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We explore the evolution of superconductivity in La2−xBaxCuO4 with x = 0.095 in magnetic fields of up to
35 T applied perpendicular to the CuO2 planes. Previous work on this material has shown that perpendicular
fields enhance both charge- and spin-stripe order within the planes. We present measurements of the resistivity
parallel and perpendicular to the planes, as well as the Hall effect. Measurements of magnetic susceptibility for
fields of up to 15 T applied both parallel and perpendicular to the planes provide complementary measures of the
superconductivity. We show that fields sufficient to destroy pair tunneling between the planes do not disrupt the su-
perconducting correlations within the planes. In fact, we observe an onset of large-amplitude but phase-disordered
superconductivity within the planes at approximately 30 K that is remarkably insensitive to field. With further
cooling, we observe a phase-transition-like drop in the in-plane resistivity to an apparent state of superconductivity
despite the lack of phase coherence between the layers. These observations raise interesting questions concerning
the identification of the upper critical field, where pairing is destroyed, in underdoped cuprates.
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I. INTRODUCTION

Since Emery and Kivelson1 first suggested that phase
fluctuations might limit the transition temperature Tc of
superconductors with low superfluid density, there has been
considerable research aimed at determining where and how
strong superconducting correlations turn on in cuprates. This
issue applies both to the onset of superconductivity on cooling
and to the loss of superconductivity in an increasing magnetic
field. The topic has both theoretical and practical relevance. On
the theoretical side, there continue to be questions regarding
the extent to which the onset of pairing correlations might
be connected with the pseudogap phenomena in underdoped
cuprates. On the practical side, if there are regions of temper-
ature and field where only phase fluctuations limit supercon-
ducting order, one might hope to find ways to enhance phase
order so as to extend the useful range of superconducting order.

Experimental evidence for superconducting fluctuations
at temperatures far above Tc has been provided by Nernst
effect and torque magnetometry measurements on a variety
of cuprates by Ong and co-workers.2–8 This work motivated
theoretical suggestions9–11 of a possible phase-disordered two-
dimensional (2D) superconducting state (2D vortex liquid)
that might exist above Tc. In contrast, recent studies of
superconducting contributions to magnetoresistance12 and
low-frequency optical conductivity,13,14 as well as further
torque magnetometry studies,15,16 indicate that strong super-
conducting correlations are found only within a relatively
narrow range (∼10 K) above Tc; the response at higher
temperatures is quite weak relative to expectations for a 2D
vortex-liquid state.17

There is general agreement that pairing interactions within
the CuO2 layers are responsible for the development of super-
conducting correlations in the cuprates. Josephson coupling

between the layers leads to the onset of three-dimensional
(3D) superconductivity as soon as the correlation length for
superconducting order within the layers becomes sizable.18,19

The recent observations12–16 that strong superconducting
correlations appear only in a regime that is reasonably close
to Tc are consistent with the expectation that 3D order should
appear as soon as 2D superconducting correlations become
substantial.18 In fact, in a previous study of La2−xBaxCuO4

(LBCO) with x = 0.095, evidence was found indicating that
superconducting correlations between layers start to develop
locally before superconducting correlations diverge within the
layers.20 Nevertheless, there remains a question as to whether
one might be able to observe the 2D vortex-liquid state by
suppressing the interlayer Josephson coupling with a magnetic
field applied perpendicular to the layers.

Another question concerns the evolution of superconduct-
ing correlations as order is suppressed by a strong magnetic
field. For a type-II superconductor, the initial onset of finite
resistivity corresponds to the flow of vortices; destruction of
Cooper pairs should occur at a higher field, conventionally
labeled Hc2. Given the large magnitude of the superconducting
gap in underdoped cuprates, one might expect Hc2 to be much
larger than the field at which resistivity appears; however, a
variety of recent transport measurements on YBa2Cu3O6+x

have been interpreted in terms of a rather low Hc2, especially
in the vicinity of a hole concentration of 1

8 .21 This is the same
regime where quantum oscillations have been observed in the
high-field state.22,23 The quantum oscillations are a response
of normal quasiparticles; however, such a response can occur
in the mixed state of a superconductor as well as in the
normal state.24,25 Indeed, a specific-heat study indicates that
the quantum oscillations do occur within the superconducting
mixed state.26 To explain the measured cyclotron frequency,
reconstruction of the Fermi surface by competing order has
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been invoked.22,23 Several recent experiments have provided
direct evidence for charge order that is enhanced when
superconductivity is depressed by a strong magnetic field.27–29

The relationship between the superconductivity, charge order,
and normal quasiparticles remains a hot topic of debate.

