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We explain the recent numerical successes obtained by Tao Xiang’s group, who developed and applied
tensor renormalization group methods for the Ising model on square and cubic lattices, by the fact that their
new truncation method sharply singles out a surprisingly small subspace of dimension two. We show that in the
two-state approximation, their transformation can be handled analytically, yielding a value of 0.964 for the critical
exponent ν much closer to the exact value 1 than the 1.338 value obtained in the Migdal-Kadanoff approximation.
We propose two alternative blocking procedures that preserve the isotropy and improve the accuracy to ν = 0.987
and 0.993, respectively. We discuss applications to other classical lattice models, including models with fermions,
and suggest that it could become a competitor for Monte Carlo methods suitable for accurate calculations of
critical exponents, taking continuum limits, and the study of near-conformal systems in arbitrarily large volumes.
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The renormalization group (RG) ideas have triggered
considerable conceptual and numerical progress in many
branches of physics.1,2 However, the basic method to thin down
the number of degrees of freedom in configuration space,3

often called “block spinning”, has remained a formidable
computational challenge for most classical lattice models
[e.g., O(N) spin models and lattice gauge theories]. A few
years ago, inspired by the so-called tensor network states4,5

introduced in the context of the density matrix RG method,6,7 a
tensor RG (TRG) approach of two-dimensional (2D) classical
lattice models was proposed.8 Successful approximations8–10

were found for the Ising model on honeycomb and triangular
lattices.

Very recently, the TRG method was successfully extended
to the Ising model on square and cubic lattices by Tao
Xiang’s group.11 There are two important ingredients in
their calculations. First, their formulation allows an exact
block-spinning procedure which separates neatly the degrees
of freedom inside the block, which are integrated over, from
those kept to communicate with the neighboring blocks.
As explained below, this provides a more systematic way
to implement ideas initiated by Migdal12 and Kadanoff13

(abbreviated as MK hereafter). The indices of the tensors run
over some finite vector space of “states” associated with finite
volume link configurations. Second, they used a new method,
based on higher-order singular value decomposition, which
selects in a very economical way the most important states that
ensure communication among the blocks. Calculations using
of the order of 20 states can be carried on a laptop computer.
The excellent agreement found with the Onsager solution in
two dimensions for arbitrarily large volume suggests that TRG-
based methods could become competitors for conventional
Monte Carlo methods.

In this paper, we show that the truncation method of
Ref. 11 for the two-dimensional (2D) Ising model sharply
singles out a 2D subspace of states. Keeping only these
two states, we show that we can construct approximate
RG transformations with three or four parameters, find
the nontrivial fixed point, and obtain precise estimates of
the critical exponent ν associated with the correlation length
from a linear analysis. The accuracy of the estimates is
significantly better than for textbook examples such as the

MK approximation,12–14 the so-called approximate recursion
formula,15 or other hierarchical approximations.16,17

The TRG formulation for the Ising model can be extended
to O(N ) nonlinear σ models and recent numerical implemen-
tations for O(2) (Ref. 18) indicate an optimistic outlook. It
also seems possible to formulate models with local invariance
and avoid sign problems. In this context, it is important
to understand why the method works so well for the Ising
model.

The paper is organized as follows. We review the basic
TRG formulation for the Ising model on a square lattice,
emphasizing the connection with the MK ideas. We then
consider the cases of an isotropic blocking (as in the Migdal
recursion) and an anisotropic blocking (as in the Kadanoff
version and in Ref. 11). We also propose a new type of
accurate isotropic projection based on a transfer matrix. We
briefly discuss the 3D Ising model and how the method can be
applied for lattice fermions. The implications for the study
of near-conformal systems and the calculations of critical
exponents are discussed in the conclusions.

We consider the nearest-neighbor Ising model on a square
lattice with an inverse temperature β. For easy reference, we
stay close to the notations of Ref. 11, where it is shown that
the partition function can be written as

Z = T r
∏

i

T
(i)
xx ′yy ′ . (1)

The tensor T
(i)
xx ′yy ′ is attached to each site i, and T r is a

short notation for contractions over the links joining nearest
neighbors on the lattice. The horizontal indices x, x ′ and
vertical indices y, y ′ take the values 0 and 1. The tensor is
zero for an odd number of 1. For an even number of 1, a
factor t1/2 [with t ≡ tanh(β)] appears for each 1, irrespective
of the direction. The partition function can be interpreted as a
sum over intermediate states attached to the links. The reader
familiar with the high-temperature expansion of the model will
recognize that this expression reproduces exactly the proper
closed paths with the proper weights.

