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Inductive detection of magnetic vortex gyration
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Vortex cores in Landau-domain patterns are resonantly excitable by alternating magnetic fields in the sub-
gigahertz regime. We present a highly sensitive method to detect the vortex gyration in single micrometer-sized
elements spectroscopically by measuring spectra of induction voltages caused by the stray fields of a single
ferromagnetic square exposed to an alternating Oersted field. A distinct change of the induction voltage is
observed around the resonance frequency of the vortex core. The shape of the measured spectra deviates from
Lorentzian profiles due to voltages induced by magnetic fringing fields of the exciting currents. An analytical
description of the measured spectra is given. A characteristic frequency shift in external magnetic fields proves
that signals detected by the induction sensor originate from the dynamically excited Landau-domain pattern. The
measurements on a single square are compared with measurements on an ensemble of uniform squares.
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I. INTRODUCTION

Thin soft magnetic film elements develop characteristic
magnetization patterns that spark interest in fundamental
research.1 Especially permalloy (Ni80Fe20) elements are ex-
tensively investigated because this material has vanishing crys-
talline anisotropy; i.e., only the exchange energy and the stray-
field energy significantly contribute to the magnetic properties.
Transport measurements such as pulsed inductive microwave
magnetometry2,3 and absorption spectroscopy4,5 allow one to
examine the magnetization dynamics of films and ensembles of
uniform elements. But uniformity can be a challenge because
a single element never equals another one on the scale of
single crystallites. Defects and roughnesses can lead to a
modified magnetic behavior such as different switching fields6

and different resonance frequencies7 of magnetic patterns in
alternating magnetic fields. The average over many elements
might inhomogeneously broaden the signals. Brillouin light
scattering spectroscopy allows one to investigate spectra of
spin-wave modes in single thin-film elements at frequencies
above 2 GHz.8 With time-resolved scanning Kerr microscopy
also investigations at lower frequencies are possible.8–10 The
spatial resolution is limited either by the diameter of the
laser spot or by the wavelength of the light. X-rays enable
spatial resolutions in the regime of nanometers. Via the x-ray
magnetic circular dichroism even magnetic vortices can be
resolved with time-resolved scanning x-ray microscopy11–13

or time-resolved photoemission electron microscopy.14–17 The
drawback of these two methods is the availability of beam time
and the limited precision in frequency. Electrical detection
methods on single elements fill the gap between ensemble
transport spectroscopy and microscopic measurements on
single elements. Nakano et al. detected the vortex gyration in
single disks with magnetic tunnel junctions.18 We use a highly
sensitive inductive technique to study single squares with a
Landau-domain pattern spectroscopically. A micrometer-sized
induction loop is placed above the element in order to measure
the change of the magnetic flux. In contrast to other work
that investigated ferromagnetic wires19,20 we aim at electrical
detection of the dynamics of a single magnetic vortex.21

The gyrotropic mode of the vortex core is identified by a

characteristic resonance shift in static external fields13 where
the shape of the resonance curve can be described analytically.

II. EXPERIMENTAL SETUP

The change of the magnetic flux φ that penetrates an
induction loop causes a voltage Vind according to Faraday’s law
of induction. The magnetic flux is the product of the magnetic
induction B with the area A surrounded by the loop and the unit
vector ez perpendicular to the plane loop. Thus the induction
voltage is given by

Vind = −d (A B ez)

dt
. (1)

In this work the induction voltage is used to detect magneti-
zation dynamics in a micrometer-sized permalloy square that
is exposed to an alternating in-plane Oersted field. The vortex
performs a gyrotropic motion12,22 if the excitation frequency
matches its resonance frequency. The magnetic stray field of
the square changes periodically with the gyration frequency of
the vortex. The induction loop senses the stray-field variation
induced by the vortex motion. Only the z components account
for the measurable magnetic flux because the loop on top of
the square is prepared parallel to the film plane as shown in the
inset of Fig. 1. The stray fields of the domains and the domain
walls can be detected rather than the stray field of the vortex
itself23 because of its small extension of a few nanometers.24