In this paper, we present a study of the superconductor
La1.905Ba0.095CuO4 (Tc = 32 K) in strong magnetic fields H⊥
applied perpendicular to the CuO2 planes. In previous work,
it has been shown that the weak charge stripe order present
in zero field30 is enhanced by H⊥.31,32 Here, we demonstrate
that a strong enough H⊥ can completely destroy the phase
coherence between neighboring layers without destroying
the superconducting correlations within the layers. Evidence
for the layer decoupling is obtained from measurements of
the resistivity perpendicular to the layers ρ⊥, while evidence
for the survival of the superconductivity is provided by
measurements of magnetic susceptibility, Hall effect, and
resistivity parallel to the layers ρ‖. We find that the onset
of strong superconducting correlations within the decoupled
layers occurs at approximately 30 K, with little variation due to
H⊥ up to our maximum of 35 T. We label this a layered vortex
liquid (LVL) state; it is essentially a 2D vortex liquid state, but
there could be electromagnetic interactions between the layers
associated with the vortices, resulting in 3D correlations.33

Within the LVL state, ρ‖ has a finite magnitude consistent
with that expected for a 2D superconductor without phase
order.17 On cooling in fixed field, ρ‖ decreases in a fashion
suggesting critical behavior similar to that predicted34 for a 2D
superconductor on the approach to the phase-ordering tran-
sition of Berezinkii35 and Kosterlitz and Thouless36 (BKT).
(We note that the theory applies only to the case of zero field.)
Following the variation of ρ‖ with H⊥ at fixed temperature,
we observe behavior suggesting a transition to a state with
negligible ρ‖ despite an absence of phase coherence between
the layers. We label this state a layered, phase-decoupled su-
perconductor (LPD-SC). Our results are summarized in Fig. 1.

The occurrence of the LPD-SC state (regardless of whether
true superconducting order is achieved), as well as the
complete decoupling of the layers in the LVL state, indicates
a frustration of the interlayer Josephson coupling31 by some
mechanism other than thermal vortex fluctuations.37–39 To-
gether with the field-enhanced charge-stripe order,31 there is
a clear parallel with behavior reported for LBCO with x = 1

8 ,
where LVL and LPD-SC states associated with stripe order
were observed in zero field.40,41 In that case, the frustration
of the Josephson coupling has been explained in terms of a
proposed pair-density-wave (PDW) superconductor.42–44 The
similar phenomenology suggests that field-induced PDW order
could be relevant to the x = 0.095 sample.

The rest of this paper is organized as follows. The
experimental methods are described in the following section.
In Sec. III A, we present the resistivity data and analyze the
normal-state magnetoresistance. Evidence for the onset of
strong superconducting correlations within the CuO2 layers
from Hall effect and magnetic susceptibility measurements
is presented in Secs. III B and III C, respectively. Analysis
of ρ⊥(H⊥) and the decoupling of the layers are described in
Sec. III D, while the evidence from ρ‖ measurements for the
transition to the LPD-SC state is given in Sec. III E. The paper
concludes with a summary and discussion in Sec. IV.
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FIG. 1. (Color online) Phase diagrams in H⊥-T space obtained
from measurements of (a) ρ⊥ and (b) ρ‖. In (a), triangles indicate the
onset of finite ρ⊥ at H⊥

c ; squares denote HQ, corresponding to the
interlayer phase-decoupling crossover. In (b), circles indicate onset
of finite ρ‖ at H ‖

c ; vertical solid line corresponds to T 2D
c , the crossover

from the layered vortex liquid (LVL) phase to the normal state. In
both (a) and (b), the shaded contours correspond to the resistivity
normalized to an extrapolation of the normal-state behavior obtained
at the maximum field. (c) Doping dependence of Tc in La2−xBaxCuO4,
from Ref. 30; vertical line denotes present sample. (d) Hall coefficient
RH in H⊥-T space. For panels (a)–(c), the zero-resistance state
(ρ/ρn < 10−3) corresponds to the regions in cyan. Note that the
region of negative Hall constant [dark blue in (d)] corresponds to
the regime of layered phase-decoupled superconductivity (LPD-SC)
with finite ρ⊥ and negligible ρ‖.

II. EXPERIMENTAL METHOD

The crystals, grown by the traveling-solvent floating-
zone method, have been characterized in several previous
studies.20,30,31,45 Most of the present experiments were per-
formed in the 35-T dc magnet at the National High Magnetic
Field Laboratory (NHMFL). The crystals for the measure-
ments of ρ⊥ and ρ‖ are the same as those used in a previous
transport study,31 and the contact configurations are described
there. The resistance was measured using an ac resistance
bridge with an excitation current of 1 mA. All measurements
were done after field cooling from above Tc0, sweeping the
field from 35 T to 0 while holding the temperature fixed.
(Note that sweeping the field at fixed temperature minimizes
the energy consumption of the magnet compared to sweeping
the temperature at fixed field.)

