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We consider the appearance of vortices in a two-dimensional (2D) superconducting film exposed to a
nonuniform magnetic field Ba produced by a nearby coil. The film has “infinite” radius Rf and thickness
t about equal to the coherence length ξ . The coil is approximated as a point dipole. We find that the first
vortex-bearing state to appear has both a vortex and an antivortex. The Gibbs free energy of this state is lower
than the vortex-free state when the maximum applied perpendicular field, i.e., the applied field B0 at the origin,
exceeds the external critical field B0

c1 = 4
√

2�

R

�0
4π�2 ln( �

ξ
), where �0

4π�2 ln( �

ξ
) ≡ B2D

c1 is the intrinsic critical field in

2D, � ≡ 2λ2/t is the 2D penetration depth introduced by Pearl, and λ is the bulk penetration depth. The prefactor
4
√

2�/R is calculated in the strong-screening regime �/R � 1. R is the radial distance at which the applied
perpendicular field Ba,z(ρ) changes sign. In the lab, the onset of vortex effects generally occurs at a field much
higher than B0

c1, indicating that vortices are inhibited by the vortex-antivortex unbinding barrier, or by pinning.

DOI: 10.1103/PhysRevB.87.064503 PACS number(s): 74.78.−w, 74.25.Op, 74.25.Ha, 74.25.Sv

I. INTRODUCTION

This paper presents a calculation of the external ther-
modynamic critical field B0

c1 for an infinite radius, 2D
superconductor in a nonuniform applied magnetic field. An
interesting result is that the first vortex-bearing state to appear
has both a vortex, near the origin, and an antivortex, far from
the origin but not at infinity. Implicit in the calculation is
the notion that vortices arise from thermally excited, bound
vortex-antivortex (V-aV) pairs that break into independent
vortices by overcoming the free-energy barrier that binds them.
When they unbind, vortices move toward the center of the
film while antivortices move away until the long-range V-aV
attraction stops them. In the lab, vortex physics often occurs at
a much larger field than we calculate here, so our various
simplifications are accurate enough for the purpose of the
paper.

This paper is motivated by our interest in knowing the
smallest applied magnetic field at which vortices might
first appear in a two-coil experiment (e.g., Refs. 1–7) for
measuring superfluid density. In a two-coil experiment, a drive
coil is located just below the center of a superconducting
film (Fig. 1). A current in the coil produces a nonuniform
magnetic field whose z-component Ba,z(ρ) often is largest at
the center of the film and reverses sign at a radial distance
R that is much smaller than the radius Rf of the film.
Experimentally, dissipation due to vortices arises when the
applied field exceeds a certain well-defined threshold.5–7 In
the following, a “vortex” has its magnetic field parallel to the
applied field at the origin; an “antivortex” has the opposite
orientation.

This paper complements theoretical work (e.g., Refs. 8–10)
on the converse problem of a finite-radius, 2D supercon-
ducting film in the uniform perpendicular magnetic field of
a surrounding coil. Applying the macroscopic concept of
demagnetization,11 Fetter and Hohenberg9 proposed that the
“external” lower critical field B0

c1 in this geometry should
be the intrinsic 3D critical field B3D

c1 = (�0/4πλ2) ln(λ/ξ )
(λ = penetration depth and ξ = coherence length) reduced

by a factor D ≈ πt/2Rf . In a later paper,10 Fetter used a
Ginzburg-Landau approach to obtain a more accurate result
for B0

c1. This latter theory includes the interaction between a
vortex and the perimeter of the film.

Mawatari and Clem12 (MC) consider vortices created in
infinite-radius films by an inhomogeneous applied field, but
their films are thick enough to sustain a vortex parallel to the
film. They calculate a critical field by assuming that vortices
and antivortices first appear when the magnetic field parallel
to the film is large enough to create a vortex that arcs into
the film. When the middle of the vortex pops through the
back of the film, the two ends of the vortex remain in the film,
forming a vortex-antivortex pair. We believe that MC calculate
the applied field at which the free-energy barrier for creation
of a vortex-antivortex pair vanishes (e.g., a Bean-Livingston
type barrier13). We find a much lower critical field.

