
PHYSICAL REVIEW B 87, 064415 (2013)

Impurity-induced frustration: Low-energy model of diluted oxides
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We provide a detailed derivation of the low-energy model for Zn-diluted La2CuO4 in the limit of low doping
together with a study of the ground-state properties of that model. We consider Zn-doped La2CuO4 within a
framework of the three-band Hubbard model, which closely describes high-Tc cuprates on the energy scale of the
most relevant atomic orbitals. To obtain the low-energy effective model, we first determine hybridized electronic
states of CuO4 and ZnO4 plaquettes within the CuO2 planes. Qualitatively, we find that the hybridization of zinc
and oxygen orbitals can result in an impurity state with the energy ε, which is lower than the effective Hubbard
gap U . In the limit of the effective hopping integral t � ε, U , the low-energy, spin-only Hamiltonian includes
terms of the order t2/U and t4/ε3. That is, besides the usual nearest-neighbor superexchange J terms of order
t2/U , the low-energy model contains impurity-mediated, further-neighbor frustrating interactions among the Cu
spins surrounding Zn sites in an otherwise unfrustrated antiferromagnetic background. These terms, denoted as
J ′

Zn and J ′′
Zn, are of order t4/ε3 and can be substantial when ε ∼ U/2, the latter value corresponding to the realistic

CuO2 parameters. In order to verify this spin-only model, we subsequently apply the T -matrix approach to study
the effect of impurities on the antiferromagnetic order parameter. Previous theoretical studies, which include
only the dilution effect of impurities, show a large discrepancy with experimental data in the doping dependence
of the staggered magnetization at low doping. We demonstrate that this discrepancy is eliminated by including
impurity-induced frustrations into the effective spin model with realistic CuO2 parameters. Recent experimental
study shows a significantly stronger suppression of spin stiffness in the case of Zn-doped La2CuO4 compared
to the Mg-doped case and thus gives strong support to our theory. We argue that the proposed impurity-induced
frustrations should be important in other strongly correlated oxides and charge-transfer insulators.
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I. INTRODUCTION

Impurity effects in spin systems have attracted considerable
attention since the 1960s as a part of the broader interest
in defects in solids1–4 and also in the context of percolative
phenomena,5–8 to which diluted magnets provide excellent ex-
perimental realizations. More recently, the discovery of high-
Tc superconductivity in insulating antiferromagnets doped by
mobile charge carriers has led to an extensive research effort in
various aspects of the problem, including the role of disorder in
quantum critical states,9 quantum percolation,10,11 and others.
It has also been realized that impurities may serve as valuable
local probes into the properties of strongly correlated systems
in general, revealing important aspects of their electronic
degrees of freedom.12,13

Out of the parent compounds of cuprate superconductors, it
is La2CuO4 that has been studied most comprehensively.14–21

In its pristine form, it is an excellent realization of the two-
dimensional, spin- 1

2 , nearest-neighbor square-lattice Heisen-
berg antiferromagnet22–24 formed by Cu2+ ions surrounded
by oxygens. The dilution is achieved by chemically substi-
tuting isovalent Zn2+ or Mg2+ spinless ions for Cu2+ [see
Fig. 1(a)]. Thus, it is only natural to expect that the proper low-
energy model of La2Cu1−x(Zn,Mg)xO4 must be the nearest-
neighbor site-diluted Heisenberg model20,21 [see Fig. 1(b)].
In order to elucidate the properties of La2CuO4 diluted by
spinless impurities, and of the associated site-diluted spin
model, extensive experimental studies have been performed
using nuclear magnetic resonance (NMR) [nuclear quadrupole
resonance (NQR)], muon spin relaxation (μSR), elastic and in-
elastic neutron scattering, and magnetometry.17–21 An equally
comprehensive theoretical effort included the spin-wave T

matrix, quantum Monte Carlo (QMC), and numerical real-
space 1/S calculations of a number of quantities that allowed
for extensive cross-examinations.25–38

One quantity in particular, the average magnetic moment
per Cu, M(x), has been investigated in detail. The doping
dependence of M(x) is the purely quantum effect related to the
impurity-induced suppression of the order parameter because
the normalization to the number of magnetic ions naturally
separates the classical effect of dilution from it. While the
overall results for M vs x show a reasonable agreement,
a substantial discrepancy between the experiment and the
theory, both analytical and QMC, has been observed. The
experimental results indicate a substantially stronger—a factor
of approximately 2—suppression of the order parameter M

per impurity due to disorder-induced quantum fluctuations,
and the experimental data for M(x) are also always below the
theoretical curves.20,38

In our recent work,39 a resolution to this problem has
been suggested: Impurities should not be considered as elec-
tronically inert vacancies that simply eliminate interactions
among surrounding Cu spins. In addition to the dilution, the
hybridized electronic states of the impurity and of the nearest
oxygens can provide extra degrees of freedom that generate
longer-range frustrating interactions, schematically shown
in Fig. 1(c). Such impurity-induced frustrating interactions
can be expected to significantly enhance local quantum
fluctuations. In Ref. 39 we have outlined our approach to the
problem and presented our results for M(x) together with the
complementary QMC results. The latter have unequivocally
supported the same conclusion: The dilution-frustration model
exhibits stronger suppression of the order and, for a choice
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FIG. 1. (Color online) (a) A schematic view of the Zn-doped CuO2 plane. (b) Site-diluted Heisenberg model representation of it. The
arrows are Cu spins and the lines denote superexchange interactions. (c) The same, with extra frustrating interactions between the next- (J ′

Zn)
and the next-next- (J ′′

Zn) nearest-neighbor Cu sites, surrounding Zn impurity.

of parameters appropriate for Zn-doped La2CuO4, bridges the
gap between experiments and previous theoretical calculations
based on the dilution-only model. Since then our theory has
received further experimental confirmation from the μSR
studies of spin stiffness in Zn- and Mg-doped La2CuO4,40

which demonstrated a stronger suppression of spin stiffness in
the Zn-doped case, in agreement with the expectations from
the theory.

In this work, we expose the details of the derivations of
the dilution-frustration model and of the subsequent analytical
calculations of the doping-dependent magnetization. The key
element of our theory is that it starts from a realistic model,
the site-diluted three-band Hubbard model, instead of already
“effective” models of the CuO2 plane, such as the diluted
Heisenberg or the diluted one-band Hubbard model.

We begin with Zn-doped La2CuO4 within the framework
of the impurity-doped three-band Hubbard model, which
closely describes the diluted high-Tc cuprates and other
transition-metal oxides on the energy scale of the most relevant
atomic orbitals.41,42 Similar to the derivation of the one-band
Hubbard model from the three-band Hubbard model,43,44 the
cell-perturbation approach is used to describe hybridization
of the energy levels of Cu and Zn with oxygen orbitals.
The approach does not require Cu-O and Zn-O hopping
integrals to be smaller than the charge-transfer gap, therefore
the locally hybridized states on Cu or Zn and surrounding
O’s are diagonalized without approximation.44–48 Then the
three-band model can be rewritten as a “multiorbital” Hubbard
model with the effective “Cu” and “Zn” states connected by
effective hoppings. Since the structure of the lowest states in
the single-particle and two-particle sectors of the multiorbital
model is the same as in the one-band Hubbard model (i.e.,
the lowest two-hole state is the Zhang-Rice-like singlet), the
equivalence of the two models can be justified.44–47 In this
approach, for the dilution-only picture to be valid the effective
Zn states must not occur below the effective Hubbard U ,
the situation more likely to be valid for the case of Mg
doping due to the lack of available electronic states on the
Mg ion. For the case of Zn doping, its electronic states49–51

hybridize with the states on the oxygen orbitals and can result
in the states below the Hubbard energy gap. This provides
surrounding Cu spins with additional virtual states to execute
their superexchange processes through, thus facilitating extra

couplings that connect spins in the immediate vicinity of
impurity. Therefore, the spinless impurity, in effect, can lead
to a cage of frustrating interactions around itself, shown in
Fig. 1(c).