A third crystal was prepared for measurements of the Hall
effect. The geometry was similar to that of the crystal for
the ρ‖ measurement, except that the voltage contacts were on
opposite edges of the crystal in order to measure the Hall
voltage VH in the direction transverse to the current flow.
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For each measurement, the sample was cooled in zero field
from above Tc. Once the temperature was stabilized at the
desired value, the field was swept from 0 to 35 T, back to 0,
down to −35 T, and back to 0 again. In order to eliminate the
magnetoresistance contribution due to imperfect alignment of
the voltage contacts, the net Hall voltage was calculated as

VH = [V (+B ↑) − V (−B ↓)]/2, (1)

where V (+B ↑) corresponds to the up-sweep from 0 to
35 T and V (−B ↓) corresponds to the down-sweep from 0
to −35 T. (We checked that the results were the same using
the opposite set of field sweeps.)

The results are expressed in terms of the Hall coefficient
RH:

RH = VHd/IB, (2)

where d is the sample thickness and I is the longitudinal
current. To reduce the noise in the data, the measurements
were averaged over windows of 1.75 T in width. Also, in some
cases there were anomalous features at low field, so we present
the results just for fields above 3.5 T.

Magnetic susceptibility measurements on a fourth crystal
were performed with fields of 7 and 15 T using a vibrating
sample magnetometer (VSM) located at the IFW Dresden.
These data have been compared with previous measurements
at fields of 1 and 7 T obtained with a SQUID (superconducting
quantum interference device) magnetometer at Brookhaven.46

The temperature dependence of the different measurements
at 7 T is in good agreement, but there are small rigid shifts
between the data sets. For presentation, the VSM data have
been shifted (<0.05 × 10−4 emu/mol) to match the SQUID
data at 100 K, where the magnetization is linear in the applied
field.

III. DATA AND ANALYSIS

A. Normal-state and superconducting fluctuations

The results for resistivity versus H⊥ obtained for a range
of temperatures are shown in Fig. 2. Let us first consider the
data for T > Tc. As discussed by Rullier-Albenque et al.,12

one expects that the in-plane magnetoresistance increases as
H 2

⊥ in the normal state.47 Plotting ρ‖ versus H 2
⊥ in Fig. 3, we

see that the expected behavior is approached at high fields.
The dashed lines for 50 K and above are fits to the high-field
data corresponding to

ρ‖,n = ρ‖,n(H⊥ = 0) + aρ(μ0H⊥)2. (3)

The deviations at low field are attributed to superconducting
fluctuations.

The fitted parameters aρ and ρ‖,n(H = 0) are plotted in
Figs. 4(a) and 4(b), respectively. The coefficient aρ is observed
to vary as T −0.5. The quantity ρ‖,n(H = 0) varies linearly with
temperature for the data from 50 to 100 K. The downward
deviation of ρ‖,n(H = 0) at 40 K is correlated with the onset
of 3D superconducting fluctuations as demonstrated by Wen
et al.20 To approximate the normal-state behavior, we will
use the linear extrapolation of ρ‖,n(H = 0) from the trend at
T � 50 K. The extrapolated result at 40 K leads to the dashed
line shown in Fig. 3.
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FIG. 2. (Color online) Measurements of (a) ρ⊥ and (b) ρ‖ as a
function of H⊥, obtained at various fixed temperatures as listed in
each panel.

Using the extrapolated normal-state behavior and assuming
a two-fluid model, we can extract the conductivity due to
superconducting fluctuations as

σSF(H⊥,T ) = 1/ρ‖ − 1/ρ‖,n. (4)
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FIG. 3. (Color online) Plot of ρ‖ (solid lines) as a function of
H 2

⊥ for T � Tc, with temperatures listed to the right. Dashed lines
correspond to fits of Eq. (3) to data for (μ0H⊥)2 > 1000 T2, except
for T = 40 K, where the value of ρn(H⊥ = 0) was replaced with the
linearly extrapolated value from Fig. 4(b).
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FIG. 4. (Color online) (a) Coefficient aρ vs T obtained from the
fits shown in Fig. 3. The dashed line has a slope of −0.5. (b) Plot of
the ρ‖,n(H⊥ = 0) vs T from the fits in Fig. 3. The dashed line is a fit
to the points for 50 K � T � 100 K.