Experimental work on nonlinear effects in two-coil experi-
ments traces back through Claassen and collaborators5,6 to that
of Scharnhorst.7 The latter found that nonlinear effects appear
in quench-condensed Sn and In films when the Meissner
screening supercurrent density is near the depairing current
density Jc(T ). Since Jc(T ) is inversely proportional to ξ and
�, this finding offers the possibility that a combination of
linear and nonlinear measurements can be used to determine
ξ in novel superconducting materials.

II. CALCULATION

In this section we calculate the Helmholtz free energy of
vortices and the work done by the drive coil’s current supply
when a vortex appears. From these we construct the Gibbs
free energy difference �G between the vortex-free Meissner
state and a state with a single V-aV pair. Since the applied
field is nonuniform, we define B0

c1 as the value of the
maximum applied perpendicular field B0 at the point where
�G < 0 and the V-aV configuration is stable, i.e., �G is a
minimum as a function of the separation between vortex and
antivortex.
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FIG. 1. Diagram illustrating the film (square), field lines from the
drive coil, the drive coil located R/

√
2 below the film, a circle of

radius R (dotted) at which Ba,z(ρ) changes sign, a vortex at the origin
(up arrowhead), and an antivortex (down arrowhead).

A. Applied magnetic field and Meissner screening
supercurrent density

The perpendicular component of the magnetic field from a
point dipole located R/

√
2 below the film is (Fig. 2)

Ba,z(ρ) = B0
1 − ρ2/R2

(1 + 2ρ2/R2)5/2
. (1)

The maximum applied perpendicular field is B0, at the origin;
the maximum applied parallel field is 0.4B0, at ρ = R/2

√
2.

The superconductor responds to the applied field with a
Meissner supercurrent density JM (ρ) that is uniform through
the film thickness when t � λ. The sheet supercurrent density
is KM (ρ) = −2A(ρ)/μ0�, where A(ρ) is the vector potential
and 1/� ≡ t/2λ2 is proportional to the areal superfluid
density. � is the 2D penetration depth identified by Pearl.8 In
the strong-screening regime �/R � 1, KM (ρ) has the same
dependence on ρ as the parallel component of the applied field
at the film surface [in square brackets in Eq. (2)]:

KM (ρ) = −θ̂
2XR

μ0�

[
3B0√

2

ρ/R

(1 + 2ρ2/R2)5/2

]
(�/R � 1) .

(2)

This result follows from ∇ × B = μ0 J and the fact that in
the strong-screening regime B on the backside of the film is

FIG. 2. Applied magnetic field Ba,z(ρ)/B0 (solid curve) from a
point dipole placed R/

√
2 below the film, and normalized Meissner

supercurrent densities |KM (ρ)| for the strong-screening [dashed line,
Eq. (2)] and weak-screening [dotted line, Eq. (3)] limits.

much smaller than the applied field. The former implies that
J in the film is proportional to the discontinuity in parallel
field, i.e., to the applied parallel field. In the weak-screening
regime, the field produced by supercurrents is much smaller
than the applied field, so KM (ρ) is essentially proportional to
the vector potential of the point dipole drive coil:

KM (ρ) = −θ̂
XB0R

μ0�

ρ/R

(1 + 2ρ2/R2)3/2
(�/R � 1) . (3)

In Eqs. (2) and (3) XB0 is the net field at the center of
the film, i.e., the applied field plus the field from screening
supercurrents. Self-consistency finds:

X = 1

1 + R/�
≈ �

R
(�/R � 1) , (4)

a result obtained analytically by Gilchrist and Brandt.14 In the
weak-screening regime �/R > 1, X approaches unity from
below X ≈ 1 − R/2

√
2�.