For the sake of a qualitative picture, and in the spirit of
mapping of the multiband Hubbard model onto the single-band
one, the result of this consideration is that the impurity-doped
system is not equivalent to the site-diluted Hubbard model
with electronically inert impurity sites, but rather to the
t-ε-U model, where in addition to the usual hopping t and
the two-particle energy gap U there is the lowest-energy state
of the effective impurity sector, denoted as ε. At half-filling,
the t-U part reduces to the Heisenberg model with J ∼ t2/U ,
as usual, with the higher-order terms ∼ t4/U 3 negligible if
t � U .52–54 Virtual transitions through the effective impurity
level ε generate superexchange interactions of the order of
t4/ε3 between the next- and the next-next-nearest-neighbor
Cu spins (J ′

Zn and J ′′
Zn) that are also nearest neighbors of

the impurity site. When the energy at the impurity site ε is
less than the Hubbard gap, such terms are not negligible and
may be comparable to J . For an estimate, taking ε = U/2
and U/t = 10 gives J ′

Zn/J ∼ (t/U )2(U/ε)3 ∼ 0.1, and, given
the geometry of the square lattice, the combined effect per
impurity is J tot

Zn = 4J ′
Zn + 2J ′′

Zn ∼ 0.6J . The origin of J ′
Zn and

J ′′
Zn is clearly distinct from the generally considered next- and

next-next-nearest-neighbor superexchange interaction (J2 and
J3), which are of the order of t4/U 3 and do not affect the order
parameter specifically due to dilution.55

While the technical details and the effort of the present
work are more involved, this qualitative t-ε-U model properly
reflects the key idea of our approach. In practice, we perform a
similar type of the fourth-order expansion54 of the multiorbital
Hubbard model, keeping track of all the relevant one- and
two-hole states of the model and their dependencies on
the original three-band model parameters. This allows us to
perform detailed microscopic calculations of J ′

Zn and J ′′
Zn

and estimate their values. Since the experimental value of
the nearest-neighbor superexchange for La2CuO4 is known
(J � 0.13 eV), it can be used to narrow down the range of
parameters of the three-band model as was done previously.48

Although the electronic parameters of Zn states, such as the
energy of the bare Zn level and the Zn-O hybridization, are not
known precisely,49,51 we vary them to verify that the energy of
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the lowest impurity level ε indeed falls comfortably below the
effective Hubbard U for a wide and reasonable range of both
parameters. By projecting the multiorbital Hubbard model
onto the low-energy spin-only model, we analyze possible
value of the total frustrating effect per impurity and find it to be
between J tot

Zn ∼ (0.2–1.0)J for the same range of parameters.
In addition, we also provide a detailed analysis of the

individual processes that contribute to J ′
Zn and J ′′

Zn. Specifi-
cally, we have found that, counterintuitively, the longer-ranged
J ′′

Zn is greater than J ′
Zn. This is due to a subtle cancellation

between the “regular” fourth-order superexchange processes
and the analogs of the ring-exchange-type processes involving
Zn and three Cu sites on a nearest-neighbor plaquette [see
Fig. 1(a)], with the latter contributing to J ′

Zn, but not to J ′′
Zn.

That results in a stronger frustrating coupling between copper
spins across the Zn site, with the ratio J ′′

Zn/J
′
Zn � 2 ∼ 4 in a

wide range of the three-band model parameters. Altogether,
the calculation based on the three-band model, albeit more
involved, provides strong support to our central idea and gives
an order-of-magnitude estimate of the frustrating terms in the
dilution-frustration model.

Upon establishing the structure of the low-energy spin-
only model for the diluted system, to which we refer to as
the dilution-frustration model, we investigate the impact of
impurities in this model on the order parameter M . This
is achieved by means of the analytical T -matrix approach
within the spin-wave approximation based on the exact
diagrammatic treatment of the impurity scattering amplitudes
and subsequent disorder averaging. Technically, we closely
follow the approach of Refs. 33 and 34.

First, we apply the spin-wave approximation to rewrite the
dilution-frustration model on the two-dimensional (2D) square
lattice. After the Fourier and Bogolyubov transformation
we decompose the impurity scattering matrices into the
s-, p-, and d-wave orthogonal components with respect to
the scattering site. Then, the T -matrix approach is used to
solve exactly the problem of scattering off one impurity
in each of the scattering channels. The subsequent disorder
averaging approximates impurities as independent random
scatterers and effectively restores translational invariance for
spin excitations propagating in an effective medium. Such an
approximation neglects impurity-impurity interaction effects,
which are expected to be small at small doping. Disorder
averaging extends the T -matrix approach to the finite impurity
concentration and yields the spin-wave self-energies as simply
related to the forward-scattering components of the T matrix.
Next, for the given impurity concentration and values of
frustrating parameters, the on-site ordered magnetic moment
M is calculated from the renormalized magnon Green’s
functions.

Compared to the dilution-only model, the modification
of this method for the dilution-frustration model concerns
changes in the p- and d-wave scattering channels, while
the s-wave channel can be shown to be unaffected by the
frustrating terms. Generally, the advantage of the T -matrix
method is that it offers a systematic way of studying the order
parameter M as a function of the concentration x and of the
parameters J ′

Zn and J ′′
Zn.

One of the unusual findings in this study is that the
next-next-nearest neighbor J ′′

Zn frustrating bond suppresses

the order as effectively as two next-nearest J ′
Zn bonds of the

same strength. This result has also been supported by the
QMC calculations, as was discussed previously.39 Given that
according to the three-band model calculations the J ′′

Zn term is
larger than the J ′

Zn term, this finding underscores its importance
for the mechanism of impurity-enhanced suppression of the
order parameter.

We find that the experimental rate of suppression of the
order in Zn-doped La2CuO4 is met by the T -matrix results
of the dilution-frustration model at J tot

Zn = 0.28J if we fix the
ratio of the two frustrating terms to 2, J ′′

Zn = 2J ′
Zn = 0.07J ,

or at J tot
Zn = 0.24J for J ′′

Zn = 4J ′
Zn = 0.08J , according to the

three-band model results. As was discussed in our previous
work,39 QMC results seem to suggest a somewhat higher value
J tot

Zn � 0.4J (J ′′
Zn = 2J ′

Zn � 0.1J ), although they are obtained
from the finite-size extrapolations that may overestimate J tot

Zn .
Both the T -matrix and the QMC results correspond to a modest
amount of frustration, well within the window suggested by the
three-band model calculations. With our analytical and numer-
ical results agreeing quantitatively with each other, we have
suggested further high-precision experiments at low doping.
One such experimental confirmation has come recently from
the μSR studies of Zn- and Mg-doped La2CuO4,40 which has
shown a substantially stronger suppression of the spin stiffness
in the case of Zn doping, in agreement with the expectations
from our theory.