The results are shown in Fig. 5 for a range of temperatures. At
high temperatures, σSF decreases substantially with increasing
field. In contrast, there is a distinct change as one develops 3D
superconducting correlations at 40 K and below. Not only does
σSF(H = 0) rapidly grow large, but one also observes that the
maximum magnetic field is not sufficient to fully suppress σSF.

For comparison, we have plotted ρ⊥ versus H 2
⊥ in Fig. 6.

We see that the magnetoresistance is relatively small at 50 K,
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FIG. 5. (Color online) Conductivity due to superconducting fluc-
tuations determined with Eq. (4) for T � Tc. The dashed line indicates
the calculated conductivity from fluctuations in a 2D superconductor
according to Eq. (5) from Ref. 17, assuming T = 30 K as discussed
in the text.
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FIG. 6. (Color online) Plot of ρ⊥ as a function of H 2
⊥ for T � Tc,

including sweeps of both increasing and decreasing fields.

and a negative magnetoresistance (at high fields) develops on
cooling. For low fields, there is positive magnetoresistance at
40 and 35 K, indicative of 3D superconducting fluctuations.20

The change in sign of the magnetoresistance indicates that the
3D superconducting fluctuations are suppressed at high field;
at 35 K, the suppression occurs for μ0H⊥ � 20 T.

Returning to Fig. 5, we see that σSF at 35 K drops signif-
icantly on applying a relatively small field, corresponding to
suppression of the 3D correlations, but it remains substantial at
high field. A similar pattern is apparent at lower temperatures,
as well. The conductivity due to superconducting fluctuations
that survives at high field must occur only within the CuO2

layers. To evaluate the magnitude of σSF, we can compare
with the formula obtained by Aslamazov and Larkin17 for a
2D superconductor:

σSF = e2/16dh̄τ, (5)

where d is the thickness of the superconductor and τ =
(T − Tc)/Tc. We take the thickness to be equal to the layer
spacing18 s = 6.6 Å. The formula was nominally derived for
zero field; we will assume that the only impact of the applied
field is to reduce Tc, as illustrated in Fig. 1(b). Evaluating the
formula for T = 30 K and μ0H⊥ � 20 T yields the dashed
line shown in Fig. 5, which falls about a factor of 2 below
the data curve. Thus, at 30 K and below, the magnitude of the
experimentally determined σSF at high fields is larger than
the prediction for fluctuation pairing in 2D layers. At higher
temperatures, the magnitude of σSF falls off much faster than
predicted by Eq. (5); this is consistent with the conclusion of
Rullier-Albenque et al.12 for superconducting fluctuations in
the normal state of YBa2Cu3O6+x .

B. Hall coefficient RH

Before continuing the analysis of the resistivity data to
lower temperatures, let us consider the Hall data. The full set of
measurements is plotted in Fig. 7. The field dependence of RH

is relatively small compared to the temperature dependence. To
further illustrate this, we compare the temperature dependence
of RH for fields of 6 and 34 T in Fig. 8. In the normal state, RH

increases on cooling. It reaches a maximum near 40 K, below
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FIG. 7. (Color online) Data for RH vs H⊥ for various temper-
atures. Above 35 K, RH is essentially independent of field; below
25 K, there is notable field dependence, with RH dipping negative.

which it rapidly drops in magnitude. This drop is independent
of field. Very similar behavior has been observed previously
for the in-plane thermopower divided by temperature, for fields
up to 9 T.20 It appears that this drop is due to the rapid growth
of in-plane superconducting correlations. The drop in RH is
insensitive to the presence of 3D superconducting correlations,
as the same initial drop in RH occurs for μ0H⊥ = 34 T, where,
as we will see, it must be due to superconducting correlations
that are restricted to the CuO2 layers.

We also observe that RH goes negative at low temperature.
Previous studies48,49 of LBCO have reported a negative RH

below Tc0 for x = 0.10 and 0.11, but RH tends toward zero
(without going negative) for x = 0.083 and 0.12. For our
x = 0.095 sample, the regime of negative RH corresponds
to the LPD-SC state, where superconducting order appears
within but not between the planes, as indicated in Fig. 1(d).
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FIG. 8. (Color online) Data for RH vs T for μ0H⊥ = 6 and
34 T. The drop below 40 K correlates with the growth of strong
superconducting correlations within the planes.
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FIG. 9. (Color online) Magnetic susceptibility data measured for
fields applied parallel and perpendicular to the ab planes. Data for
μ0H = 7 and 15 T were obtained with a VSM; the 1-T data are from
Ref. 46.