B. Free energy of an isolated vortex

There are several contributions to the free energy of a
vortex: kinetic energy, magnetic field energy, and energy of
its normal core. The kinetic free energy KE of vortices
comes from integrating the term proportional to J 2

S in the
G-L free-energy density:

KE = μ0λ
2

2

∫
dV J 2

S (r)

= μ0�

4

∫
dA

[
K2

M (ρ) +
∑

i

K2
V,i + 2

∑
i

KV,i · KM (ρ)

+ 2
∑
i<j

KV,i · KV,j

]
, (5)

with the acknowledgement that K S(ρ) = KM (ρ) + ∑
KV,i is

the total supercurrent density at point ρ, and
∑

KV,i is the sum
of vortex currents at ρ. The second, third, and fourth terms in
the integral represent the kinetic energy of isolated vortices,
the interaction of vortices with screening supercurrent, and
with each other.

Not too close to the film perimeter, the sheet supercurrent
density KV (ρ) of a vortex at the origin is

KV (ρ) ≈ θ̂
�0

πμ0�2

1

(ρ/�) (1 + ρ/�)
for ξ < ρ � Rf ;

KV = 0 for ρ < ξ. (6)

This approximation is asymptotically correct for small and
large ρ (ξ � ρ � � and � � ρ � Rf , respectively), and is
within 10% for ρ ≈ �.8,9 �0 ≡ h/2e is the flux quantum.

The corresponding vector potential and magnetic field in
the plane of the film are

AV,θ (ρ) = �0

2πρ
− μ0�

2
KV,θ (ρ) = �0

2π�

1

1 + ρ/�
, (7)

BV,z(ρ,z = 0) ≈ �0

2π�2

1

(ρ/�)(1 + ρ/�)2
. (8)

BV,z(ρ) integrates to a net flux through the film of �0, despite
its mild divergence as ρ → 0. Within the volume that is at
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least several �’s away from the film (� � |z| � Rf ) and not
too far from the z axis (ρ � Rf ), the vortex field is that of a
magnetic monopole at the origin, e.g.,

BV,z(ρ,|z| � �) ≈ �0|z|
2π (ρ2 + z2)3/2

. (9)

BV,z(ρ,|z| � �) integrates to a net flux of �0 through any
“plane” parallel to the film, as long as the plane’s radius is
much greater than |z| but much less than Rf , and the plane is
centered on the z axis.

The kinetic free energy of one vortex KEV is the second
term on the right-hand side of Eq. (5). Using Eq. (6) and
integrating yields:

KEV ≈ μ0�

4
2π

∫ ∞

ξ

dρρK2
V (ρ) = �2

0

2πμ0�

[
ln

(
�

ξ

)
− 1

]
.

(10)

The self-magnetic-field energy of a vortex is UV,mag ≡∫
dV B2

V /2μ0 = ∫
dAKV · AV /2, where the second equality

comes from writing B2
V as BV · ∇ × AV and integrating by

parts. Using Eqs. (6) and (7), we find UV,mag ≈ �2
0/2πμ0�.

The vortex core free energy is: UV,core ≈ ξ 2t(B2
c /2μ0) =

�2
0/8π2μ0�, where Bc = �0/2

√
2πλξ is the thermodynamic

critical field. Thus, the isolated-vortex free energy is:

UV ≈ �2
0

2πμ0�

[
ln

(
�

ξ

)
+ 1

4π

]
≈ �2

0

2πμ0�
ln

(
�

ξ

)
. (11)

There is considerable uncertainty in the constant, “1/4π”, in
Eq. (11). Since ln(�/ξ ) typically ranges from 5 to 8 for very
thin films, this constant is usually neglected. If we keep it, then
we find in Sec. II C the reasonable result that the net energy
of a V-aV pair separated by ξ is just the energy of two vortex
cores.

C. Interaction of vortices with screening supercurrent,
applied field, and each other

The net interaction of vortices with the Meissner screening
supercurrent vanishes due to a cancellation. The kinetic
interaction energy is the third term in the integral in Eq. (5).
For example, for a vortex at the origin this energy is:

UV M (ρV = 0) = μ0�

2

∫
dAKV (ρ) · KM (ρ)

≈ −2�0B0�

μ0
(�/R � 1) . (12)

The overlap field energy is the cross term in the integral∫
dV (BM + BV )2/2μ0, where BM (r) is the applied field plus

the field from the Meissner supercurrent when no vortices are
present, and BV (r) is the field of a vortex. Writing

∫
dV BV ·

BM/μ0 as
∫

dV BV · (∇ × AM )/μ0, using Maxwell’s equation
∇ × BV = μ0JV , and integrating by parts yields:

Uovrlp ≡
∫

dV BV · BM/μ0 =
∫

dA KV · AM. (13)

Replacing AM with −μ0�KM/2 shows that Uovrlp cancels
UV M .