The paper is organized as follows. In Sec. II we discuss the
diluted three-band Hubbard model within the cell-perturbation
approach and derive the multiorbital Hubbard model from it.
We study the hybridized impurity level and analyze its energy
with respect to the effective Hubbard gap for a range of three-
band model parameters. We derive an effective low-energy
spin-only model by applying canonical transformation to the
multiorbital Hubbard model at half-filling. The virtual steps
leading to the frustrating superexchange interactions, J ′

Zn and
J ′′

Zn, are analyzed and their values are calculated. In Sec. III,
we study the effective dilution-frustration model using the
T -matrix approach and disorder averaging. We derive the
staggered magnetization as a function of impurity concen-
tration and frustrating couplings. The results are compared
with experimental data. Section IV contains our conclusions.
Appendices A and B contain details of the three-band model
and the T -matrix calculations, respectively.

II. EFFECTIVE MODEL OF COPPER-OXIDE PLANE
WITH ZINC IMPURITIES

In this section, we derive an effective low-energy model
for the Zn-doped La2CuO4 at half-filling. We begin with the
consideration of the realistic, Zn-diluted three-band Hubbard
model, which contains additional impurity states associated
with Zn. Using Wannier orthogonalization for O orbitals and
a more natural language of the locally hybridized CuO4 and
ZnO4 states, we first rewrite the three-band Hamiltonian as
the multiorbital Hubbard model. We discuss the new feature
of the model—the hybridized Zn and O orbitals can result
in an impurity state with the energy that is lower than the
effective Hubbard gap. The subsequent transformation to the
low-energy, spin-only model is known as the cell-perturbation
method. The local basis of CuO4 and ZnO4 states of the
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multiorbital Hamiltonian provides a natural small parameter
for such a projection, the effective hopping between the
states of the nearest-neighbor clusters. We proceed with
this transformation and give a quantitative analysis of the
individual processes that contribute to the superexchange terms
of the effective model. Next, we analyze the possible range
of the frustrating interactions in the low-energy model of the
Zn-doped CuO2 plane. The discussed approach should be valid
as long as the system is in the Mott insulating state.

A. Three-band to multiorbital Hubbard model

The three-band Hubbard model, which was proposed to
describe relevant electronic degrees of freedom of the CuO2

planes of the high-Tc cuprates,41 is formulated in terms of the
hole creation and annihilation operators acting on the vacuum
state of the completely filled 3d10 shells of Cu and 2p6 shells
of O:

H = εd

∑
lα

nd
lα + εp

∑
mα

np
mα + Ud

∑
l

nd
l↑nd

l↓

− tpd

∑
〈lm〉α

(d†
lαpmα + H.c.), (1)

where εd and εp are the energies of the hole in the copper dx2−y2

and in the oxygen px or py orbitals, respectively. The copper
(oxygen) sites are labeled with the index l(m), the number
operators are nd

lα = d
†
lαdlα (np

mα = p
†
mαpmα), and α = ↑, ↓ is

the spin. The Hubbard repulsion in the copper dx2−y2 orbitals
is Ud and the hopping between copper and oxygen orbitals is
tpd . For the Cu-O hoppings we use the convention42 in which
the relative signs of orbitals are absorbed into the definition of
pmα (p†

mα) operators. The summation 〈lm〉 is over the nearest-
neighbor Cu-O bonds.

The relevant transitions within the three-band model in-
volve d10-d8 states on copper and p states on oxygen sites.
At half-filling, there is one hole per CuO2 unit cell and the
ground state is the antiferromagnetic insulator.24 The localized
S = 1/2 spins, forming the Néel-ordered state on the square
lattice, are provided by the holes that are predominantly in the
d9 states on Cu and are hybridized with the p5 states on O (see
Fig. 2).

The minimal form of the three-band model in (1) is often
supplemented with additional terms, such as the direct oxygen-
oxygen hopping, on-site Coulomb interactions on O sites, and
the nearest-neighbor repulsion between O and Cu holes. The
main effect of such terms is in a quantitative renormalization of
the energy levels and hopping integrals,44,46 leaving the results
obtained with (1) qualitatively the same.

Cu

Zn
O

FIG. 2. (Color online) Zn-doped CuO2 plane with natural parti-
tioning in CuO4 and ZnO4 clusters.

The substitution of the isovalent Zn2+ ion with
the nominally completely filled 3d shell for Cu2+ leaves the
oxygen lattice translationally invariant (see Fig. 2). While
the electronic levels of Zn doped into a CuO2 plane have
not been determined precisely,49–51 it is generally agreed that
the relevant states may occur in a reasonable vicinity of the
oxygen level, εZn − εp � 2–5 eV, and we treat this energy as
an adjustable parameter in the following. Thus, the impurity
Hamiltonian can be written as

δHZn = εZn

∑
�α

nZn
�α + UZn

∑
�

nZn
�↑nZn

�↓

− tZnO

∑
〈�m〉α

(a†
�αpmα + H.c.), (2)

where Zn sites are labeled with �, εZn is the energy of the
relevant orbital on Zn, UZn is an effective Hubbard repulsion
in that orbital, and tZnO is the hopping integral between nearest-
neighbor Zn and O sites, yet another adjustable parameter. The
hole creation/annihilation operators on Zn are a

†
�α and a�α and

nZn
�α = a

†
�αa�α .

The checkerboard structural motif of the CuO2 plane in
Fig. 2 suggests a natural partitioning of the localized states
into symmetric CuO4 and ZnO4 clusters, in which each Cu
or Zn is surrounded by four oxygens.43 The advantage of
such basic units is in constructing the local states that allow
one to take into account local hybridization of Cu or Zn
and surrounding O states without approximation, while the
remaining hybridization between the clusters can be treated
perturbatively. In particular, such a cell-perturbation approach
does not require Cu-O and Zn-O hopping integrals to be much
smaller than the charge-transfer gap � = εp − εd .44–48

On the other hand, the linear combinations of the oxygen
states in the CuO4 (ZnO4) cluster are not orthogonal to the
ones in the nearest-neighbor clusters. The elegant Wannier-
orthogonalization procedure, suggested in Ref. 43, treats the
O lattice separate from the Cu and Zn, and, via orthogonalizing
p operators in the k space, leads to the basis of the symmetric-
oxygen orbitals {

px
m,α, py

mα

} → ql,α(q�,α) (3)

that are now associated with the same site index as the Cu (Zn)
of the CuO4 (ZnO4) cluster. The details of this procedure are
given in Appendix A.

With that, it is natural to divide the Cu-O (Zn-O) hopping
terms in Eqs. (1) and (2) into the local part, which corresponds
to hybridization within one cluster, and into the hopping part,
corresponding to the coupling between the states in different
clusters. We note, that due to the nonlocal nature of the Wannier
orthogonalization, the hopping parts now contain terms that go
beyond the nearest-neighbor clusters. Thus, the Hamiltonian of
Eq. (1), written using the orthogonalized basis of O states (3) is

Hloc =
∑
lα

{
εdn

d
lα + εpn

q

lα + Ud

2
nd

lαnd
lᾱ

− 2λ0tpd (d†
lαqlα + H.c.)

