature (Tc) and gap value
exhibit very sharp oscillations, which are stronger the thinner
the nanofilm and which the authors referred to as shape
resonances. Briefly, in a nanofilm, the electron motion in the
direction transverse to the film is strongly quantized, resulting
in quantum well states, which, nevertheless, move as free par-
ticles in the directions parallel to the film. This results in an en-
ergy spectrum consisting of a discrete set of two-dimensional
bands. Band occupancy depends on the nanofilm thickness.
With increasing nanofilm thickness, the number of occupied
bands increases by one in a repeated fashion. This results in
repeated and sudden jumps of the electronic density of states at
the Fermi level with increasing film thickness and leads to the
sharp oscillations found by Blatt and Thompson. Interestingly,
their model resulted in Tc’s and gap values that could be more
than twice the bulk values. Later, similar studies explored fur-
ther the consequences of the size quantization of the electronic
degrees of freedom.5,6 However, quantum size effects can man-
ifest themselves more broadly, affecting, e.g., the phononic
degrees of freedom as well. This has been considered in Ref. 7,
where the quantization of the phonon spectra in the nanofilm
was taken into account. This leads to multigap superconductiv-
ity and to a modification of the gap and critical temperature de-
pendencies on nanofilm thickness. As shown in this work, how-
ever, the picture is incomplete if no account is taken of the ef-
fect of confinement on the electron-phonon coupling strength.

On the experimental side, there were early reports of
enhanced Tc’s in Al thin films8 or of oscillations in the
Tc of Sn thin films as a function of their thickness.9 But
consensus regarding the observation of quantum size effects

in nanofilms has required the advent of high-quality thin
film growth techniques. Oscillations in the Tc and/or gap
values as a function of the number of monolayers have been
reported in recent years for Pb nanofilms deposited on a
Si(111) substrate.10–12 Strikingly, superconductivity was found
to persist even in films only one monolayer thick.13 Also, in Al
nanofilms, the superconducting gap was found to increase with
decreasing film thickness, reaching values nearly 75% higher
than in the bulk for a thickness of 5 nm.14 In the case of Pb
nanofilms, on the other hand, the critical parameters reported
have lower values than their bulk counterparts.10–12 In several
of the theoretical works,6,15,16 efforts were made to explain
the oscillation of the critical parameters in Pb nanofilms
essentially in terms of the oscillations discussed by Blatt and
Thompson. Indeed, these works focus again on the electronic
degrees of freedom and are based either on the Anderson
method mentioned above6 or on the Bogoliubov–de Gennes
method.15,16 A more recent comparison between theory, based
on the latter, and experiment can be found in Ref. 17. Studies
based on density functional theory have also been carried out
on Al nanofilms18 as well as on Pb nanofilms.19 One of the
main findings of these latter works is that the surface phonon
modes induced by confinement contribute to electron-phonon
coupling in opposite ways in Al and in Pb. In the latter, the
coupling becomes weaker, while in the former, it becomes
stronger, thereby explaining the enhancement of the Tc in Al
nanofilms and its reduction in Pb nanofilms.

The Green function formalism of the BCS theory of super-
conductivity was first advanced by Gor’kov for homogeneous
systems.20 The present work is based on a reformulation, which
is particularly convenient to study inhomogeneous systems.
In a previous report (Ref. 21, hereafter referred to as I),
we applied it to study superconductivity in nanowires. The
reformulation is based on Anderson’s method.3 It consists
essentially in first solving the Hamiltonian for the normal state
and then adding a phenomenological effective attractive (or
pairing) interaction and solving the problem within a mean-
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field approximation. Several years ago, Tanaka and Marsiglio
showed that the Anderson approach compares well with the
Bogoliubov–de Gennes approach, in the weak coupling case,
using an attractive Hubbard model to study inhomogeneity
effects in superconductors.4 The same conclusion is reached
in I, where the agreement between the two approaches using
similar parameters was found to be excellent. Here, we show
that this approach allows to shed new light on several aspects
of superconductivity in nanofilms, and with a computational
effort far less costly than the Bogoliubov–de Gennes or density
functional approaches. The present work differs from the
previous studies1,2,5–7,15,16 in that account is taken of the
effects of confinement not only on the electronic spectrum
and on the phonon modes but also on the strength of the
electron-phonon coupling. We find that, in contrast to what
is currently usually assumed,6,9–12,15,16 the confinement effects
on superconductivity in very thin nanofilms do not always
correlate with the electron density of states. A critical finding
is that when the film thickness is below a couple of tens of
monolayers, at normal metallic densities, confinement effects
on the screened Coulomb interaction between the electrons
and the ionic background become very important. Indeed,
each time when the number of occupied bands increases
with nanofilm thickness, the screened electron-electron inter-
action weakens because screening increases, causing electron-
phonon coupling to decrease. This would lead the critical
parameters to drop rather than to increase. Remarkably, this
is strongly offset when the number of monolayers increases
as the number of active phonon modes contributing to
the electron-phonon coupling increases. Thus the observed
dependence of the critical parameters on the monolayer
number is determined by a strong interplay between the two
effects.

Another very interesting aspect to consider in nanofilms is
the effect of confinement on the superconducting condensate.
Because translational symmetry is broken, the Cooper pair
wave function depends on both the relative and center of
mass coordinates of the pair. Thus, for instance, although the
coherence length is determined by the behavior of the pair
wave function as a function of the relative coordinates, it is
a local property, in the sense that it depends on the position
of the center of mass. This is typical for superconductivity
in inhomogeneous systems, such as nuclei22,23 and high-Tc

superconductors.24,25 We show here that in sufficiently thin
films, the condensate is composed of well-defined subcon-
densates, each associated with an occupied band and its
corresponding gap. These produce an interference pattern in
the Cooper pair wave function probability density with regions
depleted of pairs. Moreover, the different subcondensates
generally exhibit different coherence lengths. This is quite
similar to the case of two-gap bulk superconductors, such as
MgB2, where the two gaps were shown to lead to different
length scales.26,27

In Sec. II, below, we present the model system studied.
Also, for completeness, the more general derivation of the
gap equation presented in I is specialized to the case of
nanofilms. Section III presents the derivation of the effective
electron-electron interaction taking into account the effects
of confinement both on the phonon spectrum and on the
strength of the electron-phonon coupling. The resulting effects

on the nanofilm thickness dependence of Tc and gap values are
analyzed in Sec. IV. In Sec. V, we discuss the consequences
of confinement on the spatial behavior of the condensate. The
present work is summarized in Sec. VI. In the appendixes,
we present some of the technical steps in the derivation of
the dielectric screening (see Appendix A) and more details
regarding the calculation of the Cooper pair density and of the
coherence lengths (see Appendix B).