A change in sign from the normal state due to superconducting
fluctuations has been predicted theoretically.50,51

C. Magnetic susceptibility

To confirm our analysis of superconducting contributions
to RH, we present in Fig. 9 measurements of the magnetic
susceptibility in fields up to 15 T. One can see from
χ (H ‖ ab), measured with fields parallel to the planes, that
the normal-state susceptibility decreases roughly linearly with
temperature due to the paramagnetic response of Cu spins.46

In contrast, there is a growing diamagnetic drop in χ (H ⊥ ab)
as one cools, especially below ∼40 K. The kink between 30
and 34 K is associated with a structural transition, discussed
in Ref. 20, that enables the appearance of weak stripe order,
even in zero field.

To extract the diamagnetic response, a linear fit to
χ (H ⊥ ab) between 80 and 100 K, representing the paramag-
netic contribution χpm, has been extrapolated and subtracted
from the data. Multiplying by the field, we obtain the diamag-
netic magnetization Mdia that is plotted versus temperature
for several H⊥ in Fig. 10. We first note that the structural
transition has a modest impact on the thermal evolution of the
diamagnetism,52 which continues to grow on cooling below
30 K. More significantly, one can see that −Mdia grows with
field for T � 35 K but decreases with field for T � 25 K.
Such behavior is qualitatively consistent with the predicted53

response of a stack of decoupled superconducting layers with
TBKT ∼ 30 K. The observed response is also similar to that
measured in magnetization studies of La2−xSrxCuO4 with
x = 0.09 (Ref. 8) and x = 0.10 (Ref. 54).

D. Interlayer resistivity ρ⊥(H⊥,T )

Let us now consider ρ⊥(H⊥) in the superconducting regime,
as illustrated back in Fig. 2(a). For T � 30 K, increasing
H⊥ initially causes ρ⊥ to become finite, followed by rapid
growth and eventual saturation, followed by a gradual decrease
beyond the maximum. Such behavior has been studied
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FIG. 10. (Color online) Diamagnetic magnetization obtained
from χ (H ⊥ ab) data of Fig. 9 after subtracting a linear fit to the data
between 80 and 100 K. The high-field crossover at T ∼ 30 K is con-
sistent with the appearance of the LVL state, as discussed in the text.

previously, especially in Bi2Sr2CaCu2O8+δ (Refs. 55 and
56) and Bi2Sr2−xLaxCuO6+δ (Ref. 57). The rise of ρ⊥ with
increasing H⊥ is due to suppression of the conduction channel
associated with interlayer pair tunneling; on crossing the
maximum, single-particle transport dominates.55 The region
of negative magnetoresistance at high field has been attributed
to the impact of H⊥ on the pseudogap;56 reducing the antinodal
gap increases the density of normal carriers that can move
between planes. Parallels have also been drawn with the
field-tuned superconductor-insulator transition observed in
disordered thin films of various metals.58–60 By this latter
analogy, the resistive transition in ρ⊥ can be viewed as a
transition to a Cooper-pair insulator phase at high μ0H⊥. In our
case, the Cooper pairs are localized along the c axis, becoming
restricted to the CuO2 layers.

To emphasize the striking difference between ρ⊥ and ρ‖ in
an applied field, we compare their temperature dependencies
in Fig. 11 for μ0H⊥ = 0, 20, and 35 T. For ρ⊥, the field appears
to shift the superconducting transition to low temperature.
In contrast, ρ‖ shows a substantial drop near 30 K even in
the highest field, and it continues towards zero on further
cooling. There is clearly a broad regime in which the
superconducting layers are decoupled in terms of coherent
Cooper-pair transport.

Now, we want to be a bit more quantitative in defining tran-
sitions and crossovers. The regime of 3D superconductivity
ends when ρ⊥ becomes finite. We label the field at which this
occurs as H⊥

c . Our determination of H⊥
c is indicated by the

triangles in Fig. 1(a).
To analyze the growth of ρ⊥ with field, we start with the

model of a stack of Josephson junctions between supercon-
ducting CuO2 layers.18 It has been argued by several groups
that the field-induced rise in ρ⊥ can be understood in terms
of phase fluctuations in the interlayer Josephson junctions
due to thermal noise.61–64 In this interpretation, the relevant
quantity is the extensive resistance per Josephson junction.
Hettinger et al.64 demonstrated empirically that the effective
junction area corresponds to A = �0/(B⊥ + B0), where �0
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in (a) are guides to the eye. The solid lines in (b) are calculations of
2D flux-flow resistivity, as discussed in the text. Inset of (b) shows
�ρ‖/�T as a function of H⊥ and T .

is the flux quantum and B0 is a parameter. Some of us have
shown previously31 that this approach gives a good description
of the evolution of ρ⊥(T ,H⊥) in our sample for T < Tc0 with
B⊥ ≈ μ0H⊥ and B0 = 2.2 T. The effective junction resistance
is then R⊥ = ρ⊥s/A, where s is the interlayer spacing (6.6 Å).