We now use this reformulation to blockspin. First, we follow
Migdal12 by using an isotropic procedure. We consider a square
block enclosing four sites and sum over the states, inside the
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FIG. 1. (Color online) Graphical representation of T ′
XX′YY ′ (top)

and M
〈ij 〉
X(x1,x2)X′(x′

1x′
2)yy′ (bottom). The boundary of the block is

represented by the dashed lines and the product states by ovals.

block, associated with the nearest-neighbor links joining these
four points. This defines a new rank-4 tensor T ′

XX′YY ′ , where
each index now takes four values:

T ′
X(x1,x2)X′(x ′

1,x
′
2)Y (y1,y2)Y ′(y ′

1,y
′
2)

=
∑

xU ,xD,xR,xL

Tx1xU yyL
TxU x ′

1y2yR
TxDx ′

2yRy ′
2
Tx2xDyLy ′

1
, (2)

where X(x2,x2) is a notation for the product states. For reasons
that will become clear later, we use the convention X(0,0) =
1, X(1,1) = 1, X(1,0) = 3, X(0,1) = 4. Later, we also use the
ket notation |00〉 for X = 1, etc. This is represented graphically
in Fig. 1.

The new tensor can be used to define an exact expression
of the partition function of the same form as (1); however,
the number of states proliferates as 22n

after n steps and
approximations are needed in order to get an expression useful
for practical purposes.

The truncation method of Ref. 11 relies on an anisotropic
blocking involving two sites as shown at the bottom of Fig. 1.
This provides a new rank-4 tensor:

M
〈ij〉
X(x1,x2)X′(x ′

1x
′
2)yy ′ =

∑

y ′′
T

(i)
x1,x

′
1,y,y ′′T

(j )
x2x

′
2y

′′y ′ , (3)

which can be put in a canonical form by using a higher-
order singular value decomposition defined by a unitary
transformation on each of the four indices (see Ref. 11 for
justifications and refinements). The unitary transformation for
each index is the one that diagonalizes the symmetric tensor
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FIG. 2. (Color online) The four eigenvalues of GXX′ at the first
step, on a logarithmic scale, as a function of t = thβ.

obtained by summing over all the other indices in the following
way:

GXX′ =
∑

X′′yy ′
MXX′′yy ′M∗

X′X′′yy ′ . (4)

We now consider approximations where for each index we
only keep the two states which correspond to the two largest
eigenvalues of GXX′ . With our convention on the product
states, this matrix is block diagonal because it does not connect
states with an even number of 1’s (X = 1,2) to states with an
odd number of 1’s (X = 3,4). Numerically, we found that the
two smallest eigenvalues are always very small compared to
the largest one for any value of β and that the second-largest
one is small at small β and almost as large as the largest one at
large β. This situation is illustrated for the initial step in Fig. 2.
After iterations the gap sharpens as if going to smaller t for
t < tc or larger t for t > tc.

The two new states have the form

|0′〉 = cos φ|00〉 + sin φ|11〉, |1′〉 = (|10〉 + |01〉)/
√

2 .

(5)

The angle φ is obtained by diagonalizing the even-even block.
The symmetric form of |1′〉 is a consequence of G33 = G44,
itself due to reflection symmetry.

With this rather drastic projection, we obtain a new rank-4
tensor with indices taking again two values and the same parity
selection rule. We divide the new tensor by a constant in such
a way that, dropping all the primes hereafter, T0000 = 1. In the
isotropic case, the reflection symmetry imposes that T1010 =
T0110 = T1001 = T0101 ≡ t1, T1100 = T0011 ≡ t2, T1111 ≡ t3. For
the initial tensor, we have what we call later the “Ising
condition”,

t1 = t2 and t3 = t2
1 , (6)

but this property is not preserved by the blocking procedure,
which can be expressed as a mapping of the three-dimensional
(3D) parameter space (t1,t2,t3) into itself. This can be ex-
pressed as rational expressions involving the values of the
tensor and trigonometric functions of φ. They are analytical
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expressions and derivatives can be taken to calculate the
linearized map. They are not written explicitly here but can
be obtained easily with symbolic manipulation programs.

A fixed point is found for β = 0.411 594 547 . . . not far
from the exact value 0.440 68. . .. The fixed point is ap-
proximately t�1 = 0.443 492, t�2 = 0.298 462, t�3 = 0.304 291,
and shows significant departure from the Ising condition (6).
The eigenvalues of the linearized RG transformation are λ1 =
2.017 7, λ2 = 0.202 2, and λ3 = 0.099 67. The scaling factor
b is 2, and this implies the values for the critical exponents ν =
log b/ log λ1 � 0.987 and ω = − log λ2/ log b � 2.31, which
can be compared with the exact values 1 and 2, respectively.

