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Mesoscopic p-wave superconductor near the phase transition temperature
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We study the finite-size and boundary effects on a p-wave superconductor in a mesoscopic rectangular sample
using Ginzburg-Landau and quasiclassical Green’s function theory. Apart from a few very special cases, we find
that the ground state near the critical temperature always prefers a time-reversal symmetric state, where the order
parameter can be represented by a real vector. For large aspect ratio, this vector is parallel to the long side of the
rectangle. Within a critical aspect ratio, it has instead a vortexlike structure, vanishing at the sample center.
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Studies of multicomponent superfluids and superconduc-
tors have excited many for decades because of the diversity
of textures, complex vortex structures, and collective modes.
The superfluid 3He with a spin-triplet order parameter1,2 is
a well-established example. Many studies also show that
superconductors with multicomponent order parameters can
also be found in, for example, UPt33,4 and Sr2RuO4.5,6

Recently, studies of a multicomponent superconductor in a
confined geometry draw much attention due to advancements
in nanofabrication. Experiments claimed to find half-quantum
vortices7 and the Little-Parks effect8 in the Sr2RuO4 quantum
ring. Surfaces are expected to have nontrivial effects on
such superconductors. Some theoretical works show that
surface currents are present in broken time-reversal symmetric
superconductors.9–11 In considering Ru inclusions, Sigrist
and his collaborators12 have shown that a time-reversal
symmetry state can be favored near the interface between
Ru and Sr2RuO4 due to the boundary conditions. In our
previous work,13 considering a thin circular disk with smooth
boundaries and applying the Ginzburg-Landau (GL) theory,
we have shown that a two-component p-wave superconductor
can exhibit multiple phase transitions in a confined geometry.
At zero magnetic field, the superconducting transition from
the normal state was found to be always first to a time-reversal
symmetric state (with an exception which occurs only far away
from the isotropic weak-coupling limit), even though the bulk
free energy may favor a broken time-reversal symmetry state,
which can exist at a lower temperature. This time-reversal
symmetric state has a vortexlike structure, with the order
parameter vanishing at the center of the disk. We have also
argued there that these features are general, do not rely on
the GL approximation, and should also exist for general
geometries.14

In this paper, we investigate this question further by
considering rectangular and square samples, employing both
the GL and the quasiclassical (QC) Green’s function methods.
Within GL, for rectangular samples with large aspect ratios,
we show that the phase transition from the normal to the
superconducting state is second order and is to a state with
the order parameter being a real vector parallel to the long
side of the sample. For smaller aspect ratios, the state near the
transition temperature is again a time-reversal symmetric state
with a vortex at the center, except for a square and only for
gradient coefficients far away from the weak-coupling limit,
much like what we found for the circular disk. At not too

small sizes, the results from QC are qualitatively similar to
GL except for the critical sizes and aspect ratios obtained.
At very small sizes, however, the QC calculation suggests
that a more complicated situation can arise for some special
aspect ratios. The transition can either become first order, or
perhaps into a state with a more complicated order parameter.
In this paper, we shall mostly concentrate on the parameter
region where the phase transition is second order and leave the
detailed investigation of the above-mentioned special case to
the future.

We shall thus consider a superconductor where its orbital
part is given by �η = ηxx̂ + ηyŷ. We shall consider the
dependencies of ηx and ηy on the coordinates x,y, assuming
that they are constant along the z direction. We assume the
length of the sample in the x direction is L and the width
in the y direction is W , and these surfaces are smooth. The
effects of a rough boundary have been discussed in Ref. 13
for the circular disk. We shall also limit ourselves to zero
external magnetic fields. Near the second-order transition
temperature, the magnetic field generated by the supercurrent
is also negligible, hence the vector potential can always be
ignored.

First, we study this system via the GL theory. The GL free
energy density per unit area for the bulk, Fb, can be written as

Fb = α(�η∗ · �η) + . . . , (1)

where α = α′(t − 1) with α′ > 0, t ≡ T/T 0
c is the ratio of

the temperature T relative to the bulk transition temperature
T 0

c , and . . . represents terms higher power in the order
parameter which are irrelevant below since we are interested
only in the physics at the (modified) transition temperature
Tc. In the presence of spatial variations, there is an additional
contribution to the free energy given by

Fg = K1(∂jηl)(∂jηl)
∗ + K2(∂jηj )(∂lηl)

∗

+K3(∂jηl)(∂lηj )∗ + K4[(∂xηx)2 + (∂yηy)2], (2)

where repeated indices j,l in the first three terms are summed
over x,y, and the last term describes crystal anisotropy.15

Within a weak-coupling approximation, particle-hole symme-
try, and for an isotropic Fermi surface, K1 = K2 = K3 > 0
and K4 = 0, but we shall treat these coefficients as general
parameters.