II. THE GAP EQUATION

Consider the BCS grand-canonical Hamiltonian28

Ĥ =
∑

σ

∫
dr ψ̂†

σ (r) [H0(r) − μ] ψ̂σ (r)

+ 1

2

∫
dr dr′ψ̂†

↑(r)ψ̂†
↓(r′)veff(r,r′)ψ̂↓(r′)ψ̂↑(r), (1)

where H0 is the independent electron Hamiltonian, μ is the
chemical potential (Fermi level), and ψ̂†

σ (ψ̂σ ) is the creation
(destruction) field operator for an electron with spin σ . veff

is the effective attractive interaction, coupling electrons of
opposite spin. Its precise form need not be specified for now.
Section III is devoted to that subject. As previous authors,
we consider a free-standing nanofilm.2,5–7,15,18,19 Because
the impurity scattering length in high-quality nanofilms is
much larger than the film thickness, the nanofilms can be
treated in the clean limit.16 The system of electrons in the
nanofilm is described (in the normal state) by assuming
a model Hamiltonian H0 = −h̄2∇2/2m + V , where V is a
potential well defined by two large planes of side L, a
distance d apart, such that V [r ≡ (ρ,z)] = 0 for 0 � z �
d, and ∞ otherwise.2,7 The (orthonormal) eigenstates of
H0 are given by 〈r|qn〉 = ψqn(r) = (2/L2d)1/2eiq·ρ sin nπz

d
,

where q = 2π (l,m)/L with l,m ∈ Z, i.e., assuming periodic
boundary conditions in the xOy plane (the limit L → ∞
is taken at the end of the calculations). The energy levels
are given by a set of nonintersecting paraboloids, namely,
Eqn = h̄2(q2 + n2π2/d2)/2m. Hence, given a Fermi level
μ, the Fermi surface is broken into a set of concentric
circumferences of radii q

(n)
F = (2mμ/h̄2 − n2π2/d2)1/2. Fol-

lowing Anderson,3 we assume that the effective interaction veff

couples only time-reversed states. Here, these correspond to
|qn〉 and |−qn〉. Note that this means, in particular, that both
electrons in a pair necessarily belong to the same electronic
band.

A Hamiltonian, such as the above, was solved quite
generally in I. Here, the main points are emphasized, while
introducing the notation used further on. One considers the
equation of motion for the single-electron temperature Green
function,

G(rr′,τ ) = −〈Tτ ψ̂↑(rτ )ψ̂†
↑(r′0)〉, (2)

and seeks a solution within a mean-field approximation by
introducing the Gor’kov functions:

F(rr′,τ ) = −〈Tτ ψ̂↑(rτ )ψ̂↓(r′0)〉, (3)

F†(rr′,τ ) = −〈Tτ ψ̂
†
↓(rτ )ψ̂†

↑(r′0)〉. (4)

064510-2



CONFINEMENT EFFECTS ON ELECTRON AND PHONON . . . PHYSICAL REVIEW B 87, 064510 (2013)

It proves useful to expand the field operators in terms
of the eigenstates of H0. In the present case, ψ̂σ (rτ ) =∑

qn ψqn(r)cqnσ (τ ) and ψ̂†
σ (rτ ) = ∑

qn ψ∗
qn(r)c†qnσ (τ ). Oper-

ator c
†
qnσ (cqnσ ) creates (destroys) an electron in state |nq〉,

with spin σ . Thus, for instance, one has the expansion

F†(rr′,τ ) =
∑

qn q′n′
ψ∗

qn(r)ψ∗
q′n′(r′)F†(qn q′n′,τ ), (5)

with F†(qn q′n′,τ ) = −〈Tτ c
†
qn↓(τ )c†q′n′↑(0)〉. Also, the solu-

tion is most easily found in terms of the coefficients of
the Fourier representation in τ of the above functions, e.g.,
F†(qn q′n′,τ ) = 1

βh̄

∑
p e−tωpτ F̃†(qn q′n′,ωp), where β =

1/kBT . As shown in I, for an effective interaction coupling
only time-reversed states, the solution can be written as

G̃(qn q′n′,ωp) = −δqn q′n′
iωp + εqn/h̄

ω2
p + ξ 2

qn

/
h̄2 ,

(6)
F̃†(qn q′n′,ωp) = δ−qn q′n′

�∗(qn)/h̄

ω2
p + ξ 2

qn

/
h̄2 ,

where ξ 2
qn = ε2

qn + |�(qn)|2 and εqn = Eqn − μ. The param-
eters �(qn) are defined by

�(qn) =
∑
q′n′

Vqn q′n′F(−q′n′ q′n′,0), (7)

with Vqn q′n′ ≡ −〈qn, − qn|veff|qn′, − q′n′〉 the matrix ele-
ments of the effective interaction (the sign of the interaction
is introduced for notational convenience). One can see from
the above that �(qn) represents a momentum- and band-
dependent energy gap. Combining their definition with the
above solution for F̃ , one obtains the gap equation

�(qn) =
∑
q′n′

Vqn,q′n′�(q′n′)
1

2ξq′n′
tanh

ξq′n′

2kBT
. (8)

�(qn) depends implicitly on temperature. To solve the gap
equation, one still has to specify the matrix elements, Vqn,q′n′ ,
of the effective interaction. We deduce below the specific form
of veff used in this work.

III. EFFECTIVE ELECTRON-ELECTRON INTERACTION
IN A NANOFILM

In the BCS theory for homogeneous systems, as presented
in most textbooks (see, e.g., Refs. 28 and 29), the effective
attractive interaction between electrons of opposite spin is
given by an attractive contact potential, veff(r,r′) = −gδ(r −
r′).30 The interaction strength is given by the square of
the electron-phonon coupling constant γ , that is, g = γ 2.
Important from the point of view of the present work is that γ

is proportional to the screened Coulomb interaction.28

Here, we derive the formal effects of confinement on
electron-phonon coupling, as well as the consequences on the
phonon-mediated pairing interaction. In the previous section,
the effects of confinement on the electron system in the
nanofilm were already considered. The first section below
presents the confined phonon system and describes how it
modifies the form of the electron-phonon coupling. In the
second section, we consider the effect of confinement on
the strength of the electron-phonon coupling, i.e., we study

the screened Coulomb interaction in a nanofilm. Finally, the
third section is devoted to the consequent modification of the
effective electron-electron interaction.

A. Electron-phonon interaction

1. Phonon spectrum

We use the uniform, elastic background model to describe
the phonon system, paralleling the formulation of Fetter and
Walecka.28 If d = d(r,t) is the displacement field, charac-
terizing the displacement from the equilibrium position, we
consider the wave equation

1

c2

∂2

∂t2
d(r,t) − ∇2d(r,t) = 0. (9)

Here, c = √
B/Mn0 is the speed of sound with B the bulk

modulus and M and n0 the background atomic mass and
particle density, respectively (i.e., Mn0 is the background mass
density); below, we write �0 = Mn0. To describe sound waves,
we take the ansatz

d(r,t) = eiq·ρ−iωt q̂ sin
nπz

d
, (10)

where, again, q is the momentum parallel to the plane of the
film. It is easy to verify that the wave equation above is satisfied
by d with ω2 = ω2

nq ≡ c2(q2 + n2π2/d2).31 We now define the
quantized displacement field as

d̂(r,t) = − i

c
√

�0

∑
nq

(
h̄ωnq

2V

)1/2 q̂
q

× (
bnqe

iq·ρ−iωnq t − b†nqe
−iq·ρ+iωnq t

)
sin

nπz

d
, (11)

where V is the volume of the system and k =
√

q2 + n2π2/d2

for short. The operators b
†
nq and bnq create and destroy,

respectively, a phonon with momentum q and energy h̄ωnq .

2. Electron-phonon interaction

The electron-phonon interaction Hamiltonian can be writ-
ten as (cf. Ref. 28)

Ĥel-ph =
∫

d3r d3r ′�̂(r)vscr(r,r′).δ�̂b(r′). (12)

We consider the different factors in the integrand one at
the time. The first factor, �̂, is the electron charge density
operator. In terms of the electron field operators, it is
written �̂(r) = −e

∑
σ ψ̂†

σ (r)ψ̂σ (r), with e the magnitude of
the electron charge. The second factor, vscr, is the screened
Coulomb potential. Because of translational invariance along
the xOy plane, without loss of generality, it can be ex-
panded in terms of the single-electron states as vscr(r,r′) =∑

nn′q ψnq(r)ψ∗
n′q(r′)vscr

nn′q. Finally, the third factor in Eq. (12)
is the background charge density fluctuation, δ�̂b = zeδn̂(r),
with z the valence of the background ions and δn̂ the
background particle density fluctuation operator. Assuming
a Debye model for the elastic dynamics of the background,28
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it is given by

δ�̂b(r) = −zen0∇ · d̂(r)

= − zen0

c
√

�0

∑
nq

(
h̄ωnq

2V

)1/2

(bnqe
iq·ρ + b†nqe

−iq·ρ)

× sin
nπz

d
θ (ωD − ωnq), (13)

where ωD is the Debye frequency. With the foregoing, the
electron-phonon interaction Hamiltonian becomes

Ĥel-ph = ze2n0

c
√

�0

∑
nq

(
h̄ωnq

2V

)1/2

θ (ωD − ωnq)
∑
mm′

∑
pσ

1

π

×
∑

l

dmm′lv
scr
lnq(bnqc

†
mpσ cm′p−qσ + b†nqc

†
mpσ cm′p+qσ ).