For comparison, the also isotropic Migdal recursion for the
D = 2 Ising model and b = 2 can be written as

t ′ = 2t2/(1 + t4). (7)

The fixed point is at t� = 0.543 689 and corresponds to βc =
0.609 378, and ν = 1.338. This approximation can be seen as
a two-state approximation, which in addition requires the Ising
condition. Improvements of MK discussed in Ref. 14 lead to a
value of ν = 0.796 at first order in their expansion parameter
and 0.93(1) at second order, the error bar coming from the use
of different Padé approximants.

This suggests that the Ising condition is too restrictive. It is
nevertheless possible to modify the angle θ in Eq. (5) in such
a way that Ising condition remains valid. This is nontrivial be-
cause the Ising condition amounts to two equations. However,
an explicit calculation shows that if tan φ = 1/ tan β, the two
conditions are satisfied and the mapping takes the form

t ′ = (1 + t2)/2t , (8)

which unfortunately has only the low-temperature fixed point.
The above results can be compared with the two-state

truncation for the anisotropic blocking used in Ref. 11, where
a first projection occurs after blocking pairs of vertical sites,
as already introduced in Eq. (3). The complete transformation
is then obtained by repeating the procedure with a horizontal
blocking as in Kadanoff’s proposal.13 We use our previous
notations but with h and v subscripts denoting the horizontal
and vertical couplings, respectively: T1100 ≡ t2h and T0011 ≡
t2v . We keep the same notations for t1 and t3, which are
invariant under the interchange of the vertical and horizontal
directions. We have now a map with four parameters. In
the Ising condition, we need to replace t2 by

√
t2vt2h. We

take initial values that satisfy the Ising condition and are
isotropic [t2h = t2v = t = tanh(β)]. The critical value is then
tc = 0.379 453 244 411 09 . . ., with a nontrivial fixed point for
approximately t�2h = 0.213 58, t�2v = 0.379 24, t�1 = 0.419 98,
and t�3 = 0.271 77, which is clearly anisotropic and violates
the Ising condition. We have an additional, intermediate
eigenvalue which is approximately 0.657 and specific to the
anisotropic case. This value is not very far from unity, which is
why it requires more fine tuning of β to get rid of the irrelevant
directions. The first and third eigenvalues are 2.052 and
0.193 4, respectively, which implies ν = 0.964 and ω = 2.37.

This anisotropic version can be compared with the Kadanoff
recursion (Ref. 13) for b = 2, where first, the horizontal
bonds are slid vertically with βh doubled and tv squared. This
corresponds to doubling the vertical lattice spacing first as
we did above. After repeating the procedure with horizontal

moves, we obtain the Migdal recursion of Eq. (7) for tv while
for th we obtain

t ′h = [
2th/

(
1 + t2

h

)]2
, (9)

which corresponds to reversing the order of the two operations.
The fixed point is t�v = 0.543 689 and t�h = (t�v )2 = 0.295 598.
The eigenvalue is the same in both directions and the value of
ν identical to the Migdal case.

We have also considered the isotropic map with a different
truncation. Instead of Eq. (4), we use

G̃XX′ =
∑

X′′yy ′
MXX′′yyM

∗
X′X′′y ′y ′ . (10)

The trace of this matrix is the partition function for a 2 × 2
model with periodic boundary conditions. This gives a slightly
displaced fixed point at βc = 0.394 867 8, t�1 = 0.422 29, t�2 =
0.286 37, and t�3 = 0.274 66. The values of the exponents are
ν = 0.993 and ω = 2.37. It should be noted that in this case the
two small eigenvalues at criticality (0.001 28 and 0.000 069 8)
are much smaller than in the first calculation (0.118 and
0.052 5), which may explain the improved accuracy on ν.

Extensions of these methods for more states, more com-
ponents, and more dimensions are in progress. For practical
purposes, the analytical methods discussed above need to be
implemented numerically. We have succeeded in reproducing
all the results obtained so far with adequate accuracy using
numerical procedures which can be implemented using the
most common programming languages. The fixed point can be
found by monitoring successive bifurcations in tensor values.
The high- and low-temperature phases are characterized by the
fact that some tensor values go to zero (when β is too small)
or one (when β is too large) if we iterate enough times. We
can then fine tune β and observe the stabilization of tensors
at some nontrivial values. The eigenvalues can be found by
taking numerical derivatives of the one-step transformation
with respect to the initial values as close as possible to the
nontrivial fixed point. This requires variations small enough
but not too small, since we have only limited accuracy on
βc; however, accurate results can be obtained using linear
extrapolations to zero variation.