The detection of the gyration in a square by an induction
loop requires the deposition of several materials, laterally
defined by electron-beam lithography. First a gold stripline
with a thickness of 57 nm is evaporated on a gallium arsenide
wafer with an adhesive chromium layer. The current through
the stripline alternates with frequencies in the gigahertz regime
and generates the Oersted fields that drive the vortices. To avoid
topological and magnetic inhomogeneities in the permalloy
due to the surface roughness of the subjacent gold layer,
hydrogen silsesquioxane (HSQ), a negative electron-beam
resist, is coated on the stripline before the permalloy film is
deposited. This assures a plane surface. HSQ is mixed with
methylisobutylketone (MIBK) to reduce the layer thickness.
With an atomic force microscope a root-mean-square rough-
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FIG. 1. (Color online) Illustration of the stack of materials. The
inset shows a schematic of an induction loop that covers one half of
a permalloy square.

ness of the HSQ layer of 0.2 nm is measured. This roughness
is 88% less than the one of the underlying gold layer. The
permalloy square on top of the HSQ layer has a lateral size
of 2.2 μm and a thickness of 60 nm. Subsequently a 40-nm-
thick silicon nitride layer is deposited with plasma-enhanced
chemical vapor deposition (PECVD). This method provides an
isotropic coverage including the edges of the stripline and the
permalloy square. Thus the loop, placed on top of the stack of
materials, has neither electrical contact to the stripline nor to
the permalloy. Since the loop is electrically insulated from the
stripline and not sensitive to in-plane field components, only
a small fraction of the exciting signal is transmitted into the
loop by out-of-plane components of the Oersted field. Thus the
layer sequence allows one to resolve small induction voltage
signals.

Via simulations the change of the magnetic flux through
the induction loop above the excited Landau-domain pattern
and the concomitant induction voltage can be determined.
Figure 2(a) shows the induction voltages, calculated from
simulations with the OOMMF code,25 at eight phases of a vortex
gyration. Voltages lower than −660 pV are colored in dark
red. The induction loop is located 40 nm above a permalloy
square with a lateral size of 2.2 μm and a thickness of 60 nm.
The gyromagnetic ratio γ = 2.21 × 105 mC−1, the saturation
magnetization MS = 8 × 105 Am−1, a Gilbert damping α =
0.01, and the exchange constant A = 1.3 × 10−11 Jm−1 of
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FIG. 2. (Color online) (a) Simulation of the spatially resolved
induction voltages Vi generated by the flux change 40 nm above
a gyrating Landau-domain pattern. Eight vortex positions with the
phases ϕ = 2πn/8 are shown. The arrows in each graph indicate
the strength and the direction of the external Oersted field. (b) Total
induction voltage Vind versus time for a loop as indicated in the inset
of Fig. 1 (orange dotted line) and negative time derivation of the
external field in arbitrary units versus time (green solid line). The
pluses correspond to the graphs in (a). The dashed line represents
the effective value of the induction voltage.

permalloy were used.12 For the calculation of the induction
voltage the area of the permalloy square is discretized. Thus
the simulation delivers the induction voltage Vind = ∑

i Vi =∑
i Bi �A/�t, where i numbers the simulation cells that all

have the same area of �A = 5 × 5 nm2. The time difference
between the iteration steps is �t . To determine the excitation
amplitude for the simulations we use values of our experi-
ments. In the experiment the amplitude of the output voltage of
the stripline measured with an oscilloscope is 67 mV. A loss of
3 dB from the stripline to the oscilloscope is considered. Thus
the alternating Oersted field directly above the stripline has an
amplitude of approximately 0.21 mT.2 In the simulations the
vortex dynamics is simulated by applying a sinusoidal external
magnetic field with this amplitude and a frequency of 178 MHz
that equals the resonance frequency of the vortex. The steady
state of the vortex motion is reached after 100 ns.