(14)

In the above,

dmm′l = 2π

d

∫ d

0
dz sin

mπz

d
sin

m′πz

d
sin

lπz

d

= [(−1)m+m′+l − 1]4mm′l
m4 + m′4 + l4 − 2(m2m′2 + m′2l2 + l2m2)

. (15)

To derive the form of the phonon-mediated attractive
interaction, it is convenient to rewrite Ĥel-ph in terms of the
electron and phonon fields. The latter is given by

ϕ̂(r) =
∑

n

ϕn(r)

≡
∑

n

∑
q

(
h̄ωnq

2V

)1/2

θ (ωD − ωnq)

× (bnqe
iq·ρ + b†nqe

−iq·ρ) sin
nπz

d
, (16)

where ϕn is the nth, confinement induced, branch of the phonon
field. As discussed in Sec. III B below, in the q → 0 limit, the
screened Coulomb potential matrix in Eq. (14) is dominated by
its diagonal terms. Thus making the approximation vscr

ln q→0 =
δlnv

scr
nn q→0, the electron-phonon Hamiltonian can be rewritten

Ĥel-ph =
∑

n

γn

∫
d3r

∑
σ

ψ̂†
σ (r)ψ̂σ (r)ϕ̂n(r), (17)

with electron-phonon coupling constant

γn =
(

ze2n0

c
√

�0

)
vscr

nn q→0 (18)

for phonon branch n. We now turn our attention to the screened
Coulomb potential and to its size dependence.

B. Screened Coulomb interaction

To determine the form of the screened Coulomb interaction
in a nanofilm, we must calculate the dielectric function. For
this, we follow the self-consistent field method and perform
the calculation in the random phase approximation (RPA).29

A similar study has been carried out before, focusing on
the plasmon dispersion relation.33 Here, we are interested
in the static, long-wavelength limit. In the derivation below,

we emphasize the most important points and give the more
technical details in Appendix A.

1. Dielectric function and screening of the Coulomb potential

Let V ext denote the potential due to an external charge,
or impurity, in the system. Within linear response, the total
potential, V = V ext + V scr, where V scr is the screening, or
induced potential, is related to the external potential by the
dielectric function

V ext(r,t) =
∫

d3r ′ dt ′ ε(r,r′,t − t ′)V (r′,t ′), (19)

or V ext(r,ω) = ∫
d3r ′ ε(r,r′,ω)V (r′,ω) in frequency domain.

Exploiting the translational invariance of the system in the
xOy plane, we expand the involved quantities over our single-
electron basis. This yields

V ext
nq (ω) =

∑
m

εnmq(ω)Vmq(ω). (20)

On the other hand, the external potential is given by

V ext(r,ω) =
∫

d3r ′ �
ext(r′,ω)

|r − r′| , (21)

or, equivalently,

V ext
nq (ω) =

∑
m

vnmq�
ext
mq(ω). (22)

The expansion coefficients of the (bare) Coulomb potential
vnmq are given by Eq. (A7) in Appendix A. Equating Eqs. (20)
and (22) above, one has

Vmq(ω) =
∑

n

ε−1
mnq(ω)V ext

nq (ω)

=
∑
n′

vscr
mn′q(ω)�ext

n′q(ω), (23)

with the screened Coulomb potential given by

vscr
mn′q(ω) =

∑
n

ε−1
mnq(ω)vnn′q. (24)

2. Dielectric function in the RPA

Our treatment here is similar to that of Mahan for the
three-dimensional electron gas.29 We consider the Heisenberg
equation for the (electron) particle density operator,

−ih̄
∂

∂t
n̂nq = [Ĥ ,n̂nq]. (25)

where n̂nq = ∫
d3r ψ∗

nq(r)n̂(r), with n̂(r) = ∑
σ ψ̂†

σ (r)ψ̂σ (r).

The Hamiltonian above is Ĥ = Ĥ0 + V̂ . The noninteracting
Hamiltonian is Ĥ0 = ∑

nqσ Enqc
†
nqσ cnqσ . The interacting term

is given by the total potential operator, V̂ (this is the principal
assumption of the self-consistent field method).29 In terms of
the particle density operator, it is written

V̂ = −e
∑

σ

∫
d3r ψ̂†

σ (r)V (r)ψ̂σ (r)

= −e
∑
nq

n̂n −qVnq. (26)
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As shown in Appendix A, solving the equation of motion for
the particle density within the RPA allows one to write the
induced charge density, �nq(ω) = −e〈n̂nq(ω)〉, in terms of the
polarization and the total potential as

�nq(ω) = e2
∑

l

P
(1)
nlq(ω)Vlq(ω). (27)

The polarization is given by

P
(1)
nlq(ω) = 2

π2L2d

∑
mm′

dnmm′dlmm′
∑

p

nF(εmp) − nF(εm′p+q)

h̄ω − εm′p+q + εmp
,

(28)

where the εmp = Emp − μ are the independent electron en-
ergies measured with respect to the Fermi level and nF is
the Fermi occupation function [nF(ε) = 1 if ε � 0, and 0
otherwise]. Now, given that the induced charge density gives
rise to the screening potential V scr

nq (ω) = ∑
m vnmq�mq(ω) and

that V ext
nq (ω) = Vnq(ω) − V scr

nq (ω), one has

V ext
nq (ω) = Vnq(ω) − e2

∑
ml

vnmqP
(1)
mlq(ω)Vlq(ω). (29)

Thus, from Eq. (20), we finally have the dielectric function

εnlq(ω) = δnl − e2
∑
m

vnmqP
(1)
mlq(ω). (30)

To determine the long-wavelength limit of the static,
screened Coulomb potential, vscr

mn′q→0(ω = 0) [cf. Eq (24)],
we have to evaluate limq→0

∑
n ε−1

mnq(0)vnn′q. The long-
wavelength limit of the static dielectric function, εmnq→0(0),
can be obtained in closed form (see Appendix A). However,
to obtain a converged result for the nanofilm thicknesses
considered in this study requires including up to 600 bands
in the calculation of the polarization P (1). We found that
200 × 200 matrices have to be considered in the calculation
of vscr = ε−1v for the matrix elements of vscr to be converged.
Thus vscr

mn′q→0(0) is evaluated numerically. The calculations
show that vscr

mn′q→0 is dominated by its diagonal terms. Hence,
to a first approximation, we take vscr

nn′q→0 � δnn′vscr
nnq→0.

For later discussion, we point out that the product
dnmm′dlmm′ in the polarization in Eq. (28) implies that its matrix
elements are nonzero only if the indices n and l are both of the
same parity [cf. Eq. (15)]. As discussed in Appendix A, the bare
Coulomb potential shares a similar property and, furthermore,
in the long-wavelength limit q → 0, it is largely governed
by its matrix elements with odd indices. Thus, in that limit,
the dielectric function matrix elements in Eq. (30) with even
indices will have comparatively little contribution from the
polarization.