}
,

Hhop = −
∑
〈ll′〉α

2λll′ tpd (d†
lαql′α + H.c.), (4)
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where λll′ are the Wannier amplitudes given in Eq. (A7).
First, the amplitudes λll′ decrease rapidly with distance,45

λll′ ∼ 1/|rl − rl′ |3, so the terms beyond the nearest neighbor
in the hopping part of Eq. (4) can be neglected. Second,
the intracluster amplitude λ0 = 0.9581 is close to 1, and
thus is taking most of the hybridization into account. The
nearest-neighbor amplitude λ〈ll′〉 = 0.1401 leads to the
effective hopping parameter between different states that is
significantly reduced compared to the bare tpd hopping. This
provides a strong justification for the subsequent perturbative
expansion in such an effective hopping relative to the
effective Hubbard gap, the latter largely defined by the local
hybridization.

Applying the same transformation of the O states (3) to the
Hamiltonian of the Zn cluster (2) we obtain

δHloc
Zn =

∑
�α

{
εZnn

Zn
�α + εpn

q

�α + UZn

2
nZn

�αnZn
�ᾱ

− 2λ0tZnO(a†
�αq�α + H.c.)

}
,

δHhop
Zn = −

∑
〈�l〉α

2λ�ltZnO(a†
�αqlα + H.c.). (5)

Note that even if Zn states are completely neglected in δHloc
Zn ,

ZnO4 cluster still has an unoccupied oxygen state51 with the
energy εp, which is higher than the hybridized CuO4 states of
the surrounding clusters, and it permits virtual superexchange
processes through it.

The next step in the cell-perturbation approach is the
diagonalization of Hloc and δHloc. Such a diagonalization is
performed separately for the states with a different number of
holes in a cluster. Because the system is close to the half-filling,
the most relevant states are the one- and two-hole states, and
the states with more holes are higher in energy [see Fig. 3(a)].
The full set of dl , a�, and ql one- and two-hole states of Cu
and Zn clusters are listed in Appendix A, (A8)–(A13) (see also
Ref. 46).

After the diagonalization of the local parts of the Hamilto-
nian, the hopping terms are also rewritten in the basis of the
new states. Altogether, the three-band model H of Eq. (4) can
be rewritten as a multiorbital Hubbard model with the effective
Cu eigenstates with local energies Ei connected by effective

FIG. 3. (Color online) (a) A schematic view of the energy levels
Ei and Ẽi of one- and two-particle sectors in Cu and Zn clusters in
Eqs. (6) and (7). (b) The levels of the effective t-ε-U Hamiltonian
that keeps the lowest-energy states in each sector.

hoppings F
jj ′
ii ′ :

H =
∑
li

Ei

∣∣ψi
l

〉〈
ψi

l

∣∣
+

∑
〈ll′〉

∑
ii ′jj ′

F
jj ′
ii ′

(∣∣ψi
l

〉∣∣ψi ′
l′
〉〈
ψ

j ′
l′

∣∣〈ψj

l

∣∣ + H.c.
)
. (6)

Similarly, for δH of Eq. (5)

δH =
∑
�i

Ẽi

∣∣ψ̃ i
�

〉〈
ψ̃ i

�

∣∣
+

∑
〈�l〉

∑
ii ′jj ′

F̃
jj ′
ii ′

(∣∣ψ̃ i
�

〉∣∣ψi ′
l

〉〈
ψ

j ′
l

∣∣〈ψ̃j

�

∣∣ + H.c.
)
. (7)

The hybridized, orthogonal sets of local states are |ψi
l 〉 for

CuO4 and |ψ̃ i
�〉 for ZnO4 clusters, where l(�) is the site index

and i is labeling the states. For example, the three one-hole
states in the Cu cluster in Fig. 3(a) are the “bonding” and
“antibonding” mix of Cu and symmetric O states dl and
ql , Eqs. (A4) and (A8), and the antisymmetric O state [q̃l ,
Eq. (A4)]. The hopping integrals between adjacent clusters
F

jj ′
ii ′ and F̃

jj ′
ii ′ connect initial and final states i,i ′ and j ,j ′.

The Hamiltonian in Eqs. (6) and (7) is multiorbital because
each n-particle sector contains more than one state. However,
since such states are locally orthogonal and we are interested
in the low-energy effective model of Eqs. (6) and (7), the most
important transitions involve the lowest states from each sector
[see Fig. 3(a)]. Importantly, the structure of the lowest states in
the single-particle and two-particle sectors of the multiorbital
model is the same as in the one-band Hubbard model, justifying
the close correspondence of the three-band and one-band
Hubbard models.44–47 The lowest one-hole states in Cu and
Zn clusters are S = 1/2 doublets, the linear combinations of
the oxygen and the Cu(Zn) orbitals, while the lowest two-hole
state is the Zhang-Rice-like singlet, a mix of three different
singlets [Cu-Cu, O-O, and Cu-O] [see (A8)–(A12)].

The new physics is brought in by the possibility of an
unoccupied impurity level, the lowest state from the Zn single-
particle sector, to be lower than the effective Hubbard U on the
Cu sites. This leads to an effective t-ε-U model [see Fig. 3(b)],
which provides surrounding Cu spins with an additional virtual
channel for the superexchange processes, connecting spins in
the vicinity of impurity. Conversely, if the effective Zn states
do not occur below the Hubbard gap (the case of Mg2+ due to
the lack of available states on it), the impurity can be treated
as electronically inert, leading only to dilution, but not to extra
interactions. Parameters that control the impurity level are
discussed next.

B. Parameters and effective impurity level

The realistic values of the three-band model parameters for
the CuO2 plane have a certain degree of variation because none
of them is measurable directly and they come as a result of a
parametrization of the first-principles calculations. Thus, the
Hubbard repulsion on Cu is Ud = 8–12 eV, the charge-transfer
gap � = εp − εd = 2–4 eV, and the Cu-O hopping is tpd =
1–1.5 eV.44,46,47 A physical approach to fix them to a particular
set of values was suggested in Ref. 47. One can require that the
observables, such as the Cu-Cu superexchange or the optical
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)

tZnO / tpd = 0.8
tZnO / tpd = 1.2

tpd=1.5eV, Δ=3eV, Ud >> Δ (b)(a)

UeffUeff

FIG. 4. (Color online) (a) Energy of the lowest state from the
Zn-cluster single-particle sector εZn

eff vs the energy difference between
the bare one-hole levels on Zn and O, �Zn =εZn−εp , for two values
of tZnO. (b) εZn

eff vs tZnO/tpd for two representative values of �Zn.
Parameters of the three-band model are fixed as described in text:
tpd = 1.5 eV, � = 3 eV, and Ud � �. The resultant Hubbard gap is
Ueff ≈ 3.6 eV.

gap, calculated from model (6) match their observed values. In
our case, we fix them to Ud (UZn) � �, � = 3 eV, and tpd =
1.5 eV to yield the experimental value of the superexchange
J � 0.13 eV in the effective low-energy model discussued in
Sec. II C. Among other things, the effective Hubbard gap for
the Zhang-Rice-like singlet and the ground state half-filled
system is Ueff ≈ 3.6 eV.