The vortex core is the fastest moving part of the Landau-
domain pattern so that the maximal flux change occurs in the
simulation cell that is closest to the vortex position. Still its
contribution to the total flux change is comparatively low. Also
the domain walls give rise to strong changes of the flux that
weaken from the center to the corners where the domain walls
are pinned. The induction voltages of all simulation cells in the
induction loop are summed up to obtain the induction voltage
Vind. One half of the total flux above the square is always
compensating the opposite half. Thus, a symmetric position of
the loop would result in an induction voltage close to zero. We
calculated several geometries of the loop and found that it is
appropriate to cover only one half of the square as illustrated
in the inset of Fig. 1 so that the gyrating vortex periodically
moves in and out of the area encircled by the loop. For a radius
of the vortex trajectory of about 190 nm an induction signal in
the microvolt regime is expected as plotted in Fig. 2(b). With
the integrating setup described in the following section we
will measure the effective value of the voltage that is 1/

√
2 of

the amplitude. The effective voltage is indicated by the black
dashed line in Fig. 2(b).

Figure 3 shows a schematic of the setup for the inductive
detection. The inset depicts a scanning electron micrograph of
the loop prepared above the permalloy square. Magnetization
dynamics in the permalloy square is excited by radio-frequency
Oersted fields of the signal line. The stripline is matched to

FIG. 3. Schematic of the measurement setup for the inductive
detection. The induction loop on top of the permalloy square is
positioned above the signal line of a waveguide in ground-signal
geometry. The inset shows a scanning electron micrograph of the
induction loop above the permalloy square.
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a 50 � impedance to avoid wave reflections. The spectrum
analyzer connected to the induction loop is set to measure the
power at the frequency of the signal generator. The induction
voltage is determined from the power by U = √

50 � × P .
Due to the small induction voltages below microvolts the
signal cannot be detected directly. A superimposed signal
in the range of 200 μV originating from the stripline must
be eliminated. To achieve this, first the induction voltage
is measured at a specific frequency and external field Hext.
This signal contains the information about the magnetization
dynamics in the square. Then a reference measurement is
performed at the same frequency but with an external field of
50 mT that saturates the magnetization of the permalloy and
consequently excludes vortex motion. The difference of the
two measurements delivers the differential induction voltage
�Vind. So ideally we only obtain a nonzero signal if the
magnetization pattern changes. With this setup the noise of
the measured voltage has only a root-mean-square value of
about 8 nV at 100 MHz.

III. EXPERIMENTAL RESULTS

It is known that the vortex resonance frequency changes for
increasing static external magnetic fields.5,13,26 In permalloy
squares the resonance shift depends on the direction of the
external field. In squares a redshift is expected for fields
applied along an edge of the square, a blueshift if the field
is applied along a diagonal.13 With the precondition that the
vortex trajectory should be in the area encircled by the loop
for one half of the period the external field has to be applied in
the y direction. Then the vortex is only deflected along the x

axis that is defined in Fig. 1. Thus a redshift of the resonance
frequency is expected. We measure the differential induction
voltage �Vind for external fields Hext between −22 mT and
22 mT and frequencies between 50 MHz and 300 MHz. The
spectra are shown in Fig. 4. For the vortex gyration a resonance
frequency of about 178 MHz is predicted in simulations if no
external field is applied. This frequency coincides with the
measured resonance in the induction spectra if the resonance
is interpolated to zero field. The induction signals exhibit a
distinct redshift if the static external magnetic field is swept to
higher magnitudes. The decrease of the resonance frequency

FIG. 4. (Color online) Differential spectra of the induction volt-
age �Vind versus external magnetic field for a 2.2 μm wide and 60 nm
thin permalloy square. The external magnetic field Hext is applied
along the y direction.

indicates that the observed magnetic dispersion is caused by
a resonantly excited vortex in the permalloy square as it
coincides with expectations for vortex motions in nonharmonic
potentials.4,13,27 From the simulation in Fig. 2 an induction
voltage of about 5 μV is expected from the gyration. In the
measurements we reach a maximum induction voltage of about
1 μV. The reason for the discrepancy is that the measured
induction voltage is a superposition of the voltage induced by
the z component of the Oersted field from the stripline and the
voltage induced by magnetization dynamics in the permalloy
square. In general the two voltages are out of phase (see
Sec. IV). Further a signal loss from the induction loop to the
spectrum analyzer and the finite loop thickness of about 90 nm
cause deviations from the simulations. Thus the magnitude of
the measured voltage is reasonable.

