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Magnetic properties of the spin- 3
2 Heisenberg system Cr2[BP3O12] are investigated by magnetic susceptibility

χ (T ) measurements, electron spin resonance, neutron diffraction, and density functional theory (DFT)
calculations, as well as classical and quantum Monte Carlo (MC) simulations. The broad maximum of χ (T )
at 85 K and the antiferromagnetic Weiss temperature of 139 K indicate low-dimensional magnetic behavior.
Below TN = 28 K, Cr2[BP3O12] is antiferromagnetically ordered with the k = 0 propagation vector and an
ordered moment of 2.5μB/Cr. DFT calculations, including DFT + U and hybrid functionals, yield a microscopic
model of spin chains with alternating nearest-neighbor couplings J1 and J ′

1. The chains are coupled by two
nonequivalent interchain exchanges of similar strength (∼1–2 K), but different sign (antiferromagnetic and
ferromagnetic). The resulting spin lattice is quasi-one-dimensional and not frustrated. Quantum MC simulations
show excellent agreement with the experimental data for the parameters J1 � 50 K and J ′

1/J1 � 0.5. Therefore,
Cr2[BP3O12] is close to the gapless critical point (J ′

1/J1 = 0.41) of the spin- 3
2 bond-alternating Heisenberg chain.

The applicability limits of the classical approximation are addressed by quantum and classical MC simulations.
Implications for a wide range of low-dimensional S = 3/2 materials are discussed.
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I. INTRODUCTION

Magnetic properties of transition-metal compounds are
generally described with the Heisenberg spin Hamiltonian
that may be augmented by additional terms responsible for
the anisotropy. For example, the Hamiltonian

H =
∑
〈ij〉

JSi · Sj −
∑

i

Di (Si · ẑ)2 (1)

accounts for a variety of experimental situations. Here, the
first term describes the isotropic coupling J between spins
on sites i and j , the second term is the single-ion anisotropy
Di , and ẑ is a unitary vector along z, whereas Si and Sj are
quantum-mechanical spin operators. Although a handful of
solvable Heisenberg models exist,1,2 the complex algebra of
the spin operators generally impedes analytical solutions.

A widely used approximation of a Heisenberg model is
its classical treatment: The original quantum-mechanical spin
operators Si are replaced by real-space vectors �Si . This trans-
formation leads to enormous alleviation of the computational
effort, even if the topology of exchange couplings is very
intricate.

A fundamental limitation of classical models is their inabil-
ity to account for quantum-mechanical singlets and the ensuing
underestimation of the ground-state (GS) energy. Indeed, for
an antiferromagnetic (AF) exchange coupling J , the energy of
the quantum-mechanical singlet state −JS(S + 1) is always
lower than the classical energy −JS2 of the antiparallel spin
arrangement. At the same time, the relative energy gain of a
singlet scales as S−1, thus being maximal for S = 1/2 and
infinitesimal in the S → ∞ limit.

Presently, there is empirical evidence that for S � 2
classical models capture the essential physics and correctly
reproduce the experimental magnetic behavior.3–5 In contrast,
classical models often fail to predict the correct GS and
magnetic excitation spectrum for the extreme “quantum”
case of S = 1/2.6,7 Further on, many S = 1 systems, e.g.,
one-dimensional (1D) Haldane chains,8 cannot be treated
classically. Therefore, it is crucial to establish the applicability
limits for the classical approximation in order to distinguish
between the “classical” cases amenable to a simplified model
treatment and the “quantum” cases that require the complete
quantum-mechanical solution of the spin Hamiltonian.

A feasible way towards better understanding of these limits
are real material studies that allow for a direct compari-
son between theory and experiment. Previous work on the
quantum-classical crossover rendered the quasi-1D S = 3/2
magnets as the relevant playground. Despite the relatively large
spin of 3/2, the pronounced one-dimensionality may lead to
sizable quantum fluctuations and, thus, to deviations from the
classical behavior. For example, inelastic neutron scattering
(INS) studies of Cs[VX3] (X = Cl, Br) evidence that at high
temperatures these materials are classical, while lowering the
temperature results in a crossover to the quantum behavior.9

The INS experiments on the quasi-1D magnet AgCr[P2S6]
yielded a sizable discrepancy between the observed spin-wave
velocity and its classical value, thus indicating strong quantum
effects that are present in S = 3/2 chains.10

Here, we present a joint experimental and theoretical study
of the quasi-1D S = 3/2 system Cr2[BP3O12]. Its crystal
structure features magnetic Cr(III)2O9 blocks embedded into
a complex borophosphate framework (Fig. 1). Although this
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FIG. 1. (Color online) Crystal structure of Cr2[BP3O12]. (Top)
View along [0001]. (Bottom left) View perpendicular to [0001]. The
pathways of the leading interchain couplings Jic1 and Jic2 are shown
with dark gray (dark blue) and light gray (red) lines, respectively.
Thick arrows denote the experimental magnetic structure refined in
�1 (see Sec. III B for details). (Bottom right) Dimers are connected
via three PO4 tetrahedra and form chains running along [0001]. The
intradimer coupling J1 (double line) as well as the interdimer coupling
J ′

1 (single line) are shown.

type of crystal structure could lead to the simple magnetism
of isolated spin dimers, neutron diffraction and magnetic
susceptibility measurements evidence long-range AF order-
ing at TN = 28 K that is indicative of sizable interdimer
couplings. Using extensive density functional theory (DFT)
calculations, we evaluate a microscopic magnetic model for
this compound and establish the spin lattice of weakly coupled
bond-alternating Heisenberg chains. This theoretical model is
in good agreement with the neutron scattering and magnetic
susceptibility data.

As the microscopic magnetic model of Cr2[BP3O12] lacks
frustration, its properties can be simulated with the compu-
tationally efficient quantum Monte Carlo (QMC) techniques.
At the same time, the classical model on the same spin lattice
can be treated using classical Monte Carlo (MC) algorithms.
By comparing the QMC and classical MC results, we evaluate
the relative impact of quantum as well as thermal fluctuations
on the spin correlations, and in this way address the crossover
between the quantum and classical behaviors.

This paper is organized as follows. The experimental as
well as numerical methods are described in Sec. II. The
experimental part in Sec. III comprises the results of neutron
diffraction, electron spin resonance (ESR), and magnetic
susceptibility measurements. The DFT-based evaluation of
the microscopic magnetic model (Sec. IV) is followed by
the refinement of model parameters by means of QMC
simulations and subsequent fitting to the experiment (Sec. V).

The differences between the quantum model and its classical
counterpart are discussed in Sec. VI. We summarize our results
and give a short outlook in Sec. VII.