The parameters of Zn states, such as the bare one-hole level
on Zn, �Zn = εZn − εp, and the Zn-O hopping tZnO, are not
precisely known.49–51 As is shown in Fig. 4, we vary them
substantially to determine the resulting energy of the lowest
level in the single-particle sector of the ZnO4 cluster, εZn

eff . In
Fig. 4(a) we show its dependence on the energy of the bare
Zn-level, �Zn, for two representative values of tZnO, and in
Fig. 4(b) on the the hybridization tZnO for two representative
values of �Zn. We also show the effective Hubbard energy Ueff

to demonstrate the validity of the qualitative level structure in
Fig. 3 for a wide range of parameters. Altogether, the electronic
levels of Zn and their hybridization with O states are important
in lowering εZn

eff , and εZn
eff is below the Hubbard gap for the

realistic parameters of the model.

C. Projecting to the spin-only model

After establishing the validity of the t-ε-U -like level
structure of Fig. 3 for the realistic parameters of the three-
band Hubbard model with Zn impurity, we now turn to the
low-energy properties of models (6) and (7). To derive the
low-energy model one needs to consider virtual transitions
between different states. As was argued above, since the
system is at half-filling, the relevant transitions are between
the lowest states from the one- and two-hole sectors of both
Cu- and Zn-cluster states. Altogether, there are five different
hopping integrals, as shown in Fig. 5. For brevity, we switch
to t’s for the hopping integrals from F

jj ′
ii ′ and F̃

jj ′
ii ′ in Eqs. (6)

and (7). For instance, t1 = F 01
10 is the hopping of the spin

to the neighboring empty site and t2 = F 20
11 is creating the

Zhang-Rice singlet from the two one-hole sites leaving the

Cu CuZn

t12
t21

t11

Cu

t2

t1

FIG. 5. (Color online) Schematic view of various virtual hopping
processes between relevant energy levels of e models (6) and (7), see
text for notations.

other site empty. For the transitions involving Zn states, t11

is between one-hole states on Cu and Zn, while t12 and t21

are between the one-hole and two-hole states on Cu and
Zn. The higher-energy transitions will be neglected as their
contributions are small. The explicit expressions for hopping
integrals can be obtained by evaluating matrix elements of the
Hamiltonian in terms of the original Cu, Zn, and O operators,
(4) and (5), between the initial and final states in the basis of
the local eigenstates |ψi(j )

l 〉 and |ψ̃ i(j )
� 〉 (see Appendix A for

details).
Next, we apply a canonical transformation to this extended

t-ε-U -like model assuming that the hopping integrals are
smaller than the effective UCu

eff and εZn
eff . At half-filling and in the

second order, the t-U part yields the Heisenberg model with
J = 4|t2|2/UCu

eff and with the negligible higher-order terms.
In the presence of impurity, the same transformation leads to
the dilution-only model, in which the four adjacent spin-spin
links are cut by the spinless Zn site. For the sites in the
vicinity of impurities, we extend the transformation to the
fourth order52–54 in t/ε(U ) to include the -ε- part of the model
for the purpose of taking into account the effects of the in-gap
impurity state.

In addition to deriving the low-energy, spin-only model with
the parameters that can be traced to the three-band ones, we
are also able to analyze individual superexchange processes
that contribute to the terms of that model. We find that in the
fourth order there are two types of virtual transitions through
the impurity site. The first involves three sites: two Cu and one
Zn, with the coppers either across the Zn site or at a right angle,
as in Fig. 6. The second type needs three Cu in addition to Zn
impurity, arranged in a four-site plaquette (see Fig. 7). Each
of the transition types yields two superexchange channels, as
shown in Figs. 6 and 7. The first two, in Figs. 6(a) and 6(b), are

(a)
t11 t21 t21 t11

(b)
t11 t12 t12 t11

FIG. 6. (Color online) Superexchange processes for (a) δJ1 and
(b) δJ2. See text and Fig. 5 for notations.
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t11 t1 t1 t11
(a)

t2 t21 t1 t11
(b)

FIG. 7. (Color online) Ring exchanges for (a) δJ3 and (b) δJ4.

the standard superexchanges, taking four virtual steps instead
of the usual two. We denote the corresponding couplings
generated by such processes as δJ1 (doubly occupied state
on Cu) and δJ2 (doubly occupied state on Zn), respectively.
The other two processes, in Figs. 7(a) and 7(b), are the ring
exchanges, which we denote as δJ3 (no doubly occupied state
involved) and δJ4 (doubly occupied state on Cu), respectively.
These couplings are given by

δJ1 = 4|t11t21|2
UCu

eff

(
εZn

eff

)2 , δJ2 = 8|t11t12|2(
UZn

eff + 2εZn
eff

)(
εZn

eff

)2 ,

(8)

δJ3 = −2|t11t1|2(
εZn

eff

)3 , δJ4 = −4|t11t1t2t21|
UCu

eff

(
εZn

eff

)2 ,

in terms of the notations of Fig. 5. Assuming that εZn
eff

is smaller than Ueff according to the discussion of Sec.
II B, the magnitudes of δJi’s should substantially exceed
the conventional fourth-order terms of order t4

eff/U 3
eff , which

we neglect. Another important distinction of the couplings in
Eq. (8), is that they occur due to impurities and thus must have
a direct relation to the doping-dependent effects. Altogether,
the considered processes combine into the next-nearest- and
next-next-nearest-neighbor frustrating interactions around Zn
impurity [see Fig. 1(c)],

J ′
Zn = δJ1 + δJ2 + δJ3 + δJ4, J ′′

Zn = δJ1 + δJ2. (9)

It is clear that only superexchange-type processes of Fig. 6
can contribute to the next-next-nearest-neighbor couplings
across the impurity J ′′

Zn, while the ring exchanges of Fig. 7
are also at play for J ′

Zn. Importantly, the latter terms have a
ferromagnetic sign, reducing the value of J ′

Zn compared to
J ′′

Zn. Thus, counterintuitively, the longer-ranged J ′′
Zn should be

greater than J ′
Zn. This feature is made explicit in Fig. 8, which

shows that the ratio of J ′′
Zn/J

′
Zn varies from about 4 to 2 for a

representative range of the electronic parameters of Zn with
the other three-band model parameters as in Fig. 4.

0.8 0.9 1.0 1.1 1.2
tZnO / tpd

3

4

J Z
n
/J

Z
n

Δ

′
″

Zn = 4.5eV
ΔZn = 6.0eV

FIG. 8. (Color online) The ratio of J ′′
Zn/J

′
Zn vs tZnO/tpd for two

representative �Zn. Other parameters are as in Fig. 4.

0.8 1.0 1.2
tZnO / tpd

ΔZn = 6.0eV
ΔZn = 4.5eV
ΔZn = 3.0eV

3 4 5 6 7
ΔZn (eV)

0.0

0.5

1.0

1.5

J to
t

Z
n 

 / 
J

tZnO / tpd = 0.8
tZnO / tpd = 1.0
tZnO / tpd = 1.2

(b)(a)

FIG. 9. (Color online) The total frustration effect per Zn impurity
J tot

Zn = 4J ′
Zn + 2J ′′

Zn (a) vs �Zn for several representative values of
tZnO and (b) vs tZnO/tpd for several values of �Zn, respectively. Three-
band parameters are tpd = 1.5 eV, � = 3 eV, and Ud � � as before.
The shaded area is the range of J tot

Zn needed to explain experimental
reduction of the staggered magnetization M(x)/M(0) (see Sec. III).