The GL equations need to be accompanied by boundary
conditions. The perpendicular component of the order pa-
rameter at the surface should vanish.17 Thus, for a point at
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the surface where the normal is n̂, n̂ · �η = 0. For a smooth
surface, the parallel component η‖ should have a vanishing
normal gradient,17 that is, at the surface, (n̂ · ∇)η‖ = 0.

GL equations for ηx,y can be obtained by the variation
principle. Near the critical temperature, we can linearize these
equations. The easiest way to match the boundary conditions
is to superimpose the Fourier components. Written in matrix
form, the GL equations for the Fourier component �q become(

K1q
2 + K234q

2
x K23qxqy

K23qxqy K1q
2 + K234q

2
y

)(
ηx,�q
ηy,�q

)

= α′(1 − t)

(
ηx,�q
ηy,�q

)
. (3)

Here, �q is the wave vector, q2 = q2
x + q2

y , K23 = K2 + K3,
and K234 = K2 + K3 + K4.

It is easy to find that, if qx = 0 or qy = 0, Eq. (3)
decouples. We obtain either (i) ηx,�q �= 0 with ηy,�q = 0 or
(ii) ηy,�q �= 0 with ηx,�q = 0. We call these solutions A phases.
In case (i), we have two possibilities. One is q̂ = x̂ and the
critical temperature is determined by α′(1 − t) = K1234q

2.
Because ηx(x) is independent of y, the possible solutions are
ηx = X sin mπx

L
, satisfying the boundary conditions, ηx = 0,

at x = 0 and L. Here X is a constant and m is an integer.
The best choice is m = 1 and the critical temperature is
α′(1 − t) = K1234(π/L)2. We call this the A1 phase. The other
is q̂ = ŷ. The order parameter ηx(y) is independent of x. Thus
it is not possible to satisfy the boundary conditions at x = 0
and L. In case (ii), the best solution is ηy ∝ sin πy

W
, which is just

the solution in case (i) with x ↔ y. The critical temperature is
determined by α′(1 − t) = K1234(π/W )2. We call this the A2

phase.
If both qx and qy are nonzero, both ηx,�q , ηy,�q are finite. We

define this kind of solution as the B phase. To simplify the
calculations, we ignore crystal anisotropy for the moment, and
set K4 = 0. From Eq. (3), we find the smallest eigenvalue
is K1q

2 (for K23 > 0). To have the normal component to
the surfaces at x = 0 and L to vanish, ηx must have the
factor sin(mπx/L), where m is an integer. Because the
boundary conditions ∂ηx/∂y = 0 at y = 0 and W , ηx should
be proportional to cos(nπy/W ), with n also an integer. We
can use the same arguments for ηy . Therefore

ηx = X sin
mπx

L
cos

nπy

W
,

(4)
ηy = Y cos

mπx

L
sin

nπy

W
.

The critical temperature is highest for m = n = 1, and thus
determined by α′(1 − t) = K1[(π/L)2 + (π/W )2]. In order
to satisfy Eq. (3), we need (π/L)X + (π/W )Y = 0, which
means X and Y are relatively real and have opposite signs.

Comparing the transition temperatures of the A and B

phases, we find that the system prefers the A1 phase for
L � W . For L ∼ W , it prefers the B phase. We define the
aspect ratio of the sample as ρ = L/W . The critical aspect
ratio separating these two phases is

ρc =
√

K23/K1. (5)

With the same reasoning, the system is in the A2 phase
for W � L but prefers the B phase if ρ is larger than
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FIG. 1. GL phase diagram at the transition temperature. K4 = 0.
(a) K23/K1 > 1; (b) K23/K1 < 1.

ρ−1
c = √

K1/K23. The phase diagram is shown in Fig. 1(a).
The cartoon pictures under the ruler are used to specify the
main characteristic of the order parameter in the corresponding
phases. The solution for the middle case (B phase) is
qualitatively the same as the circular disk in Ref. 13. Because
of the relatively real coefficients in Eq. (4), we can represent �η
by a real vector, as done in the inset of Fig. 2(c). It is clear that
the order parameter forms a vortexlike structure, and vanishes
at the sample center.

When crystal anisotropy is included, the critical ratio
becomes

ρc =
√

K1234K234 − K4(K23 + K234)

K1K1234
. (6)

It reduces to Eq. (5) for K4 = 0. For small K4, the critical ratio
is

√
2 − K4/K123 within the weak-coupling limit. It shows that

the crystal anisotropy for K4 > (<)0 stabilizes (destabilizes)
the order parameter with the direction parallel to the long side
of the sample. The phase diagram is similar to Fig. 1(a) except
a smaller (larger) region for the vortex state. We ignore crystal
isotropy in the following.