To facilitate the interpretation of the signal obtained from
the induction loop we compare the induction voltage spectra
with ensemble microwave absorption measurements. Three
rows of a total of 1200 permalloy squares with nominally
the same size as the single one prepared for the inductive
detection are deposited on the substrate. The center-to-center
distance between adjacent squares is 3 μm. A 9-μm-wide
stripline is prepared upon the squares. A part of the sample
is shown in Fig. 5(a). Similar to the previously described
setup the signal generator supplies the excitation via Oersted
fields. The 50 � resistor is replaced by the spectrum analyzer
maintaining a 50 � matching condition to directly measure
the absorbed microwave power. Figure 5(b) shows spectra
of the vortex resonance of the permalloy squares in the
sub-gigahertz regime. Increasing external field strengths shift
the frequency slightly. For fields larger than about 7 mT a

FIG. 5. (Color online) (a) Optical micrograph of an excerpt
of the investigated sample with 1200 permalloy squares below a
stripline. (b) Absorption spectra of the 1200 permalloy squares in
different external magnetic fields. The dashed line corresponds to the
absorption maxima determined by Lorentzian fits. The pluses indicate
the resonance frequencies obtained from the induction voltage spectra
in Fig. 4 from a single square. (c) Absorption spectrum at an external
field of 3 mT.
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strong redshift occurs that has been discussed above and
described elsewhere.13 The dashed line represents maxima of
Lorentzian fits to the absorption at the accordant external field.
While the absorption measurements deliver approximately
Lorentz-like resonance curves with a single minimum [see
Fig. 5(c)] the induction spectra in Fig. 4 show a voltage
minimum followed by a maximum. This characteristic shape
originates from the alternating Oersted field that also induces
a voltage into the loop. Indeed this signal is subtracted by
the reference measurements when there is no vortex. The
measured signal is a convolution of the voltage induced by the
vortex motion and the voltage induced by the Oersted field.
The phase of the signal from the vortex gyration is shifting
with respect to the excitation when changing the frequency
and leads to a constructive or destructive interference of both
contributions. The phase changes by 180 ◦ from frequencies
smaller to frequencies larger than the resonance frequency.28

This is why there is a formation of a dip of the effective
voltage in front of the peak in the induction voltage spectra
(see Sec. IV). The pluses in Fig. 5(b) correspond to the
differential induction voltages between the minimum and
the maximum signal for the single square shown in Fig. 4.
The good agreement between the induction signals and the
absorption maxima of the ensemble measurements confirms
the conclusion that the induction loop senses the magnetization
dynamics of the permalloy square. In contrast to the ensemble
measurements the inductive measurements show a nonmono-
tonic behavior of the resonance frequency by changing field
strengths continuously. These characteristics originate from
irregularities in the inner structure of the permalloy square
that locally change the magnetic properties and consequently
the resonance frequency. Kamionka et al. observed similar
effects on the amplitude of the vortex trajectory. It abruptly
changes by varying the excitation energy slightly.29

The spectra in Fig. 5(b) exhibit asymmetries in frequency
around their resonances. An example is given in Fig. 5(c). The
asymmetry could be caused by nonlinear vortex oscillations.
When the vortex is treated as a quasiparticle its potential can
be assumed to be parabolic28,30 if the vortex motion is mainly
located in the inner part of the square. Closer to the edge of the
square, i.e., for a large vortex gyration radius, nonparabolic
terms have to be considered.13,27 These terms presumably
cause the asymmetric shapes of the resonance curves. Com-
parison of Fig. 4 and Fig. 5(b) reveal that individual vortex
resonances can deviate from averaged measurements. This
shows that irregularities such as defects and roughness are
important in the description of vortex dynamics.