As is shown in Fig. 1(c), each impurity generates four J ′
Zn

and two J ′′
Zn. Thus, the total frustrating effect per Zn impurity

is J tot
Zn = 4J ′

Zn + 2J ′′
Zn. We show the dependence of J tot

Zn on �Zn

and tZnO in Fig. 9 with the same set of three-band parameters
as in Sec. II B and shown in Fig. 4. The shaded area in
the graphs shows the range of J tot

Zn needed to explain exper-
imentally observed reduction of the staggered magnetization
M(x)/M(0), according to the T -matrix discussion of Sec. III.
Clearly, the uncertainty in the electronic parameters of Zn
orbitals does not allow us to provide significant restrictions on
the value of J tot

Zn . However, the values needed for M(x)/M(0)
doping dependence outline the minimal requirements on such
three-band model parameters. In particular, the coupling of Zn
and O orbitals should not be much weaker than that of Cu and
O, while the position of the level on Zn is much less restricted.
Overall, the realistic requirements on Zn electronic degrees of
freedom leave a wide range of J tot

Zn and they support the validity
of our proposed impurity-induced frustration mechanism.

Finally, the effective low-energy, spin-only model for
La2Cu1−xZnxO4 can be divided into two parts:

H = J
∑
〈ll′〉

Sl · Sl′ + J ′
Zn

∑
〈ll′〉′�

Sl · Sl′ + J ′′
Zn

∑
〈ll′〉′′�

Sl · Sl′ , (10)

the dilution-only model (first term), and the impurity-induced
frustrating terms, with 〈ll′〉′� and 〈ll′〉′′� denoting next- and next-
next-nearest-neighbor bonds that are also nearest neighbors of
the impurity site � [see Fig. 1(c)]. The summations are carried
over the Cu sites only.

We propose that the dilution-frustration model (10) pro-
vides a proper description of Zn-doped CuO2 planes and
discuss its properties next.

III. ON-SITE MAGNETIZATION IN THE LOW-ENERGY
MODEL

With the structure of the low-energy spin-only model for
CuO2 plane diluted by Zn impurities given in Eq. (10),

064415-7



SHIU LIU AND A. L. CHERNYSHEV PHYSICAL REVIEW B 87, 064415 (2013)

we investigate in detail the impact of impurities on the
order parameter, the average on-site magnetization M . We
use the linear spin-wave approximation to the problem of
single impurity in model (10) and apply an analytical T -
matrix approach to it, which is based on exact summation
of the infinite diagrammatic series for the impurity scattering
amplitudes. Then we approximate the problem of finite con-
centration of impurities as a linear superposition of scattering
effects of individual random impurities, which amounts to
an “effective medium” approach via disorder averaging. This
step restores translational invariance for magnons but modifies
their dispersion and provides them with damping through the
impurity scattering self-energies. The averaging also takes into
account the increase of the population of magnons around
impurities, i.e., for the extra fluctuations of spins that reduce
the value of the ordered moment. The latter effect is calculated
from the renormalized magnon Green’s function as a function
of impurity concentration x.33,34

We note that the order parameter is normalized by the
number of magnetic ions: M(x) = ∑

i |Sz
i |/Nm, where Nm =

N − Nimp is the number of magnetic sites (Cu2+) and N is
the total number of sites. The reason for that is twofold. First,
the experimental data on M(x) from such techniques as NMR
(NQR) and neutron scattering are naturally normalized this
way. Second, such a normalization also separates the classical
effect of dilution from the purely quantum-mechanical sup-
pression of the order parameter. For instance, M(x) defined
this way is close to a constant for the classical (Ising)
antiferromagnet on a square lattice, as shown in Fig. 10(a),
because this quantity is equivalent to a probability for a spin
to belong to an infinite cluster, which is very close to 1 below
the percolation threshold, xp ≈ 41%.

In this section, we first demonstrate the discrepancy of the
previous theoretical works based on the dilution-only model

0 0.05 0.1 0.15 0.2
x

0

0.5

1

1.5

2

R(x)

0 0.1 0.2 0.3 0.4
x

0

0.2

0.4

0.6

0.8

1

M(x)____
M(0)

classical, S = 8

experimental data, fit
QMC, dilution-only
T-matrix, dilution-only

(a) (b)

FIG. 10. (Color online) (a) The on-site magnetic moment M(x)
per magnetic site (Cu2+), normalized to the undoped value M(0)
vs Zn doping x. Green diamonds and magenta circles are the NQR
data (Refs. 18 and 19), cyan squares are the neutron scattering data
(Ref. 21), and the dashed line is their best fit. The dotted line is the
classical (Ising) result. The upper solid line (blue online) is the best
fit of the QMC results (blue circles) (Ref. 35) and the lower solid
line (red online) is the T -matrix calculation results (Ref. 34), both for
the dilution-only model. (b) The slope function R(x) of normalized
staggered magnetization (see text) vs x. Symbols and lines are the
same as in (a).

with experimental data and then proceed with the calculations
within the dilution-frustration model of Eq. (10). Comparison
with experimental data provides a confirmation of the self-
consistency of our consideration in two respects. First, it allows
us to verify whether the impurity-induced frustration is at all
a reasonable mechanism for producing extra suppression of
the order parameter. Second, we are able to compare the range
of parameters J ′

Zn and J ′′
Zn that are necessary to explain the

experimental data for M(x) with the range permitted by the
three-band Hubbard mapping of Sec. II.

A. Discrepancy with experiments

Figure 10(a) shows a comparison of the results for the
averaged on-site magnetic moment (staggered magnetization)
M(x), normalized to its value in the undoped system M(0).
The experimental data include the NQR18,19 and the neutron
scattering data,21 with the dashed line being their best fit.
Both sets of theoretical results, from the QMC35 and the T -
matrix34 calculations, are for the T = 0 dilution-only model,
i.e., neglecting frustrating effects of impurities proposed in
this work. The first observation is that the unbiased QMC
data agree very closely with the T -matrix results up to x �
15%, thus supporting the validity of the latter in the low-
doping regime.34,35 At higher doping, the single-impurity T

matrix tends to overestimate the effect of impurities on the
order parameter. Note that the T -matrix results in Fig. 10(a)
are multiplied by the classical probability (dotted line). This
does not affect the data for x < 35% but makes a comparison
consistent near the percolation threshold xp.

However, there are substantial discrepancies between theo-
retical and experimental results. In Fig. 10(a) the experimental
data are always below the theoretical curves for the dilution-
only model. The difference is much more apparent in the slope
function, defined as

R(x) = 1

x

(
1 − M(x)

M(0)

)
, (11)

and displayed in Fig. 10(b). The quantity R(x) has a transparent
physical meaning at x → 0: It shows a reduction of the
order parameter M per impurity due to enhanced quantum
fluctuations in the impurity’s neighborhood, the quantity
that should be captured properly by the T -matrix approach.
Figure 10(b) shows a large discrepancy of the experimental
slope, Rexp(0) ≈ 1.1, with both the QMC, RQMC(0) ≈ 0.5, a
factor of approximately 2, and the T -matrix, RT (0) ≈ 0.7,
a factor of about 1.6. This gives a clear indication that the
dilution-only theory significantly underestimates the impact
of the individual impurities on the quantum spin background.
Thus, the dilution-only model is not enough to describe
La2Cu1−xZnxO4.