With decreasing K23/K1, the stability region for the B

phase becomes narrower. This phase diagram [Fig. 1(a)] will
change qualitatively if K1 > K23 The B phase is never stable
(at Tc), and the system is in the A1 phase if ρ > 1, and in the A2

phase if ρ < 1. The square sample ρ = 1 forms a special case,
where the system still has C4 symmetry in real space, and the
A1 and A2 phases are therefore degenerate. One can combine
these two solutions with a phase difference. As a result, if the
higher order terms in Eq. (1) for the bulk free energy prefer a
time-reversal-symmetry-broken state, then the system would
enter such a state directly at Tc. Therefore, the phase diagram
becomes Fig. 1(b) for K23 < K1, where the ground state at
ρ = 1 should break the time-reversal symmetry.18
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Our results for the square here provide further under-
standing of those we obtained earlier for the circular disk.13

There, we found that, for K1,2,3 near the weak-coupling values
(K1 = K2 = K3) the phase transition from the normal state is
always to the state (named n = 1 there) which preserves time
reversal but with a vortex at the center. That phase obviously
has the same qualitative behavior as our B phase here. For
sufficiently small K23/K1, we found that the system can enter a
broken time-reversal symmetry state directly. We find the same
results here though the critical value for K23/K1 obviously can
depend on the geometry.

In order to check the validity of the phase diagram from
the GL theory, we employ the quasiclassical (QC) Green’s
function theory. For simplification, we focus on the isotropic
and weak-coupling case. As shown in Ref. 13, we have, after
linearizing in the order parameter,

(2iεn + ivf p̂ · �∇)f = 2iπ (sgnεn)�, (7)

where f (p̂,εn,�r) and �(p̂,�r) describe separately the off-
diagonal parts of the QC propagator and pairing function, p̂ is
the momentum direction, εn is Matsubara frequency, and vf

is the Fermi velocity. With the pairing interaction written as
V1p̂ · p̂′, the gap equation reads

�(p̂,�r) = N (0)T V1

∑
n

〈(p̂ · p̂′)f (p̂′,�r,εn)〉, (8)

where the angular bracket denotes angular average over p̂′
and N (0) is the density of states at the Fermi level. For our
square geometry and assuming smooth surfaces, we have the
boundary conditions f (θ ) = f (π − θ ) at x = 0 and L and
f (θ ) = f (−θ ) at y=0 and W . Here θ is the angle between p̂

and x̂.
Before solving the case in a confined rectangle, we like to

mention the connection between the GL theory and the QC
theory for the bulk. To zeroth order in gradient, one finds

1 = πN (0)V1T
0
c

∑
εn

1

2|εn| , (9)

which defines the bulk transition temperature T 0
c . The first

order for f is odd in εn and will not contribute to the gap
equation. In the second order, we recover the GL theory with

K1

α′ = 2πT 0
c

∑
εn

v2
f

4|εn|3 〈cos2 θ sin2 θ〉, (10)

and similar expressions for K2,3, with K1 = K2 = K3. Our
equations are consistent with those in Refs. 1,2 and 16.

For the A1 phase, we shall show that we can have a self-
consistent solution in the QC theory with

�(p̂,�r) = X sin
πx

L
cos θ, (11)

the order parameter suggested by the GL theory. One finds that
f is independent of y. With the ansatz,

f (θ,εn; x) = C1(θ,εn) sin
πx

L
+ C2(θ,εn) cos

πx

L
, (12)

satisfying the boundary conditions, solving for C1,2(θ,εn) via
Eq. (7) and using (9), we find

ln
T 0

c

Tc

= 2πTc

∞∑
εn=−∞

〈 ( vf π

L

)2
cos4 θ

4|εn|3
[
1 + (

vf π

L
cos θ)2

4ε2
n

]
〉

. (13)

For large L, one can replace the bracket in the denominator by
1, and the left-hand side by (1 − t), recovering the GL result
using Eq. (10). Hence we see that, beyond GL, one needs
simply to include extra factors in the denominator of Eq. (13)
and include the ln on the left-hand side.

Now, we consider the B phase. The order parameter is

�(p̂,�r) = X sin
πx

L
cos

πy

W
cos θ + Y cos

πx

L
sin

πy

W
sin θ.