According to Halperin et al.65 the criterion for a Josephson
junction to become effectively insulating is that it exceed RQ =
h/(4e2) = 6.45 k	, the quantum of resistance for Cooper
pairs. We define HQ as the field at which R⊥ = RQ; the T

dependence of HQ is shown by the squares in Fig. 1(a). As
one can see, the separation between HQ and H⊥

c is rather
modest.

Looking at Fig. 2(a), it appears that there is a common shape
to ρ⊥(H⊥) measured at different temperatures. In Fig. 12,
we show that R⊥/RQ scales as [(H⊥ − H⊥

c )/(HQ − H⊥
c )]α(T ),

with the T dependence of the exponent α displayed in the inset.
The scaling is motivated by a calculation from Konik66 for ρ⊥
in a model of weak Josephson coupling between 2D layers;
he predicts αK = 3

4 (1 + t), with t = (Tc0 − T )/Tc0, which is
represented by the dashed line in the inset.

E. In-plane resistivity ρ‖(H⊥,T )

We have already noted that the Hall effect and susceptibility
measurements indicate the onset of strong superconducting
fluctuations below 40 K, in a fashion that is surprisingly
independent of field. We see related behavior of ρ‖ in
Fig. 11(b), where the high-field data show a rapid drop at
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FIG. 12. (Color online) Plot of R⊥/RQ vs [(H⊥ − H⊥
c )/(HQ −

H⊥
c )]α(T ), as described in the text, for data at temperatures from 1.6

to 27 K. The dashed straight line is for reference. The T dependence
of the exponent α is plotted in the inset. Dashed line represents αK,
as described in the text; solid line corresponds to α = αK + 0.35 +
4.5t2, with t = (Tc0 − T )/Tc0 and Tc0 = 31.5 K.

∼30 K. To emphasize this behavior, the inset of Fig. 11(b)
shows the ratio of finite differences �ρ‖/�T , as a function of
field and temperature. For μ0H⊥ � 1 T, one can see that the
maximum of this approximate derivative occurs at 30 ± 2 K,
which we identify as T 2D

c , the onset of the LVL state.67 The
finite resistivity at lower temperature indicates a lack of phase
order, as we discuss next.

BKT predicted that, in a 2D system with vortexlike
excitations, it is possible to have a topological transition from
an ordered to a phase-disordered state.35,36 The transition can
be described as an unbinding of thermally excited vortex-
antivortex pairs. The nature of the transition depends crucially
on having the interaction energy of a pair of vortices vary loga-
rithmically as their separation distance. For a superconductor,
the logarithmic interaction applies only at distances shorter
than the magnetic penetration depth; at larger distances, it
is screened.36 In a thin film, it is possible to enhance the
effective screening length,68,69 but this can still be smaller
than the sample size. Attempts to observe BKT transitions in
thin films have been controversial,70,71 and there have been
analyses showing that effects near the edges of a thin film
could give the appearance of BKT behavior even when it is
absent in the bulk of the film.72

This history would make it appear that consideration of
BKT-type effects in our bulk sample would be inappropriate.
It turns out, however, that the presence of many adjacent,
phase-decoupled layers restores the conditions necessary for
a BKT-type transition. Raman, Oganesyan, and Sondhi33 have
shown that, due to the electromagnetic interactions of pancake
vortices73 in different layers, the interaction energy between
vortices remains logarithmic to long distances. They find
that the system does exhibit a phase-disordering transition,
although there are small quantitative corrections relative to
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|| / 
||,
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FIG. 13. (Color online) Plot of ρ‖(H⊥) normalized to approxi-
mate normal-state values (see text). Squares indicate fields at which
data cross 10−3 (dashed line). Solid lines are calculations using
Eq. (6), as discussed in the text.

the predictions of the 2D theory.33 This analysis provides an
explanation for the BKT-type transition observed in LBCO
x = 1

8 in zero field.40

With that context, let us consider Fig. 13, where we plot
ρ‖(H⊥), normalized to the normal state ρn(H⊥) evaluated in
Sec. III A, for a number of temperatures. At each temperature,
there is a phase-transition-like rise in the normalized resistivity
as H⊥ increases. To make an initial estimate of the transition
field, which we label H

‖i
c , we choose the point at which the

ρ‖/ρn reaches 10−3, as indicated by the squares superimposed
on the data in Fig. 13. The obtained transition fields correspond
approximately to the circles plotted in the phase diagram
Fig. 1(b). (The corrected values of H

‖
c are discussed below.)