B. Qualitative J eff
1 - J eff

2 - J eff
3 mean-field consideration of the

dilution-frustration model

We would like to argue that the longer-ranged spin
interactions in the undoped system are unlikely to provide
a resolution to the observed discrepancy in M(x). On the
other hand, the dilution-frustration model of Eq. (10) can
be approximated on a mean-field level as an effective model
with further exchanges that are proportional to doping. Such a
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mean-field consideration offers a simple way of checking the
viability of this model in explaining the discrepancy.

One of the natural ideas to explain the disagreement is by
including the longer-range interactions, such as J2, J3, etc.,
and ring exchange, in the low-energy spin-only model for
the undoped CuO2 plane. Such terms are generally present in
any realistic low-energy spin models of Mott insulators and
formally come as a result of the higher-order expansion of the
Hubbard-like models.54 Although for the cuprates38 such terms
are of the order of 10% of the nearest-neighbor J , they do lead
to a reduction55 of M . Qualitatively, assuming the presence of
a J2 term in the spin model and using an expansion of M in the
dilution fraction x and in J2, one can obtain on the mean-field
level at small x and J2,

R(J2) ≈ R(0)

(
1 + A

J2

J

)
, (12)

where the coefficient A � 1 follows from the consideration
of the J1-J2 model56 and R(0) is the theoretical slope of
the dilution-only model in Fig. 10(b). Thus, unless J2 is of
the same order as J , one cannot expect a large correction
to the slope of M(x)/M(0) from the presence of further-
neighbor terms in the low-energy model.

In addition, since these terms suppress the order already in
the undoped system, this mechanism is unlikely to enhance
fluctuations specifically due to dilution. Put another way,
dilution of the models with extended interactions breaks
frustrated bonds alongside the nearest-neighbor ones and may
even induce more robust order around impurities. A recent
detailed study38 has shown that while extended interactions
such as J2 and cyclic terms do lead to an overall lower absolute
value of the on-site magnetization in the impurity-doped
Hubbard model of La2Cu1−xZnxO4, they do not significantly
change the theoretical M(x)/M(0) dependence and are not
able to explain the large experimental slope R(x) in Fig. 12(b).

On the other hand, the dilution-frustration model of Eq. (10)
offers an alternative: While the undoped system can be
considered as having no further-neighbor frustrating terms
in its low-energy model, such terms are introduced by the
dopants. We thus propose an effective medium, mean-field
J eff

1 -J eff
2 -J eff

3 model, in which effective interactions depend
on the doping concentration x, as a simplified version of the
dilution-frustration model (10) that allows for a straightfor-
ward calculation of M(x) without the complications of the
T -matrix or QMC numerical approaches. While approximate,
this method gives an intuitive picture of the proposed mech-
anism and allows us to estimate whether it can be a viable
source of enhancing quantum fluctuations due to doping.

In a sense, the mean-field approximation “spreads” the
frustration provided by impurities evenly over the whole
system. The strength of the effective couplings is related to the
exchanges in Eq. (10) by counting bonds: nearest-neighbor
interaction J eff

1 = J (1 − 2x), next-nearest-neighbor interac-
tion J eff

2 = 2xJ ′
Zn, and next-next-nearest-neighbor interaction

J eff
3 = xJ ′′

Zn. Since we are interested in the x � 1 limit, the
derivation of M amounts to on expansion of the spin-wave
correction to the order parameter within the J eff

1 -J eff
2 -J eff

3
model to the first power in J eff

2 /J and J eff
3 /J . Using the

approach of Ref. 56 we obtain the moment reduction as

M(x)

M(0)
� 1 − C2

M(0)

(
J eff

2

J

)
− C3

M(0)

(
J eff

3

J

)
, (13)

where C2(3) = ∑
k η2(3),kγ

2
k /2ω3

k, with ωk =
√

1 − γ 2
k , γk =

(cos kx + cos ky)/2, η2,k = (1 − cos kx cos ky), η3,k = (2 −
cos2 kx − cos2 ky), and M(0) = 0.3034 is the ordered moment
of the S = 1/2, square-lattice nearest-neighbor Heisenberg
antiferromagnet in the spin-wave approximation. Interestingly,
since C2 = 0.2909 and C3 = 0.5205, the suppression of the
order by J eff

3 is almost two times as effective as by J eff
2 of the

same value. Setting the change of the slope, which is needed
for the dilution-only result RT (0) ≈ 0.7 to achieve agreement
with experimental Rexp(0) ≈ 1.1, and using the relation of
J eff

2 and J eff
3 to J ′

Zn and J ′′
Zn, we can determine the range of

J tot
Zn = 2J ′′

Zn + 4J ′
Zn necessary for that. Assuming J eff

2 = J eff
3

corresponds to the choice J ′′
Zn = 2J ′

Zn, which is a reasonable
ratio according to the three-band model consideration (see
Fig. 8). Using (13), the required total frustrating effect due to
each impurity is J tot

Zn � 0.6J , which is well within the range of
the estimates from the three-band model mapping (see Fig. 9).

Altogether, this consideration shows that the dilution-
frustration model is indeed a viable candidate for explaining
the discrepancy with the experimental data.

C. T matrix for the dilution-frustration model

A more rigorous, albeit more technically involved method
of dealing with the dilution-frustration model (10) is the
T -matrix approach. Its advantage is in taking into account
all multiple-scattering magnon processes, by which it solves
the single-impurity problem exactly within the 1/S spin-
wave approximation. Since we are interested in identifying
a mechanism of the order parameter suppression in the low-
doping regime, such an approach should be able to provide if
not the ultimate, but at least a quantitatively correct result.

The T -matrix method has been used in the study
of the dilution-only model in the 2D square-lattice
antiferromagnet.25–34 Here we outline some of the basic
steps needed to calculate staggered magnetization in the
dilution-frustration model (10) and provide necessary details
in Appendix B.

Staggered magnetization at T = 0 in the presence of
impurities can be written as34

M(x) = M(0) −
∑

k

1

ωk
(〈α†

kαk〉 − γk〈α†
kα

†
−k〉), (14)

where M(0) = S − � � 0.3034 is the staggered magnetiza-
tion of the S = 1/2, square-lattice, nearest-neighbor Heisen-
berg antiferromagnet at zero doping, which is already reduced
by quantum fluctuations (�) of the antiferromagnetic ground
state, and ωk =

√
1 − γ 2

k as before. Quantum fluctuations due
to impurities further reduce M(x) by nonzero magnon expec-
tation values 〈α†

kαk〉 and 〈α†
kα

†
−k〉. These can be expressed

through the magnon Green’s function,34 leading to

M(x)

M(0)
= 1 − 1

M(0)

∑
k

∫ 0

−∞

dω

πωk

[
ImG11

k (ω) − γkImG12
k (ω)

]
,

(15)
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where G11
k and G12

k are the diagonal and the off-diagonal
components of the 2 × 2 matrix Green’s function, respec-
tively [see Eq. (B1) for the corresponding Dyson-Belyaev
expression of them via the magnon self-energies]. We note
that Im G11

k (ω) > 0 for ω < 0. Magnon self-energy in this
approach comes as a result of averaging over random impurity
distribution, which relates it to the forward-scattering (k′ = k)
elements of the T matrix


̂k(ω) = x
∑
μ,I

δk,k′T̂Iμ

k,k′(ω) . (16)

Here the sum includes the contributions from impurities in both
sublattices (I = A,B) and from each of the nonzero μ = s-,
p-, and d-wave components of the T matrix for the vacancy in
the nearest-neighbor square lattice. Clearly, the self-energies
are also proportional to the impurity concentration x.