II. METHODS

Cr2[BP3O12] was prepared by the Pechini-type
method.11Chromium acetate (2.172 g) [Alfa Aesar,
23.37(5) wt% chromium content] and 5.7945 g citric
acid (Alfa Aesar 99 + %) were dissolved in 50 ml water.
Glycerol (5 ml) (Sigma 99%) and a well-ground mixture
of 0.3197 g boric acid (Sigma) and 1.7613 g ammonium
dihydrogen phosphate (Merck) were added to the dark green
solution. After slow evaporation of water, a transparent resin
was formed which was dried at 200 ◦C for 2 h. The obtained
product was crushed and transferred to a corundum crucible.
The first heating at 850 ◦C for 12 h yielded a gray-green
product. Several annealing steps with grinding in between
followed. The final product was obtained after heat treatment
at 1000 ◦C for 48 h.

The powder x-ray diffraction pattern (Huber image plate
Guinier camera G670, Ge monochromator, Cu Kα1 radiation,
λ = 1.5406 Å, powdered sample fixed with Vaseline between
two Mylar foils, each 6 μm thick) indicated the formation of
single-phase Cr2[BP3O12].12

Neutron powder diffraction data were collected13 using
the BT-1 high-resolution powder diffractometer at the NIST
Center for Neutron Research. A monochromatic neutron beam
with the wavelength of 1.5403 Å was produced by a Cu (311)
monochromator. Collimators with horizontal divergences of
15′, 20′, and 7′ full width at half maximum were used
before and after the monochromator and after the sample,
respectively. The intensities were measured in steps of 0.05◦
in the 2θ range 3◦–168◦. The data were collected at 4 K, 35 K,
and 300 K. Additionally, the magnetic scattering was studied
with the triple-axis spectrometer BT-7 using the wavelength
of 2.359 Å. The intensity of the strongest magnetic reflection
was monitored with the step of 0.5 K in the 5 K–35 K
temperature range. The structural analysis was performed
using the program GSAS.14 The magnetic structure was refined
with FULLPROF.15

The magnetic susceptibility was measured using a com-
mercial Quantum Design MPMS SQUID in the temperature
range 2 K–380 K in magnetic fields up to 5 T. The ESR
measurement was performed at room temperature with a
standard continuous-wave spectrometer at X-band frequencies
(ν ≈ 9.5 GHz) by using a cylindrical resonator in TE012 mode.

DFT calculations have been performed using the full-
potential local-orbital code FPLO9.00-33 (Ref. 16) and the
pseudopotential projector-augmented-wave code VASP-5.2
(Ref. 17). For the scalar-relativistic calculations, we used
the local density approximation (LDA)18 and generalized
gradient approximation (GGA)19 exchange-correlation po-
tentials. Spin-unpolarized calculations were performed on
a 14 × 14 × 14 mesh of k points. For the spin-polarized
calculations (DFT, DFT + U ), we doubled the cell along c

and used a 4 × 4 × 2 k mesh. Hybrid-functional calculations
were performed in VASP using the HSE06 functional20 on a
2 × 2 × 2 k mesh.21 The convergence with respect to the k

meshes has been accurately checked. All calculations have
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TABLE I. Crystallographic data for Cr2[BP3O12] (space group P 63/m) according to the neutron powder diffraction data at 4, 35, and 300 K.

T 4 K 35 K 300 K
a (Å) 7.9444(2) 7.9448(2) 7.9524(2)
c (Å) 7.3439(3) 7.3448(3) 7.3543(3)
V (Å3) 401.40(2) 401.49(3) 402.78(3)
Rp (%) 5.5 5.8 6.4
Rwp (%) 6.9 7.6 7.9
Rexp (%) 6.1 7.5 8.4

x/a y/b z/c x/a y/b z/c x/a y/b z/c

Cr 4f 1/3 2/3 0.0578(8) 1/3 2/3 0.0614(9) 1/3 2/3 0.0590(7)
P 6h 0.3657(4) 0.3166(5) 1/4 0.3658(4) 0.3168(5) 1/4 0.3653(4) 0.3159(5) 1/4
B 2a 0 0 1/4 0 0 1/4 0 0 1/4
O1 6h 0.4023(4) 0.5254(4) 1/4 0.4009(4) 0.5249(5) 1/4 0.3997(4) 0.5255(5) 1/4
O2 6h 0.1362(4) 0.1931(4) 1/4 0.1351(5) 0.1924(4) 1/4 0.1358(4) 0.1926(4) 1/4
O3 12i 0.4368(3) 0.2691(3) 0.0774(2) 0.4365(3) 0.2697(4) 0.0768(3) 0.4382(3) 0.2716(3) 0.0786(3)

been performed based on the crystal structure determined at
4 K, as given in Table I.

QMC simulations were performed using the code LOOPER

from the software package ALPS version 1.3.22 The magnetic
susceptibility was simulated on 8 × 8 × 64 finite lattices of
S = 3/2 spins in the temperature range 0.25J1–8J1, corre-
sponding to 12.5 K–400 K (see Sec. V) using 30 000 sweeps for
thermalization and 300 000 sweeps after thermalization. The
statistical errors (<0.5%) are below the experimental accuracy.
For simulations of the spin stiffness and the static structure
factor, we used finite lattices up to 13 824 and 2048 spins,
respectively.

For the classical MC simulations, we used the SPINMC

code,22 with 200 000 and 2 000 000 sweeps for and after
thermalization, respectively. The length of the classical vectors
is chosen such that the maximal diagonal correlation matches
the exact quantum result. Chains of N = 800 spins were
evaluated. Exact diagonalization of the Sz = 0 sector was
performed for N = 14 sites alternating S = 3/2 chain using
SPARSEDIAG from the ALPS package.22

III. EXPERIMENTAL RESULTS

A. Crystal structure

The crystal structure of Cr2[BP3O12] has been initially
refined from x-ray powder data in the space group P 3.12

However, the crystal structures of related M(III)2[BP3O12]
borophosphates were determined (M = In) or redetermined
(M = Fe) from single-crystal data in the space group
P 63/m.23 This apparent mismatch led us to reconsider the
crystal structure of Cr2[BP3O12]. A thorough analysis of both
x-ray and neutron powder patterns identified the reflection
condition 00l with l = 2n, which is characteristic of the 63

screw axis. No other reflection conditions could be observed,
so that the list of possible space groups is restricted to
P 63, P 63/m, and P 6322. While the refinement in P 6322
was unsuccessful, the space group P 63/m resulted in low
residuals and a fully ordered crystal structure. Therefore,
this centrosymmetric space group was preferred over its
noncentrosymmetric subgroup P 63. No significant structural
changes between 4 K and room temperature were detected.

Crystallographic data are listed in Table I. Selected interatomic
distances at 4 K are given in Table II.