Defects in Landau-domain patterns can change the reso-
nance frequency of the vortex or pin it. This can be used to
read information about the chirality electrically by artificially
placing defects on magnetic films. In the induction spectra of
Fig. 4 a gap with no sign of magnetization dynamics exists
between −2.0 mT and 0.7 mT. In this regime the vortex is
presumably pinned close to the center of the square. Figure 6(a)
shows a scanning electron micrograph of the investigated
square with a contrast that emphasizes defects. If such defects
disturb the vortex motion locally the resonance frequency will
shift. The defect that is highlighted in Fig. 6(a) is positioned
slightly on the right-hand side of the center. Negative (positive)
field magnitudes in the y direction shift the vortex to the

FIG. 6. (Color online) (a) Scanning electron micrograph of the
investigated square with an induction loop on top. The dashed line
encircles a defect; the solid red circle indicates an undisturbed vortex
trajectory. (b) Landau-domain pattern with a chirality of c = −1 in
a static external field of Hy > 0. (c) Landau-domain pattern with a
chirality of c = +1 in a static external field of Hy < 0.

right-hand side if its chirality is +1 (−1) [see Figs. 6(b) and
6(c)]. The external field interval where the gap occurs lays
mainly at negative field values. From the position of the defect
in the square and the gap in the spectra shown in Fig. 4 we
thus determine a chirality of c = +1. Commonly the states
c = +1 and c = −1 are degenerated and at each measurement
point in the induction spectra the chirality is not stringently one
specific value. But irregularities in the microstructure cause a
preferred chirality in the Landau-domain pattern.

IV. DESCRIPTION OF THE INDUCTION SPECTRA

As described in Sec. III the shape of the induction
voltage spectrum has a minimum directly followed by a
maximum. This behavior is known around resonances for
driven oscillations for the dynamic susceptibility.31 The real
part of the dynamic susceptibility induces a phase shift of the
response of the magnetization to the exciting field whereas
its imaginary part leads to Lorentzian-shaped absorption. In
the inductive method the superposition of the two voltages,
induced by the Oersted field and by the vortex gyration
with varying phases, leads to the characteristic shape of the
measured spectra. In the following we calculate the effective
induction voltage. If it is assumed that the vortex behaves like
a quasiparticle in a harmonic potential the phase �ϕx (�ϕy)
between the vortex position in the x direction (y direction)
and the exciting Oersted field depends on the frequency of
the Oersted field. Figure 7(a) depicts these phases calculated
from the equation of vortex motion.28 We set a chirality
of c = +1, a polarization of p = +1, and an Oersted field
amplitude of μ0Hext = 0.21 mT. A gyromagnetic ratio of
γ = 2.21 × 105 mC−1, an edge length of the permalloy square
of l = 2.2 μm, a resonance frequency ω/(2π ) = 178 MHz
of the vortex gyration, and a damping in the permalloy of

 = 29 MHz (Ref. 32) is used. To determine the frequency
dependence of the effective induction voltage in the loop also
the radius of the vortex gyration has to be considered because
the trajectory’s radius decreases when excited off-resonantly.
Figure 7(b) depicts the calculated amplitudes. The amplitudes
Ax and Ay corresponding to the x and y direction are different
since the trajectories are elliptical for an arbitrary excitation
frequency.
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FIG. 7. (Color online) (a) Phases between the vortex displace-
ment in x (red solid) and y (blue dotted) direction and maximal
Oersted field versus the excitation frequency � for a square with a
lateral size of 2.2 μm. (b) Amplitude of the vortex gyration versus
the excitation frequency. The dashed lines represent the resonance
frequency ω of the vortex. The inset in (b) depicts the dependence of
the induction voltage on the amplitude in the x direction simulated
for a square with a lateral size of 500 nm and a thickness of 20 nm.
(c) Vector diagrams of the phases between the voltages induced by the
Oersted fields from the stripline (green solid arrows) and the vortex
gyration (orange dotted arrows) at excitation frequencies � lower than
(I), equal to (II), and higher than (III) the resonance frequency ω.