The formulation can be extended in D dimension using
tensors with with 2D indices. The reason the TRG blocking
works well in any dimension is that the links are orthogonal
(dual) to domain boundaries. We keep the link variables across
the boundaries of the block fixed and sum unrestrictedly over
all the states inside the block. We have extended the third
method described above to the 3D Ising model. The block is
then a cube with four external legs coming out of each of the
six faces. The blocking and the projection can be built out of
the loop made by the four edges of a face with four external
legs attached to each of the four corners. The initial transfer
matrix can be obtained by tracing the external legs in the plane
of the loop with their opposite leg. We then obtain a 16 × 16
matrix corresponding to the four legs coming out of the plane
of the loop in each direction. This matrix splits into two 8 × 8
blocks. Numerically, we found βc = 0.199 659 777 323 9 . . .

for a two-state projection. The initial eigenvalues of G̃XX′ at βc

are 1.232 5, 0.508 2, and a pair with value 0.168 2 which cannot
be considered as small. For this reason, the value of ν � 0.74
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for the 2D Ising model in the two-states approximation is not
very close to the accurate value 0.630(2),19 but it is nevertheless
more accurate than the MK approximation value 1.055.

There is good empirical evidence11,18 supporting the idea
that as we increase the number of states in TRG calculations,
the numerical estimates of energy and entropy get closer to
values obtained by exact methods (for the 2D Ising model) or
Monte Carlo simulations [for the 2D O(2) model]. However, in
order to reach a reasonably large number of states (20–30) on
a laptop, one needs to use efficient methods. The anisotropic
TRG methods discussed above involve fewer contractions or
external legs and the computational cost for Ns states can be
limited11 to a N7

s growth in two dimensions and a N11
s growth in

three dimensions. Numerical implementations of our method
for up to 12 states are now in progress.20 In all cases, we
observe a sharp split between a few large eigenvalues, their
number being characteristic of the phase, and the small ones
as in the two-states case. The interesting behavior of these new
maps will be discussed elsewhere.20

Because of the binary nature of Grassmann numbers, the
techniques developed for Ising models can also be used for
lattice models with fermions. In the case where we have
Grassmann variables ψ (i)

α with α = 1,2, . . . ,q at every site i

and nearest-neighbor interactions specified by a q × q matrix
A

〈ij〉
αβ at every link 〈ij 〉, we can write

exp
(
ψ (i)

α A
〈ij〉
αβ ψ

(j )
β

) =
∑

n
〈ij 〉
α =0,1

q∏

α=1

(
ψ̃ (i)

α λαψ̃ (j )
α

)n
〈ij〉
α

.

The ψ̃ are linear combinations of the ψ at the same site
obtained from the decomposition A = U�V †, with U and V

unitary and � diagonal with elements λα . The terms can then

be factorized at every site and the local integrations performed.
The states are now parametrized by n

〈ij〉
α and there are 2q

of them at every link. Translational invariance is essential to
perform large-volume calculations. For this reason, possible
gauge interactions would need to be averaged inside the blocks.

In summary, we have shown that two-state approximations
of the TRG capture the universal behavior of Ising models
much better than the MK approximation. Building on the
numerical success of Ref. 11, which uses more states, we
expect to be able to use the methods presented here to calculate
the exponents of the 3D Ising model with unprecedented
accuracy and study the analytical picture of the critical
behavior provided in Refs. 21 and 22. Recent numerical results
for the TRG method applied to the O(2) model18 suggest
that improvements of the MK approximation could be applied
to Abelian models and resolve the controversy regarding the
confinement in four-dimensional U(1) gauge theory discussed
in Ref. 23. We are hoping to be able to extend the TRG
method for lattice gauge theories with fermions. Being able to
block spin accurately would provide an efficient tool to study
the continuum limits of asymptotically free models and the
conformal window of models that could provide alternatives
to the fundamental Higgs mechanism.24

Our work on the subject started while attending the
KITPC workshop “Critical Properties of Lattice Models” in
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T. Tomboulis, J. Unmuth-Yockey, X.-G. Wen, T. Xiang, Z. Xie,
J. Yu, and H. Zou for valuable conversations and suggestions.
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