The structure solution of Cr2[BP3O12] in the space group
P 63/m is consistent with earlier results for other M2[BP3O12]
transition-metal borophosphates.23 Their crystal structures are
isotypic and feature dimers of face-sharing MO6 octahedra
(Fig. 1, bottom). The octahedra exhibit a sizable trigonal
distortion leading to two groups of nonequivalent Cr-O
distances. The shorter Cr-O3 distances of about 1.91 Å (at
4 K) take the terminal position of the Cr2O9 dimer, whereas
the longer Cr-O1 distances of about 2.04 Å are bridging (Fig. 1,
bottom right). The formation of longer Cr-O distances in
the bridging position is due to the Cr-Cr contact remaining
relatively long (about 2.8 Å), in order to reduce the repulsion
between the positively charged Cr3+ ions. PO4 tetrahedra link
the Cr2O9 dimers along [0001], whereas the BO3 triangles
interconnect the PO4 tetrahedra and do not share oxygen atoms
with the CrO6 octahedra (Fig. 1, top).

B. Magnetic structure

At 4 K, an additional magnetic scattering was observed. The
only visible magnetic reflection is at 2θ � 17.6◦ and matches
the weak 101 reflection of the nuclear structure. As the Néel
temperature of Cr2[BP3O12] is TN � 28 K (see below) and no
structural changes below TN are expected, the subtraction of
the 35 K data from the 4 K data results in the purely magnetic
scattering (Fig. 2, inset). However, no clear signatures of other
magnetic reflections could be observed.

According to BASIREPS, the P 63/m space group, the k = 0
propagation vector, and the 4f Wyckoff position of Cr allow
for 12 irreducible representations with the magnetic moments
lying in the ab plane or pointing along the c direction. Most of
these representations can be discarded because they produce

TABLE II. Selected interatomic distances (in Å) in the
Cr2[BP3O12] crystal structure at 4 K.

Cr−O1 3 × 2.041(5) P−O1 1.535(4)
Cr−O3 3 × 1.910(3) P−O2 1.580(4)
Cr−Cr 2.823(11) P−O3 2 × 1.511(2)
B−O2 3 × 1.365(3)
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FIG. 2. (Color online) Cr2[BP3O12]. Temperature evolution of the
magnetic 101 reflection (circles) and the fit with Eq. (2). The residual
intensity above TN is due to the nuclear scattering and background.
(Inset) Refinement of the subtracted (I4 K − I35 K) pattern with spins
along c (�1, dark solid line) and along a (�9, light dashed line). Note
that the temperature scan (main figure) and the angular scan (inset)
are done on different instruments; hence, the respective intensities
should not be compared.

the largest magnetic reflection at 100, 110, or 111, which
is contrary to the experimental observation of the magnetic
scattering at 101 (Fig. 2, inset). The refinement is possible only
in two representations, �1 and �9, that entail the same ordering
pattern (Fig. 1, bottom left) with the magnetic moments along
c and a, respectively.

To evaluate the ordered magnetic moment, we refined the
subtracted pattern as the purely magnetic phase, and fixed the
scale factor according to the refinement of the 35 K pattern,
which is free from magnetic scattering. The resulting magnetic
moment at 4 K is 2.5(1)μB in �1 and 1.1(1)μB in �9, with
the refinement residuals of 0.131 in both models. While the
refinements within �1 and �9 are slightly different at high
angles (see the inset of Fig. 2), the quality of the powder
data is insufficient to observe these marginal differences
and to discriminate between the two models. However, the
spin-only magnetic moment of 3μB , which is expected for
the S = 3/2 Cr3+ ion, strongly favors the solution in �1.
The somewhat lower experimental value of 2.5μB is due to
quantum fluctuations (see Sec. V).

The magnetic structure of Cr2[BP3O12] is shown in Fig. 1
(bottom left). We find that the Cr moments are antiferromag-
netically ordered within each Cr2O9 dimer. The interdimer
ordering is also AF, both in the ab plane and along the c

direction.
Temperature evolution of the magnetic moment can be

tracked by the temperature dependence of the magnetic
reflection 101 (Fig. 2). These data are fitted with the empirical
formula

I (T ) = Ibg + I0

(
1 − T

TN

)β

, (2)

where Ibg refers to the nuclear scattering and background above
TN . The fit yields the Néel temperature TN = 28.2(7) K and
the critical exponent β = 0.38(3). The estimated TN � 28 K
is in excellent agreement with the magnetic susceptibility
measurement presented below (Fig. 3), whereas β falls into the
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FIG. 3. (Color online) (Top) Experimental magnetic susceptibil-
ity χ (T ) of Cr2[BP3O12] measured at 5 T (circles) and fit with the
model of coupled bond-alternating S = 3/2 chains (line). (Bottom
left) Curie-Weiss fit to experimental χ (T ). (Bottom right) Field
dependence of χ (T ). Note the long-range AF ordering transition
at TN = 28 K.

range of values (0.36–0.39) proposed for the 3D Heisenberg
model.24

C. Magnetic susceptibility and ESR

The temperature dependence of the magnetic suscepti-
bility χ (T ) (Fig. 3, top) reveals a typical low-dimensional
behavior with a broad maximum around T = 85 K. The
high-temperature part (T > 200 K) of the curve obeys the
Curie-Weiss law (Fig. 3, bottom left) with the Curie con-
stant C = 1.987 emu K (mol Cr)−1 leading to the effec-
tive magnetic moment μeff =

√
3CkBμ−2

B N−1
A = 3.987μB per

Cr, which is slightly larger than the spin-only contribution
μeff = g

√
S(S + 1) � 3.88μB (assuming the orbital moment

is completely quenched).
The Weiss temperature θ = 139 K and the broad maximum

around T max = 85 K, corresponding to ∼61% of θ , indicate
sizable AF spin correlations. The magnetic ordering temper-
ature TN = 28 K can be clearly traced by the divergence
of the χ (T ) curves measured in low and high fields. While
the low-field measurements show only an inconspicuous bend
around TN , the measurements above 2 T reveal a well-defined
cusp. This divergence is due to the spin-flop transition in the
AF-ordered phase. The spin-flop transition indeed takes place
at about 1.7 T, as shown by the low-temperature magnetization
curve.25

Room-temperature ESR measurements yield a narrow line
that can be fitted with a single powder-averaged Lorentzian.25

Within resolution, the resonance field appears isotropic and
corresponds to the g value of 1.968, which indicates weak
spin-orbit coupling, as typical for Cr3+.