C. Effective electron-electron interaction

To obtain the phonon-exchange mediated effective
electron-electron interaction, we first define the phonon Green
functions

iD0
nm(r,t ; r′,t ′) = 〈T [ϕ̂n(r,t)ϕ̂m(r′,t ′)]〉. (31)

Because of the invariance with respect to translation in time,
D0 depends only on t − t ′. Given the phonon field expansion

in Eq. (16), one shows

D0
nm(r,r′,ω) = δnm

∑
q

ψnq(r)ψ∗
nq(r′)D0

n(nq,ω), (32)

with

D0
n(nq,ω) = h̄

ω2
nq

ω2 − (ωnq − iη)2
θ (ωD − ωnq). (33)

As in the three-dimensional case,28 there is a one-to-one
correspondence between the phonon-exchange contributions
to the electron Green function and those of a spin-independent
interaction. For instance, the lowest phonon-exchange contri-
bution to the electron Green function is

iG(2)
σ (r,t ; r′t ′) =

(−i

h̄

)2 1

2!

∫
dt1dt2〈T [Ĥel-ph(t1)

× Ĥel-ph(t2)ψ̂σ (r,t)ψ̂†
σ (r′,t ′)]〉conn., (34)

where only connected diagrams need to be considered.
Expanding the electron and phonon fields in terms of the
corresponding creation and destruction operators, allows
one to show that the above is equivalent to the first-order
contribution to the electron Green function of a frequency
dependent, effective interaction veff . The derivation is very
similar to the one in the three-dimensional case with the only
difference that we have an additional quantum number due
to confinement. The expansion coefficients of the effective
interaction are found to be

veff
nn′p(ω) = 1

h̄
δnn′D0

n(np,ω)γ 2
n . (35)

Then, in the static limit [cf. Eq. (33)], one has

veff
nn′p(ω → 0) = −δnn′γ 2

n θ (ωD − ωnp), (36)

so it is an attractive interaction. Assuming ωD � ωnp, one
has veff

nn′p(0) = −δnn′γ 2
n . In real space, the equivalent, effective

interaction is readily calculated to be

veff(r,r′) = − 2

d
δ(ρ − ρ ′)

∑
n

γ 2
n sin

2πnz

d
sin

2πnz′

d
. (37)

Note that in the d → ∞ limit (bulk limit), one can verify
that the different electron-phonon coupling constants tend
to the same value, γn → γ . Thus, in that limit, the present
approximation correctly reduces to an effective interaction
given by an attractive delta function, or contact potential
veff(r,r′) = −γ 2δ(r − r′),34 which is the form commonly used
in the three-dimensional case.28,29

IV. CRITICAL PARAMETERS OF A NANOFILM

To determine the critical parameters in a nanofilm, we
rewrite the gap equation in terms of the above result. First, the
effective interaction matrix elements between pairs of time-
reversed states are given by 〈qn, − qn|veff|q′n′, − q′n′〉 =
Unn′/L2d with

Unn′ = 2
∑
m

γ 2
md2

mnn′
/
π2, (38)

and the dmnn′ are given in Eq. (15). Note that the summation
over m above is finite. Indeed, in single-crystal nanofilms,
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the number of phonon modes contributing to the effective
interaction is given by the number of monolayers in the
film.32,35 Second, we assume that the phonon mediated
attractive interaction is effective only between states within
a thin energy window of width 2h̄ωD around the Fermi level,
EF . Hence we finally write

Vqn,q′n′ = Unn′

L2d
θ (h̄ωD − |εqn|)θ (h̄ωD − |εq′n′ |). (39)

We introduced this expression in the gap equation (8).
The above implies that �(qn) vanishes for states outside
the mentioned window. Furthermore, within that window, the
energy gap depends only on the band index. Hence, for short,
we introduce �n = �(qn). The summation over momentum
in Eq. (8) can be transformed into an integral over energy,
weighted by the electron density of states, leading finally to
the multigap equation

�n =
∑
n′

Unn′�n′

∫ +h̄ωD

−h̄ωD

dεNn′ (ε)
1

2ξn′
tanh

(
ξn′

2kBT

)
. (40)

In the above, Nn(ε) = θ (ε − h̄2n2π2/2md2 + μ)/4πd is the
nth band density of states per spin. The number of gap values is
given by the number of occupied bands. The degeneracy or not
of the gap values above is determined by the Unn′ , i.e., by the
form of veff . For instance, in the case of the models of Refs. 2
and 6, which use a contact potential, the gap values are all
degenerate. Here, phonon confinement modifies the contact
interaction in such a way that the gap values are typically
nondegenerate.36

Before studying the solutions of the gap equation, a note
on the parameter values used is in order. For definiteness,
we choose parameter values corresponding to Al. Hence rs =
2.07 a0 gives the particle density,37 and h̄ωD/kB = 375 K.28

For reference, the bulk critical parameters of Al are T b
c =

1.2 K and �b = 1.7kBT b
c .37 For the term in parentheses in

the electron-phonon coupling constants (18), one could use
the bulk value. However, there are multiple reports indicating
that the sound velocity in nanofilms can be strongly reduced
compared to its bulk counterpart.38–40 Thus the value used has
to be rescaled accordingly. For instance, in Cu nanofilms 20-,
10-, and 4-nm thick, the sound velocity was measured to be
14%, 20%, and 38% lower than in the bulk.40 Unfortunately,
directly measured values for Al nanofilms are not available.
Still, one can make an estimate based on the average gap value
reported by Court et al. for Al nanofilms 5-nm thick, which
are the thinnest nanofilms they studied.14 We find that in our
model, the gap value reported implies a sound velocity 30%
lower than in the bulk. We use this value for our analysis of
films a fraction to a few nanometers thick. As will be clear
further down, the qualitative conclusions of our study do not
depend on this choice.41,42

The gap equation is a nonlinear equation. To solve it [cf.
Eq. (40)] and for all our calculations in this work, we use
MATLAB.43 The energy gaps depend on temperature, vanishing
at the critical temperature, Tc. This is shown in Fig. 1(a) for
a nanofilm with thickness d = 13.3 a0. In this case, there are
four occupied bands, resulting in four energy gap values. The
critical temperature is Tc = 2.8 T b

c . At T = 0, the energy gaps
are also larger than the bulk energy gap (the values at T = 0 are

0 1 2 3
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This work
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FIG. 1. (Color online) (a) Temperature dependence of the four
gap values of a 13.3 a0 Al nanofilm [three (111) monolayers thick].
The critical temperature is Tc = 2.8T b

c . (b) Dependence of Tc on film
thickness. Confinement effects on the coupled electron and phonon
systems have a strong impact (solid line); as d increases, Tc drops
when a new electron band starts to be occupied but rises when the
number of phonon modes (given by the number of monolayers)
contributing to the pairing increases. The filled circles indicate the
predicted Tc as a function of the number of monolayers in the film (cf.
upper scale). In the contact-potential case (dotted line), Tc depends
on d only through the total electron density of states per spin at the
Fermi level. The diamonds indicate the Tc as a function on number
of monolayers in the contact-potential case.

�1 = 3.4, �2 = 3.1, �3 = 2.5, and �4 = 1.4, in units of the
bulk value, �b). To determine the number of phonon modes
contributing to electron-phonon coupling [cf. Eq. (38)], we
assumed a film grown in the [111] direction, which is a typical
direction in previous works on Pb nanofilms12,19 and on Al
nanofilms.18 With a lattice constant of 4.05 Å for Al, three
phonon modes contribute to electron-phonon coupling in the
present case.