The interaction energy V12 between a vortex and an antivor-
tex separated by ρ12 ≡ |ρ2 − ρ1| has two contributions. One is

the fourth term in the integral for kinetic energy [Eq. (5)]. This
term diverges as ln(�/ρ12) for small separation, and it falls of
as 1/ρ2

12 at large separation. The other is the overlap magnetic
field energy V B·B

12 ≡ ∫
dV BV (r) · BaV (r)/μ0. Because vortex

fields are those of monopoles over a significant volume, the
integrand BV (r) · BaV (r) is significant out to |z| comparable to
the spacing between vortices. Thus, V B·B

12 falls off slowly, as
1/ρ12, as is seen by evaluation of the equivalent areal integral:

V B·B
12 =

∫
dAKV · AaV ≈ − �2

0

πμ0�

1

1 + ρ12/�
. (14)

As Pearl8 first showed, the sum of these terms is

V12 ≈ − �2
0

πμ0�
ln

(
1 + �

ρ12

)
, (15)

which displays the logarithmic increase of kinetic energy at
ρ12 � � and the 1/ρ12 falloff of the field energy at ρ12 � �.

As mentioned above, Eqs. (11) and (15) show that when
a vortex and antivortex are close together, their Helmholtz
free energy FV −aV (ρ12) = 2UV + V12(ρ12) is just that of two
vortex cores: FV −aV (ρ12 ≈ ξ ) ≈ �2

0/4π2μ0� since their su-
percurrents and magnetic fields essentially cancel everywhere.

D. Work done by the external current supply
when a vortex appears

If a vortex appears at a distance ρ from the origin,
the flux through the drive coil at z = −R/

√
2 changes by

�φ = πa2BV,z(ρ,z = −R/
√

2). In the strong-screening limit
we have �φ ≈ a2�0R/(2ρ2 + R2)3/2, where “a” is the radius
of the drive coil. The net work W done to keep the current in
the drive coil constant is Id�φ, where Id = B0R

3/
√

2μ0a
2 is

the current in the drive coil necessary to produce field B0. Thus

W (ρ) = B0�0R√
2μ0

1

(1 + 2ρ2/R2)3/2
(�/R � 1) . (16)

We see that − W (ρ) is a potential well that attracts vortices
and repels antivortices, so that when a V-aV pair unbinds,
the vortex moves toward the origin, and the antivortex moves
away until the long-range V-aV attraction stops it.

E. Critical external perpendicular field B0
c1

The defining condition for the external critical field is that
the work done by the external current supply when the first
vortex and antivortex appear [Eq. (16)] equals the Helmholtz
free energy of the vortex and antivortex. We therefore define
the Gibbs free energy �G as the extra Helmholtz free energy
of a vortex at ρV and an antivortex at ρaV , minus the work done
in their creation. Assuming both vortices lie on the same ray
from the origin, and defining ρ12 ≡ ρaV − ρV , we can write:

�G(B0,ρV ,ρaV )

2UV

= 1 − 1

ln(�/ξ )
ln

(
1 + �

ρ12

)

− B0

B0
c1

[
1(

1 + 2ρ2
V

/
R2

)3/2 − 1(
1 + 2ρ2

aV

/
R2

)3/2

]

(�/R � 1), (17)
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where B0
c1 is:

B0
c1 = 4

√
2�

R

�0

4π�2
ln

(
�

ξ

)
. (18)

Equation (17) applies in the strong-screening limit. Note that
�0

4π�2 ln(�
ξ

) in Eq. (18) is the 2D intrinsic critical field B2D
c1

defined as in 3D, but with λ replaced by �.
It is easily seen from Eq. (17) that �G = 0 when: (1)B0 =