The low-dimensional magnetism of Cr2[BP3O12] is con-
sistent with the presence of Cr2O9 dimers in the crystal
structure. However, isolated spin dimers should have a singlet
GS at low temperatures. The fact that Cr2[BP3O12] develops
long-range AF order with a sizable Néel temperature of 28 K
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FIG. 4. (Color online) Electronic structure of Cr2[BP3O12]. (Top)
LDA density of states. The Fermi level εF is at zero energy. The
contribution from Cr states is shown by shaded filling. (Bottom)
LDA bands in the vicinity of the Fermi level and the fit with the
tight-binding model based on Wannier functions.

implies substantial interdimer couplings via the PO4 groups.
While such couplings are abundant in vanadium and copper
phosphates,26–28 their identification is by no means a simple
task. For example, in Cr2[BP3O12] the shortest interdimer
Cr-Cr distances are 4.55 Å along [0001] and 4.67 Å in the
(0001) plane, and it is impossible to decide a priori whether
one of these pathways is more efficient, or both should be
treated on equal footing. To develop a reliable magnetic model
of Cr2[BP3O12], we perform extensive DFT calculations fol-
lowed by QMC simulations, and provide detailed microscopic
insight into the magnetism of this compound.

IV. DFT CALCULATIONS

To unravel the microscopic origin of the observed low-
dimensional magnetic behavior, we apply DFT calculations
and evaluate the individual exchange couplings. Nonmagnetic
(spin-unpolarized) calculations within both LDA and GGA
yield a well-structured valence band (Fig. 4, top) with the
total width of ∼10 eV, crossed by the Fermi level εF at zero
energy. This metallic electronic GS, contrasting with the green
color of Cr2[BP3O12], originates from the underestimation
of the strong electron-electron repulsion within the Cr 3d

shell. Technically, the band gap can be readily restored in
a spin-polarized calculation, due to the sizable exchange
splitting typical for Cr3+. However, its value is too small
(1.29 eV in LSDA, 1.78 eV in GGA)25 to account for the
green color (�2.2–2.5 eV) of Cr2[BP3O12]. Accounting for
electronic correlations is challenging, since many-body effects
cannot be properly described within the one-electron approach
of conventional DFT functionals.

Typically, multiorbital correlated insulators are described
by an extended Hubbard model that comprises the kinetic
terms (electron transfer), the on-site and intersite correlations
(Coulomb repulsion), and the on-site exchange (Hund’s
exchange). However, the large Hilbert space of such models
impedes even an approximate numerical solution that would
establish a simple relation between the parameters of the
Hubbard model and the resulting magnetic couplings. There-
fore, we restrict ourselves to a qualitative analysis of electron
transfers.

For the quantitative evaluation of magnetic couplings,
we account for correlation effects using the mean-field-like
DFT + U approach or the hybrid (DFT + exact exchange)
functionals. The comparison to the experiment demonstrates
the good agreement between different computational ap-
proaches and underscores the validity of the qualitative
analysis based on the electron transfers. Thus, this qualitative
model approach could also be used as a starting point for more
involved Cr3+ systems with nontrivial coupling pathways.

A. Qualitative model approach

Conventional DFT (LDA and GGA) functionals are known
for their accurate description of electron transfer processes;
thus, kinetic terms of the model Hamiltonian can be evaluated
directly from the LDA/GGA band dispersions for the Cr 3d

states. Typical for an octahedral environment, these states split
into two manifolds: half-filled t2g orbitals centered at εF and
empty eg orbitals that lie ∼1.7 eV higher in energy owing to
the sizable crystal-field splitting.

Altogether, the t2g and eg manifolds comprise 20 bands, in
line with five 3d orbitals per Cr atom and four Cr atoms in a unit
cell. To evaluate the transfer integrals tmm′

ij (m and m′ are orbital
indices, i and j are site indices), we map these 20 bands onto
an effective five-orbital tight-binding model, and parametrize
this model using the Wannier functions (WFs) technique.29

In the WF basis (Fig. 5), the couplings tmm′
ij are evaluated

as nondiagonal matrix elements. The resulting tmm′
ij show

excellent agreement between the tight-binding model and the
computed LDA/GGA band dispersions (Fig. 4, bottom).

Sizable transfer integrals are found for four Cr-Cr pathways
(Table III): The intradimer transfer (t1), the interdimer tranfer
along c (t ′1), the shortest interdimer pathway in the ab plane
(tic2), and the longer interdimer pathway along the [22̄3]
direction (tic1); see Fig. 1. Here, t ′1 and tic2 run via triple
bridges of the PO4 polyhedra (along c), whereas tic1 runs via
a single PO4 tetrahedron. Other couplings are negligible, as
they involve the transfer through at least two PO4 tetrahedra
in a row.

Although an explicit expression relating exchange integrals
Jij to transfer integrals tmm′

ij is presently not available, the

qualitative comparison of tmm′
ij terms elucidates different

contributions to the magnetic exchange. According to the
Goodenough-Kanamori rules, the hoppings between the half-
filled states (both m and m′ belong to the t2g subspace) are
responsible for AF couplings, whereas the hoppings between
the half-filled and empty states (m belongs to t2g , m′ belong to
eg) give rise to ferromagnetic (FM) interactions.
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|xy xz yz z2 − r2 x2 − y2

FIG. 5. (Color online) Cr2[BP3O12]: Wannier functions for five Cr 3d orbitals (see subscripts). Cr, P, and O atoms are depicted by large
(red), intermediate-size (green), and small (red) spheres, respectively. For each of the five WFs, a Cr2O9 dimer and three PO4 tetrahedra are
shown. The projection is similar to the bottom right panel of Fig. 1.

First, we consider the intradimer tmm′
1 hoppings, where

the couplings between different t2g orbitals are dominant:
t
xy,xz

1 = t
xz,yz

1 = t
yz,xy

1 = −125 meV. At the same time, the
largest hopping between the t2g and eg orbitals is smaller

(txy,z2−r2

1 = −97 meV), thus hinting at the AF nature of J1.
For the interdimer coupling t ′1 the difference is even more

TABLE III. Leading transfer integrals tmm′
i (notation according

to Fig. 1), where m and m′ are orbital indices from the following
set: |xy〉, |xz〉, |yz〉, |z2 − r2〉, and |x2 − y2〉. All values are given
in meV. For clarity, only one of two symmetrically equivalent terms
tmm′
ij and tm′m

ij is shown. The Cr-Cr distances (dCr-Cr) are given for the
4 K structure (Table I).

t1
(dCr-Cr = 2.823 Å)

|xy〉 |xz〉 |yz〉 |z2 − r2〉 |x2 − y2〉
〈xy| −38 −125 −125 −97
〈xz| −38 −125 39 −89
〈yz| −38 58 78.9
〈z2 − r2|
〈x2 − y2|

t ′
1

(dCr-Cr = 4.521 Å)
|xy〉 |xz〉 |yz〉 |z2 − r2〉 |x2 − y2〉

〈xy| −124
〈xz| −124 33
〈yz| −124
〈z2 − r2| −60
〈x2 − y2| −60

tic1

(dCr-Cr = 5.875 Å)
|xy〉 |xz〉 |yz〉 |z2 − r2〉 |x2 − y2〉

〈xy| 86 −60
〈xz| −44 75
〈yz| −67
〈z2 − r2| 30 35
〈x2 − y2| 38

tic2

(dCr-Cr = 4.665 Å)
|xy〉 |xz〉 |yz〉 |z2 − r2〉 |x2 − y2〉

〈xy| −30 −30
〈xz|
〈yz|
〈z2 − r2|
〈x2 − y2| −31

pronounced: The hoppings between t2g orbitals amount to
−124 meV, thus dominating over the hopping to the empty
z2 − r2 orbital. Therefore, the interdimer exchange J ′

1 should
be also AF.