Comparing with Fig. 1(a), we see that H
‖
c > HQ for any T , so

the apparent transition occurs in the regime where there is no
coherent Josephson tunneling between layers. Thus, on cool-
ing in a field of μ0H⊥ � 1 T, we see behavior consistent with
a BKT-type transition from the LVL state to the LPD-SC state.

To go further, we test the functional form of critical
behavior of the resistivity. Above a BKT transition at TBKT, the
resistivity, which is proportional to the product of the density
of free vortices and the vortex mobility, is predicted34,74 to
have the form

ρ‖/ρ‖,n = ae−b/τγ

, (6)

where τ = (T − TBKT)/TBKT, a and b are constants of order
one, and γ = 0.5. In the mixed state, the applied H⊥ will
increase the density of free vortices, and hence will increase
the resistivity.75,76 In a study of 2D-like superconductivity in
LBCO x = 1

8 ,40 it was found empirically that ρ‖(T ) in a field
could still be described by Eq. (6), provided that one takes
account of the reduction of TBKT by the field. Theoretically,
one does not expect TBKT to remain finite in the mixed state
of a 2D superconductor;77 however, our system is never truly
2D. Perhaps the electromagnetic interactions between pancake
vortices in neighboring layers, considered by Raman et al.33

in the zero-field limit, are sufficient to maintain a finite TBKT

in large H⊥.
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Without theoretical justification, we take Eq. (6) as a useful
functional form. We use it to model the field-dependent data of
Fig. 13 by inserting the field dependence through TBKT(H⊥);
the latter corresponds to H

‖
c (T ), which we have already

estimated. Of course, our estimates H
‖i
c were determined at

ρ‖/ρ‖,n = 10−3; we need to adjust these values for the finite
cutoff. Empirically, we find that an effective one-parameter
formula for the correction is μ0H

‖
c = μ0H

‖i
c − Ci/T with

Ci = 44.8 T K. Each H
‖
c value corresponds to a particular

temperature, which can be viewed as TBKT for that field value.
We fit TBKT(H⊥) with a cubic polynomial in H⊥. Plugging
these values into Eq. (6), we obtain the curves indicated
by the solid (black) lines in Fig. 13, using the fixed set of
parameters (a = 2.5, b = 1.5, γ = 0.6). We see that the data
are reasonably well described simply by accounting for the
variation in transition temperature with field.

We can use the same formula and parameters to describe the
temperature dependence of the resistivity in the LVL phase at
fixed field. The solid lines through the data points in Fig. 11(b)
correspond to such calculations, with TBKT = 16.5 and 12.5 K
for μ0H⊥ = 20 and 35 T, respectively.

IV. SUMMARY AND DISCUSSION

We have seen that decoupling the CuO2 planes with
a transverse magnetic field reveals a crossover at ∼30 K
to a layered vortex-liquid state, with the crossover being
surprisingly insensitive to the strength of the field. The
development of the strong superconducting correlations within
the layers is evident in ρ‖, RH, and the anisotropic magnetic
susceptibility. With further cooling, there is an apparent
transition to a layered, phase-decoupled superconducting state.
This is detected through a transitionlike drop in ρ‖; the phase
decoupling is clear from the behavior of ρ⊥.

A vortex-liquid state has previously been proposed to
explain features of the pseudogap phase at T > Tc0.11,78 Along
with other recent work,14,15 our results suggest that such a
scenario is overly optimistic. The rise of ρ‖ on warming
through T 2D

c indicates a loss of uniform superconducting
correlations in the normal state. Tc0 is slightly larger than
T 2D

c , suggesting that, upon cooling in zero field, 3D order
develops just before the individual layers would become
superconducting in the absence of Josephson coupling, as
others have observed in Bi2Sr2CaCu2O8+δ .79–81

The LVL state that we observe here only at finite H⊥ is
equivalent to the state previously detected in LBCO x = 1

8
below 40 K in zero field.40 We compare the phase diagrams of
these two compositions in Fig. 14. In both cases, the LPD-SC
state is reached at lower temperature. The observation of such a
state is only possible when the interlayer Josephson coupling is
frustrated. We note that one proposed origin of the frustration
is the development of pair-density-wave (PDW) order in
association with charge- and spin-stripe order.42–44 Neutron
and x-ray diffraction measurements on LBCO x = 0.095
have demonstrated that both charge- and spin-stripe order are
enhanced by H⊥ for T � T 2D

c (Refs. 31 and 32); however,
it should be noted that, while the occurrence of PDW order
would explain the loss of 3D superconducting order, it would

FIG. 14. (Color online) Phase diagram for LBCO as a function
of T , H⊥, and x comparing results for various samples. For the T -x
plane at H⊥ = 0, spin order (SO) sets in below the thick line, and
superconductivity (SC) occurs in the shaded region below the thin
line (Ref. 30). The field-dependent results for x = 0.095 are from
Fig. 1, and the results for x = 1

8 are from Ref. 40.

not, by itself, explain the apparent stability of the LPD-SC
state in large H⊥.