Turning to the dependence of the critical parameters on
nanofilm thickness, in Fig. 1(b), we show the behavior of Tc

as d is varied continuously (solid line). As above, for this
calculation, we assume a film grown in the [111] direction.
In experiment, the nanofilm thickness is not a continuous
variable, but is given by the number of monolayers deposited.
Thus more relevant to experiment are the predicted Tc’s for
the latter. These are indicated by the filled circles in the figure.
The full effects of confinement are best discussed by making
a comparison with the Tc’s obtained using in our calculations
a contact potential, i.e., veff(r,r′) = −gδ(r − r′), instead of
Eq. (37), with a g value obtained from experimental data as in,
e.g., Ref. 15. The resulting Tc’s as a function of d (we note that
they are very close to those in Ref. 15), are given by the dotted
line in Fig. 1(b) with the diamonds indicating the values as a
function of the number of (111) monolayers. As mentioned in
Introduction, the sawtooth pattern observed in this approach
as d varies continuously was shown to arise because the
total electron density of states per spin at the Fermi level,
N (0) = ∑

n Nn(0), increases suddenly when a new band starts
to be occupied as d increases and then decreases monotonically
[Nn(0) ∝ 1/d, cf. the equation above] until the band above
starts to be occupied in turn.2,6,15

Our results are in stark contrast with the above. We
find, remarkably, that in ultrathin nanofilms, Tc falls instead
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FIG. 2. (Color online) (a) Diagonal elements of the long-
wavelength limit of the static screened Coulomb interaction, vscr =
ε−1v, as a function of film thickness. Sharp drops occur whenever
the number of occupied bands increases. The drops are due to the
resulting increase of screening in the nanofilm. (b) Fermi level μ

(solid line) and total electron density of states per spin at the Fermi
level, N (0) = ∑

n Nn(0), as a function of d (dashed line). The kinks
in μ and sharp peaks in N (0) indicate when a new band starts to be
occupied as d increases.

of increasing when the number of occupied electron bands
increases by one, but rises when the number of phonon modes
increases by one. This can be readily understood as follows.
On the one hand, there is the dependence of the electron-
phonon coupling constants γn on the nanofilm thickness. As
shown in the previous section, γn is a constant times vscr

nnq→0.
Thus, in Fig. 2(a), we plot the latter as a function of d. One
can see that the matrix elements of the screened Coulomb
interaction show strong oscillations with varying d, dropping
clearly whenever a new band starts to be occupied [compare
with the dotted line in Fig. 1(b)], particularly for symmetric
states (n odd). The direct correlation with band occupation is
made evident by Fig. 2(b), where we plot N (0) as a function
of d. The fact that the screened Coulomb interaction drops
when the number of occupied bands increases is due to the
fact that the polarization and the dielectric function depends
on the number of occupied bands [cf. Eqs. (28) and (30)].
When the number of occupied bands increases, the polarization
increases as well, leading to a stronger screening. This
results in the drop of vscr

nnq→0 and a weaker electron-phonon
coupling.44 This effect was already discussed by Mahan, in
a work addressing electron-phonon coupling near van Hove
singularities.45 The weaker electron-phonon coupling leads to
a lowering of Tc. On the other hand, the number of standing
phonon modes contributing to the electron-phonon coupling
increases whenever a new monolayer is added to a crystal
film,32 thereby increasing the strength of the effective pairing
interaction [cf. Eq. (38)] and causing Tc to suddenly increase. It
is, hence, the interplay between the two effects that determines
Tc. In Fig. 1(b), one can see that the resulting Tc’s are larger
than the bulk Tc. This is in line with the reports mentioned
above14,18 in which confinement effects in Al nanofilms were
found to enhance the superconducting critical parameters with
respect to the bulk values.

Implicit in the above is that the behavior of Tc with varying
d can depend on the direction of growth of the nanofilm.
Indeed, the number and the properties of the confined phonon
modes involved are determined by the latter. This is in line

 1.6

2

 2.4

 2.8

(a)

5  10  15  20  25  30  35  40

T c
/T

cb

T
ot

al
   

(0
) 

x 
80

 (
st

at
es

/R
y/

a
0)

No. of monolayers

Tc
Total N(0)

0

1

2

3

4

 10  15  20  25

(b)

Δ n
(0

)/
Δb

d  (a0)

n=1
n=2
n=3
n=4
n=5
n=6
n=7

N

FIG. 3. (Color online) (a) Dependence of Tc and of N (0) on the
number of (111) monolayers. Only for films thicker than a critical
number of monolayers do Tc and the total density of states correlate.
In the present example, this occurs above ∼20 monolayers. (b) The
dependence of the energy gap values on d . As d increases, a new gap
value appears as a new band is occupied, i.e., a new subcondensate is
formed (cf. Sec. V). The trends in the dependence on d are similar to
those of Tc [compare with Fig. 1(b)]. The spread in gap values rapidly
decreases with film thickness.

with the results in Ref. 18, where an estimation of Tc is
done based on a density functional theory calculation of
electron-phonon coupling in Al nanofilms. Indeed, it is found
that the dependence of Tc on the number of monolayers in
the [111] direction is different from that in the [100] direction.
Furthermore, in the latter case, no correlation is found between
Tc and N (0).18 A reasonable level of correlation is found,
however, for films grown in the [111] direction. In our model,
this occurs only at higher film thicknesses, when the change
in electron-phonon coupling with the increase of occupied
bands becomes sufficiently weak. This is shown in Fig. 3(a),
where we plot Tc and N (0) as a function of the number of
(111) monolayers up to a thickness of 40 monolayers. One can
see that the two quantities start following the same pattern for
thicknesses above ∼ 20 monolayers, as the confined electronic
states assume a dominant role. A more accurate calculation of
this threshold number of monolayers requires going beyond the
approximations of the phonon and electron-phonon interaction
models used here.

Consider now the gap dependence on nanofilm thickness.
We show this in Fig. 3(b). As d increases, a new energy gap
value appears each time that a new electron energy band starts
to be occupied. As one can expect, the dependence of the gap
values on d mirrors that of Tc. One can also observe that the
spread of gap values decreases with increasing d. This can be
understood from the following. As indicated in the discussion
following Eq. (37), for d → ∞, the electron-phonon coupling
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constants tend to a single value γ , and veff becomes the
three-dimensional contact potential. Assuming the bulk value
for the speed of sound, γ takes its bulk value and so does
the energy gap.46 We believe that the different gap values
should be experimentally discernible in nanofilms up to a
few monolayers thick. For thicker nanofilms, this is probably
difficult because the difference between gap values becomes
too small, although some effects due to the multiple gaps
might still be observable. In this regard, it is interesting that, in
their differential conductance measurements on 5-nm thick Al
nanofilms, Court et al. observe subgap structure, below a main
peak at 2� = 0.608 meV.14 One must bare in mind, however,
that in those experiments, the samples are polycrystalline,
so the effects of phonon confinement are more difficult to
ascertain than in single crystal samples.

Increases in the critical parameters as the number of phonon
modes contributing to electron-phonon coupling increases
with nanofilm thickness were already obtained by Hwang and
co-workers in Ref. 7 (to our knowledge, the first work to
address the effects of phonon confinement on superconduc-
tivity). In that work, however, the effect of confinement on
the strength of the electron-phonon coupling and, hence, on
the strength of the effective pairing interaction, is not taken
into account. Hence the model in Ref. 7 is insufficient to
observe the drops in the critical parameters when the number of
occupied electron bands increases. Furthermore, the increase
in the critical parameters that they find with the increase of
the number of phonon modes is, compared to what we find,
rather weak. This is probably due to their use of a bulk value
for the deformation potential coupling constant,7 since that is
equivalent to using the bulk value for the sound velocity in our
formulation.