The interchain coupling Jic2 is realized primarily via t
xy,xz

ic2
and t

xy,yz

ic2 hoppings; hence, the AF contribution is again
dominant. In contrast, for the interchain coupling Jic1, the
t2g → t2g hoppings are close to zero, whereas the t2g → eg

hoppings are still sizable. Therefore, the overall exchange
should be FM.

The above qualitative analysis is confirmed by elaborate
DFT + U and hybrid-functional calculations reported below.
More importantly, the proposed couplings are in agreement
with the experimental magnetic structure that features an-
tiparallel spins along J1, J ′

1, and Jic2 (Fig. 1, bottom left
panel). The respective AFM couplings establish parallel spins
along the Jic1 bonds that are indeed FM. Therefore, the
spin lattice of Cr2[BP3O12] is nonfrustrated. Because J ′

1 

Jic1,Jic2, this spin lattice can be considered as quasi-1D, with
bond-alternating J1 − J ′

1 chains running along the c direction.

B. Total-energy calculations

A sizable exchange splitting typical for Cr3+ compounds
readily opens a band gap (albeit underestimating the experi-
mental value; see Ref. 25) in the spin-polarized calculations,
so that the magnetic energy can be evaluated directly from
LSDA or GGA total-energy calculations. In particular, total
energies Etot corresponding to different collinear magnetic
configurations can be mapped onto classical Heisenberg
model, thus yielding the exchange integrals Jij :

Etot = E0 + Emagn = E0 +
∑
〈i,j〉

Jij
�Si · �Sj . (3)

We apply this approach to evaluate the intrachain and in-
terchain couplings. In LSDA, we obtain J1 = 151 K and
J ′

1 = 82 K, as well as the FM Jic1= −8 K and the AF
Jic2 = 2 K. Spin-polarized GGA yields marginally smaller
values (Table IV). To challenge these estimates, we address
the Weiss temperature θ , which is a linear combination of
magnetic couplings.30 For the Cr2[BP3O12] spin lattice, the
expected Weiss temperature is

θ = 1
3S(S + 1)(J1 + J ′

1 + 6Jic1 + 3Jic2), (4)

where each coupling is summed up according to its co-
ordination number in the spin lattice. Adopting the values
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TABLE IV. Leading exchange integrals Ji (in K) calculated with
different DFT-based methods. For the DFT + U results, the double-
counting correction (DCC) and Ud value (in eV) are given. For the
HSE06 hybrid functional, the admixture of the exact exchange (β) is
specified.

Exc (DCC) Ud or β J1 J ′
1 Jic2 Jic1 J ′

1/J1

LSDA 150 82 2.5 −7.8 0.55
GGA 125 63 2.2 −5.6 0.51

2.0 109 60 2.3 0.1 0.62
LSDA + U (AMF) 3.0 89 55 2.2 1.7 0.72

4.0 70 50 2.1 2.8 0.86
2.0 84 49 1.6 −2.1 0.58

LSDA + U (FLL) 3.0 54 38 1.2 −1.8 0.71
4.0 33 31 0.9 −1.6 0.94
2.0 97 48 2.2 1.0 0.50

GGA + U (AMF) 3.0 81 44 2.1 2.3 0.54
4.0 67 41 2.1 3.3 0.61
2.0 78 40 1.6 −1.0 0.51

GGA + U (FLL) 3.0 54 32 1.2 −1.0 0.59
4.0 37 26 1.0 −0.9 0.69

0.20 66 27 1.2 −2.5 0.41
HSE06 0.25 58 23 1.0 −2.0 0.40

0.30 51 20 0.9 −1.7 0.39

of Ji from LSDA (GGA), we obtain θ � 242 K (202 K),
which is 50%–70% larger than the experimental value
θ = 139 K.

This discrepancy primarily originates from the poor de-
scription of electronic correlations within LDA or GGA,
and calls for the application of more elaborate computa-
tional approaches. For strongly correlated insulators, such as
Cr2[BP3O12], the mean-field DFT + U method is a natural
choice. An intrinsic problem of this method is the double
counting (DC) of the correlation energy already present in
LDA or GGA. This correlation energy should be subtracted
from the total energy of the system. In the widely used
DC corrections, denoted around-mean-field (AMF) and fully
localized limit (FLL),31 the subtracted energy corresponds to
the energy of the uniformly occupied state or the state with
integer occupation numbers, respectively. Previous DFT + U

studies on Cr3+ materials32 did not render any of the two
schemes preferable; thus, we apply both and compare their
results with the experiment.

Besides the DC, the DFT + U method introduces two free
parameters: the on-site repulsion Ud and the on-site exchange
Jd . While an empirical evidence favors Jd � 1 eV for 3d

elements, the values of Ud can substantially vary depending
on the electronic configuration and local environment of the
magnetic ion. For Cr3+, we varied Ud in the range between 2
and 4 eV.32,33

The resulting DFT + U -based exchange integrals are listed
in Table IV. We find that the exchange integrals are weakly
dependent on the DFT exchange-correlation potential (LSDA
or GGA). In contrast, the DC correction plays a more sub-
stantial role: The calculations within AMF yield considerably
larger couplings than the calculations within FLL for the same
value of Ud . Besides, Jic1 turns out to be AF in AMF, but FM
in FLL. This conspicuous difference between different flavors

of DFT + U necessitates an additional examination of this
problem by an independent technique.

To this end, we resort to the HSE06 hybrid functional that
is free from the DC problem. Here, the DFT exchange is
mixed with a fraction of exact (Hartree-Fock) exchange.34

The HSE06-based exchange integrals (Table IV) are very
similar to those obtained using DFT + U FLL with Ud =
3.0 eV. To check the stability of the HSE06 results, we
varied the parameter β, which reflects the admixture of the
exact exchange to the standard DFT exchange (β = 0.25
in the original definition of HSE06). As follows from the
resulting values (Table IV), the increase in β from 0.2 to
0.3 is accompanied by the ∼25% reduction in the exchange
couplings, while the J ′

1/J1 ratio is essentially unchanged.
Therefore, the effects of increasing β in HSE06 and increasing
Ud in DFT + U are somewhat similar, despite the disparate
physical meaning of the Ud and β parameters.