In the experiments it is assumed that the alternating
induction voltages from the Oersted field of the stripline with
the phase ϕOe and from the vortex gyration with the phase
ϕVo induce harmonic signals since both are sinusoidal. In

Fig. 7(c) the phase difference �ϕind = ϕVo − ϕOe at the time
t = 0 between the two flux contributions is shown in vector
diagrams for excitation frequencies � lower than, equal to,
and larger than the resonance frequency ω of the vortex. The
resonant case in Fig. 7(c) (II) is obtained from the simulations
in Fig. 2(b). The negative time derivative of the Oersted field
represented by the green solid line is proportional to the
induction voltage. Obviously the induction voltage originating
from the vortex gyration has a phase difference of +π/2 to the
induction voltage from the Oersted field. This phase difference
depends on the arrangement of the loop as well as on the
phases �ϕx and �ϕy . The simulations in Fig. 2 show that
the induction voltage from the vortex gyration is given by the
vortex position. By comparing the phases in Figs. 7(a) and 7(c)
at resonance it can be concluded that the phase difference �ϕind

equals �ϕx . The off-resonant cases in Fig. 7(c) are deduced
from Fig. 7(a) by assuming the same frequency-dependent
phase shift of �ϕind (�) and �ϕx (�). Below we assume that
the voltage induced by the gyrating vortex is proportional to
the vortex displacement justified by the simulations of the
induction voltage for different gyration radii shown in the inset
of Fig. 7(b). The induced voltage is determined directly above
the square with a loop arrangement as depicted in the inset of
Fig. 1. For our sample the proportionality constant between
the voltage induced by the vortex gyration and the gyration
amplitude is about 5.7 Vm−1 if a voltage of 1 μV and a typical
gyration radius of 175 nm is presumed. For the calculation of
the effective induction voltage Veff the averages of Ax (�) and
Ay (�) are taken as amplitudes to scale the induction voltages.

The effective induction voltage Veff is given by

Veff(�) = lim
T →∞

√
1

T

∫ T

0
{VOe cos [�t] + VVo (�) cos [�t + �ϕind (�)]}2 dt, (2)

where the amplitude VOe describes the voltage induced by
the Oersted field from the stripline. The second term with
the amplitude VVo (�) stands for the induction voltage caused
by the gyration of the vortex core. For the geometry of the
induction loop used here the phase differences �ϕind and �ϕx

are equal. Thus the voltage

Veff(�) = 1√
2

√
V 2

Oe + V 2
Vo(�) + 2 VOe VVo(�) cos[�ϕx(�)]

(3)

results. In Fig. 8 a measured induction voltage spectrum at
−4.6 mT (black) is fitted with Eq. (3) (gray) exemplarily. From
the fit 200 μV have been subtracted to obtain the differential
effective induction voltage. This value is set for the voltage
VOe due to the Oersted field. With the fit we obtain a resonance
frequency of 170 MHz, a damping constant of 
 = 23.2 MHz,
and an amplitude of the alternating Oersted field of 0.19 mT.
This amplitude is in good agreement with the amplitude of
0.21 mT calculated with Biot-Savart law. The ratio between the
amplitude of the induced voltage due to the vortex motion and
the gyration radius is 4.1 Vm−1. From the maximum voltage
0.8 μV in the measured spectrum of Fig. 8 a radius of 195 nm

is calculated which is in the range of a typical gyration radius.
Thus all fit parameters have reasonable values. Further the
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FIG. 8. Differential effective induction voltage versus excitation
frequency �. The gray curve is a fit with Eq. (3) minus a voltage
of 200 μV to the experimental curve shown in black measured at
−4.6 mT. The dashed line represents the resonance frequency of the
vortex (170 MHz).
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shape of the induction voltage spectrum is reproduced by
the analytical function and delivers a good description of the
measured profile.

V. CONCLUSION

We demonstrate the possibility to measure the resonance
frequencies of vortex cores in single micrometer-sized permal-
loy squares with an inductive method. This highly sensitive
method allows us to reach a noise level of nanovolts for
frequencies in the gigahertz regime. It enables us to sense
vortex deflections of a few tens of nanometers. Simulations
deliver similar resonance frequencies of the vortex gyration
and similar magnitudes of the voltages induced by the
magnetization dynamics in the Landau-domain pattern as the
experiments. We have shown analytically that the measured
induction voltage spectra are composed of voltages induced by

the Oersted fields from the stripline and voltages induced due to
the gyrating vortex. The chirality of the pattern is determined
directly from spectroscopic measurements by analyzing the
influence of defects. It is interesting for magnetic memories
based on Landau-domain patterns33 that the chirality can be
read out electrically.
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