(14)

From previous experience, it suggests that the solution has the
following form:

f = C1(θ,εn) sin
πx

L
cos

πy

W
+ C2(θ,εn) cos

πx

L
sin

πy

W

+C3(θ,εn) cos
πx

L
cos

πy

W
+ C4(θ,εn) sin

πx

L
sin

πy

W
.

(15)

To simplify writing, let A = πvf /L, B = πvf /W . Again
solving for f from (7), we obtain the following coupled linear
equations in X,Y :

Xln
T 0

c

Tc

= 2 πTc

∑
εn

〈
[(c1 + c2) cos2 θ ]X + c3Y

|εn|D
〉
. (16)

Y ln
T 0

c

Tc

= 2πTc

∑
εn

〈
[(c1 + c2) sin2 θ ]Y + c3X

|εn|D
〉
. (17)

Here c1 = (A2 cos2 θ + B2 sin2 θ )/(4ε2
n), c2 = (A2 cos2 θ −

B2 sin2 θ )2/(4ε2
n)2, c3 = (AB sin2 θ cos2 θ )/(2ε2

n), and D =
1 + 2c1 + c2. The critical temperature of the B phase is
determined by the point which allows nontrivial X and Y .
We note that if one keeps only the lowest orders in A2 and B2,
D → 1, and replaces the ln’s on the left-hand side by (1 − t),
then Eqs. (16) and (17) recover the corresponding equations
(3) in the GL theory.

In Fig. 2(a), we compare the critical temperatures for
different sizes of square samples between the GL and QC
theories. We use the coherence length ξ ≡ √

K123/α′ as the
unit for length (ξ = 0.199909vf /T 0

c for QC). In the GL theory,
(1 − t), the relative suppression of critical temperature, is
inversely proportional to the square of the length scale of
the system. Therefore it is more convenient to set the vertical
axes of the phase diagram to be (ξ/L)2. We obtain the straight
line with crosses for the critical temperature of the A phase
and the line with pluses for that of the B phase. It shows
that the system prefers the B phase. On the other hand, we
also present the critical temperatures calculated from the QC
theory. The line with squares is for the B phase and the line
with circles is for the A phase. As expected, it shows that the
results from the QC theory are consistent with those from the
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FIG. 2. (Color online) (a) Critical temperatures from GL and QC
theories for square samples. (b) Critical temperatures in QC theory for
different ρ’s. As the size of the system is reduced, the ground state near
the critical temperature can change from A to B. The possible first-
order phase transition is indicated in the region between dash lines.
(c) Phase diagram for different sizes. The white regions correspond
to second-order normal to superconducting transitions; the dashed
regions indicate possible first-order phase transitions. (Inset) Order
parameter for a square sample. Note that all results are for K1 =
K2 = K3. ξ is the coherence length.

GL theory near t = 1, corresponding to ξ/L � 1. In addition
to the fact that the B phase is still preferred, we see that the

critical temperature is more suppressed than GL as the size of
the system is smaller.19

As the aspect ratio ρ becomes larger than 1, the GL theory
shows that there is a phase transition from the B phase to
the A phase as ρ increases beyond the critical ratio

√
K23/K1

[Fig. 1(a)]. In Fig. 2(b), we find that this critical ratio (
√

2
here) still applies for large systems. However, we find that
the B phase occupies a slightly larger ρ region when the size
decreases. An example is in Fig. 2(b), where we show that
the system processes a phase transition from the A phase
(thick black line) to the B phase for ρ = 1.6 (thin red line)
around t = 0.67 as the size of the system becomes smaller. As
the aspect ratio increases further, the situation becomes more
complicated because the phase boundary for the A phase is not
a monotonic function in t . The shape of the curve suggests that,
at lower temperatures, the transition from the normal to the
superconducting state cannot be a second-order transition to
the A1 phase as described here. One possibility is a first-order
phase transition between the normal and the superconducting
A1 phase, analogous to Ref. 20. However, transition into a
more exotic order parameter structure cannot be ruled out.21

We shall leave the detailed investigation of this question for
the future. For illustrative purposes, we indicate the resulting
phase diagram by postulating a first-order transition line
somewhere between the two dashed lines in Fig. 2(b). Our
obtained phase diagram for the normal to superconducting
transition, with instead now the sample area as the vertical
axis, is as shown in Fig. 2(c). For the square samples, the
stable superconducting phase is the B phase, with a vortexlike
structure at the center, similar to the n = 1 state in Ref. 13
obtained in the disk geometry.

In conclusion, we studied a two-component p-wave su-
perconductor in a rectangular geometry near its transition
temperature. The order parameter can behave differently
depending on the aspect ratio and size. Except for some
special regions in parameter space, the phase always preserves
time-reversal symmetry. Our results give further support to
those obtained in Ref. 13.
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