On a qualitative level, DFT + U FLL, hybrid functionals,
and model approach concur with each other on the nature of
magnetic couplings in Cr2[BP3O12]. By contrast, DFT + U

AMF predicts the different sign of Jic1, which would render
the spin lattice weakly frustrated. However, this scenario
looks very unlikely because the independent model analysis
(Sec. IV A) yields FM Jic1. Additionally, DFT + U AMF
systematically overestimates the absolute values of J1 and J ′

1
(see experimental values in Sec. V) and should probably be
discouraged in the case of Cr2[BP3O12].35

Apart from the overall energy scale of J1 and J ′
1 that

is dependent on Ud or β (Table IV), different flavors of
DFT + U , as well as HSE06, predict different J ′

1/J1 ratios.
Our computational results yield J ′

1/J1 = 0.39–0.94, so that
J ′

1 is smaller than J1 but certainly large enough to ensure the
quasi-1D nature of the spin lattice. Unfortunately, the more
precise evaluation of the J ′

1/J1 ratio lies beyond the capabilities
of present-day DFT-based techniques and should be addressed
by numerical simulations of the spin model and subsequent
fitting to the experimental data (see Sec. V).

Finally, we take into account the spin-orbit (SO) cou-
pling and quantify the single-ion anisotropy D using the
DFT + U + SO calculations within the FLL in VASP. To
this end, we calculate total energies (Fig. 1, bottom left) of
the AF GS with the magnetic moments aligned parallel and
perpendicular to the hexagonal axis (c axis). For Ud = 3 eV,
the energy difference of 1.3 K slightly favors the in-plane
spin arrangement. This result implies a very weak single-ion
anisotropy. However, the direction of the magnetic moment
should be determined experimentally because the energy
difference of 1 K is on the verge of the accuracy of DFT.

In summary, our band structure calculations arrive at
a scenario of Heisenberg spin chains with two alternating
nearest-neighbor AF interactions J1 and J ′

1. The magnetic
chains are weakly coupled in a nonfrustrated manner by the
FM Jic1 and the AF Jic2. While both interchain couplings
are apparently weak (below 2 K in terms of the absolute
value), the energy scale of the intrachain couplings, as well
as the precise alternation ratio, are rather sensitive to details
of the computational procedure and require further refine-
ment applying simulation techniques to fit the experimental
data.
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TABLE V. Results of QMC simulations and fitting to the
experimental magnetic susceptibility. J1 and g are obtained from
the fits to χ (T ). TN/J1 is obtained from simulations of spin stiffness
(see text). S∞ is evaluated using Eq. (6). TN and m are scaled using
J1 and g from columns 2 and 3.

J ′
1/J1 J1 (K) g TN/J1 TN (K) S∞ m(μB)

0.4 51.84 2.006 0.584 30.27 1.128 2.22
0.5 49.51 2.002 0.642 31.79 1.151 2.27
0.6 47.10 1.996 0.689 32.45 1.164 2.29
0.7 44.78 1.993 0.726 32.51 1.169 2.30
0.8 42.58 1.992 0.755 32.15 1.165 2.29

V. QMC SIMULATIONS AND COMPARISON
WITH THE EXPERIMENTS

To refine the parameters of the microscopic magnetic
model, we simulate the temperature dependence of the reduced
magnetic susceptibility χ∗ for various ratios of J ′

1/J1, while
keeping the interchain couplings constant Jic2 = −Jic1 =
0.02J1 (see Table IV), and subsequently fit the simulated QMC
curves to the experiment using the expression

χ (T ) = NAg2μ2
B

kB J1
· χ∗

(
T

kB J1

)
+χ0. (5)

Here, the fitted parameters are J1, the Landé factor g, and
the temperature-independent contribution χ0.36 The results are
presented in Table V (columns 2 and 3). A general trend is
the decrease in J1 upon the increase in J ′

1/J1, so that the
sum of the leading couplings J1 + J ′

1 remains nearly constant
(74.5 ± 2.0 K); see also Eq. (4). Still, smaller values of J ′

1/J1

yield better agreement with the experimental curve, especially
around the maximum in χ (T ).

In general, additional restrictions for the model parameters
can be set by the fitted values of g. However, g is marginally
dependent on J ′

1/J1 and shows good agreement with the
ESR value of 1.968 in the whole range studied. Therefore,
simulation of further measurable quantities is needed to refine
the model parameters.

First, we address the magnetic ordering temperature. To
this end, we calculate the spin stiffness ρ as a function of
temperature for finite lattices with up to N = Lx × Ly × Lz =
13 824 spins. At the magnetic ordering transition temperature,
the products ρiLi(i = x,y,z) are independent of Li . Thus, TN

is the temperature at which the ρL(T ) curves of the different
finite lattices cross. The difference between the simulated
values of TN and its experimental value of 28 K is below 10%
for the whole range of J ′

1/J1 (see columns 4 and 5 of Table V).
Similar to the fits of χ (T ), lower values of J ′

1/J1 yield slightly
better agreement with the experimental TN = 28 K.

Another measured quantity, which can be used for compar-
isons between theory and experiment, is the ordered magnetic
moment m. In the classical S = 3/2 Heisenberg model,
the ordered magnetic moment m = gμBS amounts to 3μB,
but the experimentally observed moment in Cr2[BP3O12] is
substantially smaller (2.5μB; see Sec. III B). We estimate the
reduction in m due to quantum fluctuations. To this end, we
simulate the magnetic structure factors S for finite lattices
containing up to 2048 spins.

For the propagation vector k of the magnetically ordered
GS, the ordered magnetic moment m is evaluated using the
finite-size scaling procedure:

3S(k)

N
= S∞(k)2 + σ1√

N
+ σ2

N
, (6a)

m = gμBS∞(k), (6b)

where the fitting parameters are S∞(k) as well as the expansion
coefficients σ1 and σ2, while g = 1.968 is adopted from the
ESR.38 In this way, we arrive at the values that underestimate
the experimental result by �0.2μB (last column of Table
V). Since this offset is nearly independent of J ′

1/J1, the
interchain couplings might be the origin of this discrepancy.
Indeed, increasing the interchain couplings by a factor of
two (Jic2 = −Jic1 = 0.04J1) yields m = 2.49μB, in excellent
agreement with the experiment. However, larger interchain
couplings substantially increase the Néel temperature and
worsen the agreement between the simulated and experimental
χ (T ). Since the experimental value of TN is more precise
than m, we argue that the parameters Jic2 = −Jic1 = 0.02J1

are preferable, while the 0.2μB deviation between the ex-
perimental and simulated values of m is still reasonable.
Indeed, the experimental estimate of m relies upon the
available magnetic form factors, as well as on the accuracy
of the subtraction procedure. Therefore, we cannot exclude a
systematic experimental error in m that should be verified by
neutron experiments on single crystals.