B0
c1; (2) the vortex is at the origin; and (3) the antivortex is at

infinity. Because the V-aV interaction is long ranged, the actual
equilibrium position ρ

eq
aV of the antivortex is not at infinity but

rather at ρ
eq
aV ≈ R[ R

�
ln(�

ξ
)]1/2, which means ρ

eq
aV ≈ 10R for

typical sample parameters. This means that �G(B0
c1,0,ρaV ) is

actually slightly negative and a minimum at ρaV ≈ ρ
eq
aV , and

the external critical field is therefore a tiny bit smaller than B0
c1

given in Eq. (18). The prefactor 4
√

2�/R in Eq. (18) captures
the effect of demagnetization.11

From the foregoing, we see that a film’s radius is effectively
infinite only if it is much larger than both � and ρ

eq
aV . Also,

we note that there is entropy associated with the angular
position of the antivortex SaV ≈ kB ln(2πρ

eq
aV /ξ ), and we have

neglected its contribution −T SaV to �G. As B0 increases
beyond B0

c1, vortices accumulate near the film center, and the
belt of corresponding antivortices moves closer in, e.g., when
the equilibrium state has six vortices, the six antivortices are
only half as far away as the first antivortex.

The critical field that we calculate for the conventional
geometry of a circular film in a uniform external perpendicular
field agrees well with Fetter’s.10 In this geometry the first
vortex-bearing state has a single vortex at the origin. Since
the applied field is uniform, the work done when that vortex
appears can be calculated from15 W = B0

∫
dA tMz(ρ), where

the magnetization is: tMz(ρ) ≡ ρ × KV (ρ)/2. ρ is a 2D
displacement vector, and KV (ρ) is the vortex sheet current
density. Using a numerical calculation of KV (ρ) that captures
the increase in KV (ρ) near the film perimeter, we find that the
work done by the current supply is: W ≈ 1.25B0�0Rf /μ0,
and therefore the external critical field is:

B0
c1 ≈ 1.6�

Rf

�0

4π�2
ln

(
�

ξ

)
(uniform external field). (19)

This field is only about 60% higher than Fetter’s10 numerical
result in the large-radius, strongly screening film limit (see
Fig. 5 and associated text in Ref. 10), the difference being due
to different treatments of the increase in KV (ρ) near the film
perimeter.

In seeming contradiction to our result, Mawatari and Clem12

(MC) find that vortices first enter a large-radius, “thick”
film (ξ � t � λ) in a nonuniform applied field (produced
by a straight wire parallel to the film) when the maximum
parallel field at the sample surface reaches B

||
c1 ≈ 2�0

πt2 ln( 2t
πξ

)
(Refs. 16–18) for a strongly screening film without vortex pin-
ning. For comparison with the present paper, MC’s conclusion
can be rephrased as: vortices first appear when the maximum
applied perpendicular field is B0 = �0

2πt2 ln( 2t
πξ

). For quasi-2D
films, i.e., a few coherence lengths thick, this is orders of
magnitude larger than our external critical field. We propose
that MC’s critical field is the field at which the barrier for
creating vortex-antivortex pairs vanishes.

III. SUMMARY

Motivated by a desire to understand nonlinear effects in
two-coil measurements, we calculate the external lower critical
field B0

c1 when a nonuniform magnetic field is applied to
an infinite-radius thin superconducting film. The first vortex-
bearing state has both a vortex and an antivortex, the former
near the origin and the latter far from the origin, but not at
infinity due to the long-range V-aV attraction. The effective
external force acting on vortices comes from the work done by
the drive-coil’s current supply when vortices move. The radial
distance R where the nonuniform field changes sign emerges in
the same role that the film radius Rf plays in the uniform-field
configuration. In the lab, strong nonlinearities usually appear
at applied fields much larger than calculated here, indicating
that the appearance of vortices is inhibited by vortex pinning
and/or the free energy barrier for breaking nascent V-aV pairs.
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