V. CONDENSATE WAVE FUNCTION

We now turn to the effects of confinement on the
condensate, or Cooper pair, wave function, defined by
�(rr′) = F(rr′,0), with F the Gor’kov function47 (also called
“anomalous average”) introduced in Sec. II above. Thus,
in terms of the single-electron basis, one has �(rr′) =∑

n ψqn(r)ψ−qn(r′)F(qn, − qn,0). As in the derivation of
the gap equation, we exploit the fact that F(qn, − qn,0) =
1
βh̄

∑
p F̃(qn, − qn,iωp). Then, it is readily found that at

T = 0 K, one has

�(rr′) =
∑
qn

ψqn(r)ψ−qn(r′)�n

1

2ξqn

. (41)

To better analyze the wave function, it is convenient to
rewrite it in terms of the center of mass and relative
coordinates: (ρ,z; ρ ′,z′) → (R,Z; u,ζ ), with R = (ρ + ρ ′)/2,
Z = (z + z′)/2, and u = ρ − ρ ′,ζ = z − z′. The dependence
on the former reflects the inhomogeneity of the system, while
the symmetry of the pairing is associated with the latter.
Because of the translational symmetry in the xOy plane,
the pair wave function does not depend on R, and because
of rotational symmetry, the dependence on ureduces to a
dependence on u = ‖u‖. From Eq. (41), transforming the
summation over k into an integration, one has

� = �(Z; u,ζ ) =
∑

n

�n(Z; u,ζ )

= 1

4π2d

∑
n

�n sin
nπ

(
Z + ζ

2

)
d

sin
nπ

(
Z − ζ

2

)
d

In(u),

(42)

with

In(u) =
∫ k

(n)
max

k
(n)
min

dkk
J0(ku)√
ε2
kn + �2

n

. (43)

The (k(n)
min,k

(n)
max) range accounts for the fact that the gap values

vanish for momenta outside the energy window defined by
h̄ωD . The pair wave function is thus a local quantity, in the
sense that it does not only depend on the relative coordinates
of the paired particles but also on the position of their center
of mass.

In Fig. 4, we plot the Cooper pair wave function probability
density as a function of the relative coordinate u, around the
center of mass coordinates, for Z = d/2 and ζ = d/2, with
d � 13.3 a0, i.e., an N = 3 (111) monolayers thick nanofilm.
The oscillations as a function of u can be expected from
the qualitative behavior of the Cooper pair wave function
in homogeneous systems.48 Interestingly, however, in the
present case, the amplitude of the oscillations is modulated.
The amplitude decreases distinctly in the vicinity of the

FIG. 4. (Color online) Typical dependence of the Cooper pair wave-function probability density on the relative coordinate u. The plot is
for Z = d/2 and ζ = d/2, with d = 13.3 a0. The amplitude of the oscillations as a function of interparticle distance u is clearly modulated.
The condensate tends to be depleted of Cooper pairs for interparticle distances close to those indicated by the vertical arrows. The condensate
being composed by distinct subcondensates, the regions of low amplitude are due to interference between the wave functions associated with
each of the subcondensates.
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FIG. 5. (Color online) (a) Coherence lengths as a function of
center of mass coordinate for nanofilms for thicknesses corresponding
to four, five, and six (111) monolayers. The coherence lengths are
shorter than in bulk Al (∼30236 a0).28 (b) The mean-square radius
of a subcondensate is determined mainly by how fast the functions
I 2
n (u) [cf. Eq. (43)] decay with u. The decay rates for the four

subcondensates in a 3 (111) monolayer thick nanofilm are clearly
different. The plot shows that the different functions In(u) oscillate
with different wavelengths.

interparticle distances indicated with vertical arrows in the
figure. Thus, at certain distances, there is a tendency of pair
depletion, while at other distances, the tendency is to a larger
pair population. The amplitude modulation is a signature of
interference and arises here because of the multicomponent
character of the condensate. Indeed, it is readily shown
that for sufficiently thin films (cf. Appendix B for details
and analytical expressions), the Cooper pair density at the
center of mass can be written �(Z) = ∑

n �(n)
s (Z), where

�(n)
s (Z) = ∫

d2u dζ |�n(Z; u,ζ )|2 is the Cooper pair density of
the nth subcondensate. This means that one has well-defined
subcondensates, each consisting of pairs all belonging to a
single band. One can see from Eqs. (42) and (43) that the
nth subcondensate oscillates with a wavelength essentially
determined by a narrow window of momenta around its Fermi
momentum, q

(n)
F [see also the discussion on the function In(u)

at the end of this section and Fig. 5(b)]. Thus, in very thin
nanofilms, where the Fermi momenta of the occupied bands
are very different in magnitude, the interference pattern is
strong. This interference pattern does not occur for a single
component condensate.

It is of interest to see how the coherence length is affected by
confinement and the multicomponent nature of the condensate.
One can define the coherence length as the mean-square radius
of the Cooper pair wave function22,47 around the pair center
of mass. In inhomogeneous systems, it is a local rather than a
global quantity. In our nanofilms, the relevant quantity is the
mean square radius along the xOy plane, namely,

ξ 2(Z) = 1

�s(Z)

∫
d2u dζ u2|�(Z; u,ζ )|2, (44)

with �s(Z) = ∫
d2udζ |�(Z; u,ζ )|2 the Cooper pair density

at the center of mass coordinates. To illustrate the spatial
dependence of the coherence length and how it changes with
nanofilm thickness, in Fig. 5(a), we show ξ (Z) for nanofilms
with thicknesses corresponding to N = 4, 5, and 6 monolayers
grown in the [111] direction. On average, they are smaller than
the bulk coherence length, which has a value of ∼30236 a0.28

In the case of N = 4, the coherence length magnitude is less

than 50% of the bulk value. These smaller Cooper pair “sizes”
reflect the fact that their average energy gap values are larger
than their bulk counterpart (2.8, 2.7, and 2.1 times �b, for
N = 4, 5, and 6, respectively).

The form of the oscillations in ξ (Z) arises from the
contributions of the different subcondensates, which have
different gap values and different periodicity in Z. In this
respect, it has recently been advanced that in two-gap su-
perconductors, such as MgB2, the associated subcondensates
present different coherence lengths near Tc.27 Very recently,
a study based on the Bogoliubov–de Gennes equations has
shown that the same should occur at T = 0 K in nanofilms
a few monolayers thick.49 We also consider this question
here. Within the present approach, a natural definition of
the coherence length associated with the nth subcondensate
is ξ 2

n (Z) = ∫
d2u dζ u2|�n(Z; u,ζ )|2/�(n)

s (Z). As shown in
Appendix B, for �n � h̄ωD , we have ξn � h̄v

(n)
F /2

√
2 m�n,

where v
(n)
F is the Fermi velocity of the nth band. This is

similar to the BCS expression for the coherence length in the
three-dimensional case,28 differing from it by a factor of order
unity. Note that ξn is a constant, independent of the center of
mass coordinates.