As follows from Table V, different values of J ′
1/J1 yield

rather similar TN and m. This surprisingly robust behavior
originates from peculiar properties of spin- 3

2 alternating
Heisenberg chains that show low spin gaps in the 0.41 <

J ′
1/J1 < 1 range between the critical points at J ′

1/J1 = 0.41
and J ′

1/J1 = 1, where the spin gap vanishes (see Sec. VI and
Ref. 39). To evaluate the optimal J ′

1/J1, we trace the general
trends. First, smaller J ′

1/J1 ratios yield better agreement
with the experimental TN. Second, mCr is nearly independent
of J ′

1/J1 for J ′
1/J1 �0.5. Thus, the parametrization J1 :

J ′
1 : Jic1 : Jic2 � 1 : 0.5 : −0.02 : 0.02 with J1 � 50 K is the

optimal choice, since it conforms to the experimental χ (T )
dependence, accurately reproduces the experimental TN, as
well as the g factor, and is in reasonable agreement with the
experimental m.

VI. QUANTUM-CLASSICAL CROSSOVER

For a correct application of classical models, it is crucial
to know at which point quantum effects become relevant
and the classical approximation breaks down. In this respect,
the quasi-1D magnetic model of Cr2[BP3O12] is a promising
candidate. The leading exchange couplings J1 and J ′

1 form
alternating chains, while the interchain couplings are substan-
tially smaller. Besides, Cr2[BP3O12] lacks frustration; thus,
quantum MC simulations can be performed.

First, we study nearest-neighbor spin correlations using
QMC and classical MC simulations. The difference between
the two results is directly related to quantum fluctuations:
While QMC correctly accounts for the quantum behavior at
finite temperatures, the classical MC method captures thermal
fluctuations only.
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FIG. 6. (Color online) Temperature dependence of the nearest-
neighbor diagonal spin correlations 〈Sz

i S
z
i+1〉 in the S = 3/2 al-

ternating Heisenberg chain model (J ′
1/J1 = 0.5). QMC results are

plotted with squares (J1) and circles (J ′
1); the classical MC results are

depicted with pluses (J1) and crosses (J ′
1). The dashed lines denote

the ED results for the quantum model. The 1
3 S(S + 1) line marks

the maximal diagonal correlation for S = 3/2 spins. (Inset) At high
temperatures (T > 2J1), the QMC and MC curves become almost
indistinguishable.

In the following, we consider a 1D J1 − J ′
1 magnetic model,

where the interchain couplings are neglected completely. For
J ′

1/J1 = 0.5, we simulate the temperature dependence of the
diagonal spin correlations 〈Sz

i S
z
i+1〉 and 〈Sz

i+1S
z
i+2〉, where

i = 0 corresponds to the stronger coupling J1, while i = 1
corresponds to J ′

1.
The resulting curves are plotted in Fig. 6. In the high-

temperature range (see inset in Fig. 6), the classical and
quantum results are practically indistinguishable. At T � J1,
the curves start to deviate significantly. The classical MC
curves exhibit an asymptotic behavior and join at T = 0. This
is in line with a complete elimination of thermal fluctuations;
thereby, the spin correlations reach their extremal value for
S = 3/2 spins, which amounts to −[S(S + 1)]/3 = −1.25.

Although the QMC curves exhibit qualitatively similar
behavior at low temperatures, they saturate at substantially
higher values of 〈Sz

i S
z
i+1〉. Dissimilar to the classical model,

the i = 0 (J1) and i = 1 (J ′
1) QMC curves saturate at different

values of 〈Sz
i S

z
i+1〉, indicating the onset of dimerization.

In the vicinity of the broad maximum of the magnetic
susceptibility (T max � 2 J1), and even at lower temperatures,
the classical MC simulations are in excellent agreement with
the quantum model. Therefore, experimental thermodynamic
data [e.g., χ (T ) and magnetic specific heat] for T � J1 should
be well reproduced within the classical approximation. This
empirical rule follows earlier experimental and numerical
results for uniform spin- 3

2 chains.9 It can also be generalized
to quasi-2D and 3D systems, owing to further suppression
of quantum fluctuations in higher dimensions. However, in 0D
systems, such as isolated dimers, quantum effects are expected
to play a more substantial role.

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

J1/J1

S
z i
S

z i+
1

1 2
i(
σ

i)
2

i = 0 (J1)

i = 1 (J1)

−1
3S(S + 1)

FIG. 7. (Color online) (Top) Nearest-neighbor diagonal spin
correlations 〈Sz

i S
z
i+1〉 in the S = 3/2 alternating Heisenberg chain

model as a function of the alternation ratio J ′
1/J1 at T = 0.03J1.

Dashed lines are guides for the eye. (Bottom) Root mean square of
σi ≡ (〈Sz

i S
z
i+1〉 − 1

3 S[S + 1]) (i = 1, 2), reflecting the discrepancy
between the quantum and the classical models.

To explore the evolution of quantum fluctuations by a
gradual crossover from 1D to 0D regime, we evaluate the GS
diagonal spin correlations for different ratios J ′

1/J1. Although
QMC simulations are not applicable at T = 0, the temperature
evolution of spin correlations in Fig. 6 suggests only a marginal
change in 〈Sz

i S
z
i+1〉 below 0.03J1. Thus, finite-temperature spin

correlations simulated at T = 0.03J1 can be regarded as a
rather accurate measure of GS (T = 0) spin correlations.

Figure 7 (top) shows the resulting 〈Sz
i S

z
i+1〉(J ′

1/J1) depen-
dencies. In the uniform-chain limit (J ′

1/J1 = 1), the corre-
lations for i = 0 and 1 coincide. Dimerization gives rise to
a quasilinear behavior observed down to J ′

1/J1 � 0.4. At
this point, both curves exhibit a pronounced kink, and their
further evolution is different: The i = 0 (J1) curve rapidly
drops almost down to the extremal value 1

3S[S + 1], while
the i = 1 (J ′

1) curve exhibits a quasilinear growth up to zero
correlation in the J ′

1/J1 = 0 limit. This behavior is remarkably
different from the classical case, where the constant spin-spin
correlation of − 1

3S(S + 1) is expected.
To sharpen the crossover at J ′

1/J1 � 0.4, we consider root
mean square deviation for σi ≡ (〈Sz

i S
z
i+1〉 − 1

3S(S + 1)) (i =
1,2), which reflects the difference between the quantum and
classical models. The resulting dependence is shown in Fig. 7
(bottom). For 0.5 � J ′

1/J1 � 1, only a marginal increase is
observed, while at J ′

1/J1 � 0.4 the slope changes distinctly.
For J ′

1/J1 < 0.4, a quasilinear behavior is restored.
The drastic change in the spin-spin correlations around