The modulated pair wave function of the PDW state
provides a way for the superconductivity to coexist with local
antiferromagnetic order: the superconducting wave function
has zeros at the extrema of the spin density wave, and vice
versa. This is consistent with experimental evidence that
long-range commensurate antiferromagnetic order and super-
conductivity do not coexist in LBCO or La2−xSrxCuO4.82–84

At the same time, the modulation makes the PDW state quite
sensitive to disorder, consistent with the strongly depressed
bulk Tc in LBCO x = 1

8 . For x = 0.095, the superconducting
order develops at much higher Tc0, and T 2D

c is virtually
independent of H⊥ even for μ0H⊥ as high as 35 T. The stability
indicates that there are at least quantitative differences from
x = 1

8 .
One possible interpretation of the field independence of T 2D

c

is that this crossover is determined by competition between
different correlations. For example, Emery, Kivelson, and
Zachar85 originally proposed that superconductivity in a stripe-
ordered system would involve in-phase Josephson coupling
between neighboring charge stripes. In contrast, the PDW state
is proposed to have antiphase coupling.42,43 Before relative
phase order is established, there may be a competition between
the interactions that favor in-phase versus antiphase coupling.
In this scenario, strong pairing correlations would exist within
the fluctuating charge stripes at T > T 2D

c , but they would have
only a weak impact on measurable quantities. The onset of
interstripe phase coherence might be relatively insensitive to
H⊥. Theoretical analysis is necessary to determine whether
this speculation is realistic. We note that there is an empirical
correlation between the onset of spin-stripe order and Tc0

in several cuprates,40,86,87 with the onset of spin-stripe order
exhibiting minimal dependence on H⊥.86–88 This suggests that
the correlations within spin stripes can impact the development
of superconducting phase order, in samples with varying types
of superconducting correlations.

We noted in Sec. III D that the the temperature dependence
of ρ⊥ in large H⊥ displayed in Fig. 11, with a rapid rise and
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gradual falloff with increasing T , has been seen previously
in other cuprates.55–57 There have also been studies of ρ⊥
in underdoped YBa2Cu3O6+x for transverse fields up to
60 T by Vignolle et al.89 They have been able to measure
into the regime where ρ⊥ remains finite and large down
to 2 K. Assuming that they have reached the normal state,
they make a correction for normal-state magnetoresistance
and obtain results suggesting a crossover to coherent c-
axis conduction at low temperature. While we have not
measured to such high fields, we nevertheless have observed
a regime in which ρ⊥ exhibits an insulatorlike temperature
dependence while superconducting correlations are present
within the planes. When there is a metalliclike temperature
dependence of ρ⊥, it is due to superconductivity within the
layers. While Vignolle et al.89 have provided self-consistent
arguments to support their identification of normal-state
behavior at high fields in YBa2Cu3O6+x , we suggest that the
possibility of hidden superconducting correlations within the
CuO2 bilayers that begin to impact ρ⊥ at sufficiently low
temperature should be considered as a possible alternative
explanation.

Another intriguing observation in YBa2Cu3O6+x at high
field and low temperature is the negative value of RH, with a
magnitude even larger than at T > Tc.89,90 This behavior has
been interpreted as evidence for electron pockets associated
with the high-field normal state.91 While we have also observed
a regime of negative RH in our LBCO x = 0.095 sample,
the magnitude of RH is much smaller. The correspondence
of this regime with the LPD-SC state, as indicated in
Fig. 1(d), suggests in our case that it may be associated with
superconducting fluctuations.50,51

Ramshaw et al.92 have recently made the interesting
observation for YBa2Cu3O6+x that, at low temperature, the
magnetic field at which ρ⊥ becomes finite, which they label
Hc2, is a minimum for a hole concentration of ∼0.12. It
appears that LBCO also follows this pattern, and it will be
interesting to see whether other cuprate families follow it. In
terms of notation, the field at which the resistivity becomes
finite is more commonly labeled as the irreversibility field
Hirr; Hc2 should correspond to the field at which pairing is
completely eliminated. For underdoped LBCO, at least, our
results suggest that Hc2 can not be readily determined from
measurements of ρ⊥. Even when measurements sensitive to
in-plane correlations are made, it appears that Hc2 for LBCO
x = 0.095 is quite large for temperatures all the way to Tc0.
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