We calculate, as an example, the coherence lengths in a
two-monolayer thick nanofilm. It has two occupied bands,
hence two subcondensates. At T = 0 K, the two gap values are
�1 = 13.44�b eV and �2 = 9.3�b eV, and the corresponding
coherence lengths are ξ1 � 4037 a0 and ξ2 � 4446 a0, respec-
tively. Interestingly, we find that the ratio of the coherence
lengths of two different subcondensates is generally rather
insensitive to temperature. This is different from what is
found for bulk two-gap superconductors within the (extended)
Ginzburg-Landau formalism where the two coherence lengths
tend to the same value in the T → Tc limit.27 Here, in the
case of the two-monolayer nanofilm for T → Tc, we have
ξ2/ξ1 = 1.15. This reflects the fact that in sufficiently thin
films, the subcondensates are well defined from the onset of
the superconducting phase. Note also that the subcondensate
with the larger gap has a shorter coherence length. The
subcondensates in MgB2 and other two-gap superconductors
show a similar behavior.27 However, this is not always the case
in nanofilms, at least not in the present model. For example,
consider the N = 4 (111) monolayers nanofilm for which the
coherence length is plotted in Fig. 5(a). In this case, there are
five subcondensates, with gap values and coherence lengths
given in Table I. One can see that �1 > �2 > �3 > �4 >

�5, but ξ5 < ξ1 < ξ2 < ξ4 < ξ3. The reason for this is that
ξn ∝ q

(n)
F /�n. Hence, although �n > �m will favor ξn < ξm,

the final outcome also depends on the relative magnitude of
the corresponding Fermi momenta, q

(n)
F and q

(m)
F , which are

substantially different in ultrathin nanofilms. In fact, ξn < ξm

is equivalent to �m/�n < q
(m)
F /q

(n)
F .

TABLE I. Gap values and coherence lengths of the five subcon-
densates in a four (111) monolayers thick nanofilm.

n = 1 n = 2 n = 3 n = 4 n = 5

�/�b 3.65 3.40 2.95 2.47 1.58
ξ (a0) 14416 14653 15128 14698 13604
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Finally, to get a feeling of the different decay lengths of
the subcondensates, we consider the following. As we defined
them, the coherence lengths reflect the “size” of the pair wave
functions as a function of the interparticle distance, u, and
they are essentially determined by the square of the function
in Eq. (43), i.e., I 2

n (u). As an example, in Fig. 5(b), we plot
this quantity (normalized) for the subcondensates in the N = 3
case of Fig. 4. The clearly different decay rates of the envelope
functions for the different subcondensates already suggest
different coherence lengths. In addition, the plot shows that
the oscillation wavelength of the functions In(u) is different
for the different subcondensates. This illustrates the argument
advanced above on this point.

VI. SUMMARY

To summarize, we applied Anderson’s approach to inhomo-
geneous superconductors, adapting Gor’kov’s Green function
formalism to inhomogeneous cases to study superconductivity
in nanofilms. We find that in ultrathin nanofilms, it is very
important to take into account the effects of confinement not
only on electrons and phonons but also on the strength of
the electron-phonon coupling. We find, indeed, that the effect
of confinement on the screened electron-ion (background)
interaction is crucial. Thus the quantum-well states first
considered by Blatt and Thompson, who only took into account
the effect of confinement on the electronic degrees of freedom,
play only a partial role in determining the critical param-
eters. Furthermore, superconductivity in ultrathin nanofilms
is typically multigap, with a condensate consisting of well
defined subcondensates. The Cooper pair wave-function prob-
ability density as a function of interparticle distance along
the nanofilm plane shows interference effects between the
different subcondensates. Thus, at certain distances, the pair
population is reduced, and at other distances, it tends to be
enhanced. We also find that in such systems, the different
subcondensates have different coherence lengths.
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APPENDIX A: DIELECTRIC SCREENING IN A NANOFILM

1. Expansion of the bare Coulomb potential

Given the potential

v = v(r,r′) = v(r − r′) = 1

|r − r′| , (A1)

we consider the expansion over the single-electron basis of
Sec. II,

v(r − r′) =
∑
nq

∑
n′q′

ψnq(r)ψ∗
n′q′(r′)vnq,n′q′ . (A2)

The expansion coefficients are defined by

vnq,n′q′ =
∫

d3rd3r ′v(r − r′)ψ∗
nq(r)ψn′q′(r′). (A3)

Because the system is translationally invariant in the xOy

plane, the first integral yields vnq,n′q′ = vn n′qδq,q′ . The second
integral over the xOy plane is solved using50∫

d2u
e−iq·u

(u2 + (z − z′)2)1/2
= 2π

q
e−q|z−z′ |. (A4)

The integrals over the z axis are found to be∫ d

0
dz dz′e−q|z−z′ | sin

nπz

d

mπz′

d
= d

q
fnm(q), (A5)

with

fn n′ (q) =
[1 + (−1)n+n′

] nπ
qd

n′π
qd[

1 + (
nπ
qd

)2][
1 + (

n′π
qd

)2] [1 − (−1)ne−qd ]

qd

+ δnn′
1

1 + (
nπ
qd

)2 . (A6)

One finally has

vnn′q = fn n′(q) 4π/q2. (A7)

Note that in the d → ∞ limit, the coefficients tend well to the
Fourier coefficients of the three-dimensional electron gas, i.e.,
vnn′q → δnn′4π/q2. Also, the 1 + (−1)n+n′

factor in fnn′ (q)
implies that coefficients with n and n′ of different parity will
not contribute to the expansion in Eq. (A2). Furthermore, an
analysis of the q → 0 behavior shows that for n,n′ both odd,
vnn′q ∝ 1/q, while for n,n′ both even, vnn′q tends to a constant.
Hence the long-range behavior of the potential is essentially
represented by states that are symmetric with respect to the
center of the nanofilm (n,n′ odd), with little contribution from
states that are antisymmetric with respect to the center of the
nanofilm.

2. Polarization in the RPA

Given the particle density operator in real space,

n̂(r) =
∑

σ

ψ̂†
σ (r)ψ̂σ (r)

=
∑

σ

∑
nq

n′q′

ψ∗
nq(r)ψn′q′(r)c†nqσ cn′q′σ , (A8)

its expansion coefficients in our single-electron basis, n̂nq =∫
d3r ψ∗

nq(r)n̂(r), can be readily shown to be

n̂nq = 1

π

√
2

L2d

∑
mm′

∑
pσ

dnmm′c†mpσ cm′p+qσ , (A9)

with dnmm′ defined in Eq. (15). To solve for n̂nq, one can exploit
the linearity of the Heisenberg equation [cf. Eq. (25)]. Thus
we consider first

−ih̄
∂

∂t
c†mpσ cm′p+qσ = [Ĥ ,c†mpσ cm′p+qσ ]. (A10)

The commutator with the noninteracting Hamiltonian is

[Ĥ0,c
†
mpσ cm′p+qσ ] = (Emp − Em′p+q)c†mpσ cm′p+qσ

= (εmp − εm′p+q)c†mpσ cm′p+qσ , (A11)

where, for practical reasons, we introduce the energies
referenced to the Fermi level (e.g., εmp = Emp − μ). The
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commutator with the potential energy operator is calculated
in the random phase approximation (RPA),

[V̂ ,c†mpσ cm′p+qσ ] = −e
1

π

√
2

L2d

∑
lk

Vlk

(∑
j

dljmc
†
jk+pσ

× cm′p+qσ −
∑
j ′

dlm′j ′c†mpσ cj ′p+q−kσ

)

RPA� −e
1

π

√
2

L2d

∑
l

Vlqdlmm′ (c†m′p+qσ

× cm′p+qσ − c†mpσ cmpσ ). (A12)

Inserting the results for the commutators in Eq. (A10), and
taking the Fourier transform in time, results in

(−h̄ω − εmp + εm′p+q) c†mpσ cm′p+qσ

= −e
1

π

√
2

L2d

∑
l

Vlq(ω) dlmm′

× (c†m′p+qσ cm′p+qσ − c†mpσ cmpσ ) (A13)

from which

c†mpσ cm′p+qσ = e
1

π

√
2

L2d

∑
l

Vlq(ω) dlmm′

× c
†
m′p+qσ cm′p+qσ − c

†
mpσ cmpσ

h̄ω − εm′p+q + εmp
. (A14)

With the latter result one can determine at once the density in
Eq. (A9). Furthermore, given that the induced charge density is
given by the charge times the particle (ground-state) average,
�nq(ω) = −e〈n̂nq(ω)〉, one has

�nq(ω) = 2e2

π2L2d

∑
mm′

dnmm′dlmm′Vlq(ω)

×
∑
pσ

nF(εmpσ ) − nF(εm′p+qσ )

h̄ω − εm′p+q + εmp
, (A15)

with nF the Fermi occupation function already introduced in
Sec. III B. Defining the RPA polarization by

P
(1)
nlq(ω) = 2

π2L2d

∑
mm′

dnmm′dlmm′

×
∑
pσ

nF(εmpσ ) − nF(εm′p+qσ )

h̄ω − εm′p+q + εmp
, (A16)

the charge density can immediately be written as the matrix
product in Eq. (27), i.e., �nq(ω) = e2 ∑

l P
(1)
nlq(ω)Vlq(ω).