J ′
1/J1 � 0.4 indicates the critical point of bond-alternating

spin- 3
2 chains. While such chains generally have gapped GS,

they become gapless in the uniform-chain limit (J ′
1/J1 = 1)

and at the critical point of J ′
1/J1 � 0.41, according to density-

matrix renormalization group39 and QMC studies.40 Qualita-
tively, the critical point at J ′

1/J1 � 0.41 can be understood
as the transition between two different valence-bond-solid
(VBS)-type GSs.
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The VBS state entails singlet pairs formed by individual
spin- 1

2 entities comprising spin- 3
2 sites of the lattice.41 Al-

though it is not an exact GS of the Heisenberg Hamiltonian in
Eq. (1), the references to relevant VBS states are instrumental
in understanding peculiarities of the magnetic behavior. The
spin- 3

2 chain can form two VBS states, the (3,0) state having
three singlet pairs on one bond and no pairs on the contiguous
bonds, or the (2,1) state having two singlet pairs on one
bond and one singlet pair on each of the neighboring bonds.
At low J ′

1/J1, alternating spin- 3
2 chains are close to the

(3,0) regime, as shown by the drastic difference between
the spin-spin correlations for J1 and J ′

1. At J ′
1/J1 > 0.41, the

system resembles the (2,1) VBS40 and eventually develops
the GS of a uniform spin- 3

2 chain with equal correlations on
the J1 and J ′

1 bonds (Fig. 7). Note that the low-temperature
physics of alternating spin- 3

2 chains is essentially governed
by quantum effects and cannot be reproduced in the classical
approximation.

VII. DISCUSSION AND SUMMARY

The formation of alternating spin chains contrasts with the
presence of isolated Cr2O9 dimers in the crystal structure of
Cr2[BP3O12]. However, such differences between the structure
and the ensuing spin lattice are not unusual, especially for
phosphates, vanadates, and other compounds with complex
anions that are capable of mediating the superexchange.
For example, a large superexchange coupling via the PO4

tetrahedra between the structural dimers is a salient feature
of the spin- 1

2 alternating-chain magnet (VO)2[P2O7] (Ref. 26).
In spin- 1

2 V4+ and Cu2+ compounds, interdimer couplings
often exceed the intradimer exchange, whereas the latter
is small or even negligible, as in Cu2[P2O7] (Ref. 28) or
VO[HPO4] · 1

2 H2O (Ref. 42).
The Cr2[BP3O12] case is different, though, because the

intradimer coupling J1 exceeds the interdimer coupling J ′
1.

The reason behind the sizable intradimer coupling is the strong
direct exchange that was previously observed in LiCrO2.32

While the Cr-O-Cr angles amount to 87.8◦ and impede the AF
superexchange, the direct overlap of Cr d orbitals is strong
enough to facilitate the sizable AF J1. This mechanism is
not operative in typical spin- 1

2 systems with structural dimers,
because V4+ cations form VO5 square pyramids and remain
on opposite sides of the basal plane of such pyramids, thus
featuring only a weak direct overlap of the magnetic dxy

orbitals. In the case of Cu2+, the magnetic orbital has the
dx2−y2 symmetry, unfavorable for the direct overlap.

It is also instructive to compare different interdimer
couplings in Cr2[BP3O12]. Similar to other transition-metal
phosphates,27,28 the Cr-based WFs show sizable contributions
of Cr 3d and O 2p states only (Fig. 5). Phosphorous states
weakly contribute to the magnetic orbitals and play a minor
role in the superexchange running via the Cr-O· · · O-Cr
pathways. The efficiency of these pathways intimately depends
on details of the crystal structure.

Remarkably, Cr2[BP3O12] not only entails the spin lattice
of alternating chains, but also features the alternation ratio
of J ′

1/J1 � 0.5, which is close to the critical point with the
gapless ground state at J ′

1/J1 � 0.41. The proximity to this

critical point is one of the reasons behind the long-range AF
ordering and the sizable Néel temperature in Cr2[BP3O12].
Spin- 1

2 systems with the larger J ′
1/J1 � 0.6 (i.e., weaker

dimerization) and comparable interchain couplings43 still have
the spin-gap ground state, as in Pb2[V3O9] (Ref. 44) and
Ag(VO)[AsO4] (Ref. 45). The large number of interchain
couplings per magnetic site (the coordination number amounts
to six and three for Jic1 and Jic2, respectively), as found
in Cr2[BP3O12], may also reduce quantum fluctuations. By
contrast, an isolated alternating S=3/2 chain with J ′

1/J1 � 0.5
would feature an excitation gap of ∼0.25 J1 with no long-range
order.40

While the critical point at J ′
1/J1 � 0.41 has been widely

studied theoretically,39,40 experimental probes of this regime
and even experimental examples of spin- 3

2 alternating chains
have not been reported. Therefore, Cr2[BP3O12] may be
interesting as an experimentally available spin- 3

2 alternating-
chain system in the vicinity of this critical point. Although
Cr2[BP3O12] is not perfectly 1D and features the long-
range AF order owing to nonzero interchain couplings,
an experimental study of spin-spin correlations with, e.g.,
inelastic neutron scattering, could be instructive. Moreover,
the application of external pressure might change the J ′

1/J1

ratio, thus giving access to the peculiar evolution of spin-spin
correlations across the critical point (Fig. 7). Detailed studies
of the isostructural phase Fe2[BP3O12] (Ref. 23) may be
instructive as well, because this compound should feature a
similar spin lattice in the more classical regime of spin- 5

2 .
In summary, we extensively characterized the magnetic be-

havior of Cr2[BP3O12] using magnetic susceptibility, neutron
diffraction, and ESR measurements. The long-range AF order
established below TN = 28 K is described with the propagation
vector k = 0, whereby the spins on nearest-neighbor Cr atoms
within the ab plane, as well as along the c-axis direction, are
antiparallel. On the microscopic level, Cr2[BP3O12] features
S = 3/2 Heisenberg chains with an alternation of the nearest-
neighbor couplings J1 and J ′

1. The ratio J ′
1/J1 � 0.5 renders

Cr2[BP3O12] as an interesting model system lying close to the
critical point at J ′

1/J1 � 0.41, where the spin- 3
2 alternating

chain has the gapless ground state. The chains are coupled by
two nonequivalent interchain exchanges: the FM Jic1 and the
AF Jic2, both of the order of 1 K–2 K. The microscopic model
is in excellent agreement with the experimental magnetic
structure (see Fig. 1): The nearest-neighbor spins within a
chain are antiparallel, in accord with the AF nature of J1

and J ′
1. Moreover, even the interchain coupling regime is

compatible with FM Jic1 and AF Jic2; thus, Cr2[BP3O12] lacks
any appreciable frustration effects.
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