3. Static screening in the long-wavelength limit

In the present work, we are interested in the static screening
in the long-wavelength limit. Thus P

(1)
nmq(ω) for ω = 0 and

q → 0 is calculated in the following. First, a little algebra
shows that one can write (the eigenenergies do not depend on
spin, so the σ subindex can be dropped)

nF(εnp) − nF(εmp+q)

h̄ω − εmp+q + εnp

= nF(εnp)[1 − nF(εmp+q)] + nF(εmp+q)[nF(εnp) − 1]

h̄ω − εmp+q + εnp

= nF(εnp)[1 − nF(εmp+q)]

×
(

1

h̄ω − εmp+q + εnp
− 1

h̄ω + εmp+q − εnp

)
.

(A17)

(For the above, recall that εn−p = εnp.) So the polarization is
rewritten as

P (1)
nmq(ω) = A2

π2

∑
ll′

dnll′dmll′
∑
pσ

nF(εlp)[1 − nF(εl′p+q)]

× 2(εl′p+q − εlp)

(h̄ω)2 − (εl′p+q + εlp)2
. (A18)

For ω = 0, the summation over p (in the L → ∞ limit)
requires the following result:∫

|p|<k
(l)
F

|p+q|>k
(l′)
F

d2p
1

(l′2 − l2)π2

d2 + 2p · q + q2

q→0≡ sll′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 l′ < l,

π
2 l′ = l,

π lmax > l′ > l,

π
k

(l)
F

2

(l′2−l2) π2

d2

l′ > lmax,

(A19)

where lmax is the index of the highest occupied band.51

Hence one finds that in the limit of small momen-
tum, the polarization is a constant given by P

(1)
mlq→0(0) =

(4m/π4h̄2d)
∑

ll′ dnll′dmll′sll′ . Thus, in the above limit, the
momentum dependence of the static dielectric function for
small q is given essentially by the Coulomb potential,
i.e.,

εnmq(0) � δnm − e2
∑
m

vnmqP
(1)
mlq→0(0). (A20)

For this very reason, the long-wavelength limit of
the static, screened Coulomb potential, vscr

mn′q→0(0) =
limq→0

∑
n ε−1

mnq(0)vnn′q, is nondivergent.

APPENDIX B: COOPER PAIR DENSITY AND COHERENCE
LENGTH IN NANOFILMS

The Cooper pair density and coherence length as a
function of the center of mass coordinates have a simple
form in ultrathin nanofilms. To calculate the Cooper pair
density,

�s(Z) =
∫

d2udζ |�(Z; u,ζ )|2, (B1)
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requires one to perform the integral∫ ∞

0
du u In(u)Im(u), (B2)

with In(u) given by Eq. (43). This integral is equivalent to

∫ k
(n)
max

k
(n)
min

dk

∫ q
(n)
max

q
(n)
min

dq k
1√(

ε2
kn + �2

n

)(
ε2
qm + �2

m

) δ(k − q).

(B3)

This expression is obtained making use of xJ0(x) = [xJ1(x)]′,
and the Dirac δ function arises because of the completeness
relation of the Bessel functions.52 Now, for sufficiently thin
nanofilms [e.g., for d � 75 a0, or 17 (111) monolayers, for the
electron density considered in this work] and any two bands,
one has |εkn − εkm| > 2h̄ωD . This means that the intervals
[k(n)

min,k
(n)
max] and [q(m)

min,q
(m)
max] do not overlap. Then, it is easily

shown that the Cooper pair density reduces to the form �s (Z) =∑
n �(n)

s (Z), i.e., as mentioned in Sec. V, the condensate is
comprised of well-defined subcondensates, with all pairs in
any one of them belonging to the same band. The Cooper pair
density of the nth subcondensate is given by (to simplify the
expression below, we assume that the Fermi level, μ, does not
fall within the energy window [−h̄ωD, + h̄ωD])

�(n)
s (Z) = m/h̄2

8π3d
�nCn(Z) tan−1

(
h̄ωD

�n

)
. (B4)

The tan−1 term arises from the above integral, while the
function Cn(Z) comes from the integral over ζ in the definition
of �s and is given by

Cn(Z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Z
d

− 3
4nπ

sin 4nπZ
d

,

+ 2Z
d

cos2 2nπZ
d

, 0 � Z � d/2,

d−Z
d

+ 3
4nπ

sin 4nπZ
d

,

+ 2(d−Z)
d

cos2 2nπZ
d

, d/2 � Z � d.

The coherence length at the center of mass coordinates,
defined in Eq. (44), is found to be written as a summation over
occupied bands as

ξ 2(Z) = (16π3d)−1

�s(Z)

∑
n

KnCn(Z)/�n, (B5)

with

Kn =
(
h̄q

(n)
F

)2

4m

⎡
⎣tan−1

(
h̄ωD

�n

)
+

(
h̄ωD

�n

)3 − h̄ωD

�n(
1 + h̄ω2

D

�2
n

)2

⎤
⎦ . (B6)

From the above, one can see that the dependence of the
coherence length on Z is due to the existence of several
subcondensates. Indeed, if there were only one condensate
(i.e., only one band occupied), Eqs. (B4) and (B5) show
that the coherence length would be constant. In fact, as
discussed before, one can also consider the coherence length
of the nth subcondensate, which we define by ξ 2

n (Z) =∫
d2u dζ u2|�n(Z; u,ζ )|2/�(n)

s (Z). This simply gives

ξ 2
n = h̄2

2m

Kn

�2
n tan−1(h̄ωD/�n)

. (B7)

Thus the coherence length of the subcondensates is constant, as
one might have expected. The total coherence length can then
be written as a weighted sum of the subcondensate coherence
lengths, ξ 2(Z) = ∑

n �(n)
s (Z)ξ 2

n /�s(Z). Also, given that one
typically has �n � h̄ωD , it is straightforward to show that to
lowest order in �n/h̄ωD , one has

ξ 2
n � 1

2

(
h̄2q

(n)
F

2m�n

)2 (
1 + 2

π

�n

h̄ωD

)
. (B8)

This immediately leads to the expression given in Sec. V,
ξn = h̄v

(n)
F /m�n2

√
2 (where v

(n)
F denotes the Fermi velocity

of band n).
Incidentally, from the Cooper pair density, the total super-

fluid density in the nanofilm, defined by

ns = 1

V

∫
d2RdZ�(Z), (B9)

can be obtained and is found to be given simply by

ns = m/h̄2

16π3d

∑
n

�n tan−1 h̄ωD

�n

. (B10)

As in the nanowire case (cf. I), we find that ns is several
orders of magnitude smaller than the total electron density.
This appears to be a characteristic of confined weak coupling
superconductors, bringing another distinction with respect
to bulk weak coupling superconductors, where virtually all
the normal state electrons are believed to contribute to the
superfluid density.53
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