The individual components of the T matrix (B5) obey linear
integral equations for the multiple scattering in each partial
wave. Such equations contain separable scattering potentials,
which reduce integral equations to simple algebraic ones and
allow for solutions in a separable form. That is, each partial
wave T matrix T̂Iμ

k,k′ (ω) is given by the product of the k-
and k′-dependent scattering potential components with the
corresponding ω-dependent resolvents34 [see Eqs. (B5)–(B8)
in Appendix B].

The dilution-frustration model (10) contains extra frustrat-
ing antiferromagnetic terms compared to the dilution-only
model, J ′

Zn and J ′′
Zn, that couple spins around impurities. We

find that because these extra terms connect spins that belong
to the same antiferromagnetic sublattice of the host, additional
scattering provided by them is orthogonal to the s wave due to
a cancellation between SzSz and S+S− contributions. For the
same reason, the next-next-nearest-neighbor interaction J ′′

Zn
also does not modify the d-wave component of the scattering
potential and contributes only to the p wave, while the
next-nearest-neighbor J ′

Zn interaction affects both the d-wave
and the p-wave scattering [see (B6) and (B8)].

While the x dependence of Eq. (15) obviously extends
beyond linear, it is the linear term which is of primary
importance as it is defining the initial slope of the normalized
magnetization, R(0) in Eq. (11). It is also the term that is
expected to be treated properly by the T -matrix approach.
Thus, one may want to simplify the general expression (15)
and obtain an expression which is explicitly linear in x. Having
in mind that all magnon self-energies in Eq. (16) are ∝x, we
use the Green’s function expansion in 
̂ [see (B2)] to obtain

M(x)

M(0)
� 1 − xR(0) = 1 − 1

M(0)

∑
k

{
−γkRe 
12

k (ωk)

2ω2
k

+
∫ 0

−∞

dω

πωk

[
Im 
11

k (ω)

(ω − ωk)2
+ γkIm 
12

k (ω)(
ω2 − ω2

k

) ] }
,

(17)

where we note again that Im 
11
k (ω) > 0 for ω < 0. With this,

we can study the effect of impurity-induced frustration on the
order parameter by calculating integrals in Eqs. (17) and (15)
for different values of J ′

Zn and J ′′
Zn.

First, in agreement with the qualitative consideration pro-
vided by the mean-field J eff

1 -J eff
2 -J eff

3 model in Sec. III B, we
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JZn

″
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dilution-only theory

FIG. 11. (Color online) R(0) from (17) vs J ′′
Zn (in units of J ).

The red solid, magenta dotted-dashed, and blue dashed lines are for
J ′

Zn/J
′′
Zn = 0, 1/4, and 1/2, respectively. The colored area highlights

the range of J ′′
Zn. The experimental value Rexpt(0) and the dilution-only

T -matrix result (Ref. 34) of RT (0) are shown by the dotted horizontal
lines.

find that the next-next-nearest neighbor J ′′
Zn bond suppresses

the order about as effectively as two next-nearest J ′
Zn bonds of

the same strength. As was discussed in our previous work,39 the
same result has also been obtained by the QMC calculations,
confirming again a good qualitative and quantitative accord
between the analytical T -matrix approach and an unbiased
numerical method. Since the three-band model calculations of
Sec. II also suggest that the J ′′

Zn term is systematically larger
than the J ′

Zn term, these findings make the J ′′
Zn interaction

particularly important.
We study the rate of suppression of the order parameter

R(0) in Eq. (17) for several representative ratios between
J ′

Zn and J ′′
Zn as a function of one of them. Figure 11 shows

R(0) vs J ′′
Zn for three choices of J ′

Zn/J
′′
Zn = 0, 1/4, and

1/2. The dilution-only T -matrix result34 of RT (0) ≈ 0.69 and
the “target” experimental value Rexpt(0) ≈ 1.1 are shown by
the dotted horizontal lines. We find the effect of frustrating
interactions to be about two times stronger than in the mean-
field J eff

1 -J eff
2 -J eff

3 consideration of Sec. III B, implying that
the averaged mean-field treatment underestimates the effect of
the order suppression due to frustration by local defects. This
result also means that the necessary frustration is smaller than
the one estimated from the J eff

1 -J eff
2 -J eff

3 model.
One can see that the experimental value of R(0) in Zn-doped

La2CuO4 is met by the T -matrix results of the dilution-
frustration model at J ′′

Zn ≈ 0.07J if the ratio of J ′
Zn/J

′′
Zn is fixed

to 1/2 and at J ′′
Zn ≈ 0.08J for J ′

Zn/J
′′
Zn = 1/4, the window

of variation of J ′
Zn/J

′′
Zn suggested by the three-band model

consideration in Fig. 9 of Sec. II. These values translate
into the total frustrating effect of impurity J tot

Zn ≈ 0.28J

and J tot
Zn ≈ 0.24J , respectively, which are well within the

window suggested by the three-band model calculations. The
somewhat wider range is highlighted by the gray shaded area
in Figs. 9(a) and 9(b).

In our previous work,39 QMC results seem to suggest a
higher value J tot

Zn � 0.4J , still a modest amount of frustration,
well within the range permitted by the three-band model. An
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FIG. 12. (Color online) Same as Fig. 10 with the lines used for the
fit of the QMC data and for the T -matrix results of the dilution-only
case switched to the dashed lines for clarity. The red solid line (and
its long-dashed line tail) is the T -matrix results (15) for the dilution-
frustration model with J ′′

Zn = 2J ′
Zn = 0.07J . In (b) the blue diamond

with the dashed line is the QMC result for J ′′
Zn = 2J ′

Zn = 0.1J from
Ref. 39.

example of the QMC results for RQMC(0) for the choice of
parameters J ′′

Zn =2J ′
Zn =0.1J is shown in Fig. 12(b) by the blue

diamond on the vertical axis. However, the QMC calculations
may be affected by the frustrating nature of the impurity-
induced interactions, which is associated with the infamous
sign problem. This is also restricting the use of the QMC for
the dilution-frustration model to the single-impurity problem.
In addition, the QMC results for RQMC(0) are obtained
from the finite-size scaling that may overestimate J tot

Zn . Thus,
using the data only from the largest clusters,39 extrapolation
for the J ′′

Zn =2J ′
Zn =0.1J data set gives RQMC(0)≈1.0, much

closer to the experimental value. Thus, the QMC result also
demonstrates that the impurity-induced frustrations affect the
staggered magnetization significantly and bring the slope
much closer to experimental data.

Using Eq. (15) we calculate the normalized stag-
gered magnetization and the slope (11) for the dilution-
frustration model with J ′′

Zn = 2J ′
Zn = 0.07J as a function of x,

with the results shown in Figs. 12(a) and 12(b) by the solid
lines. The comparison is provided with the experimental data
and the theoretical T -matrix and QMC calculations for the
dilution-only model from Fig. 10. With the frustrating param-
eters chosen to match the initial slope of the experimental best
fit, obviously, M(x)/M(0) in the dilution-frustration model
agrees much better with experiments. At higher values of
x � 15%, the T matrix overestimates the effect of impurities
on M(x) as it neglects the multiple-impurity scattering effects,
similarly to the dilution-only case.

Altogether, all of the evidence indicates that the dilution-
frustration model describes La2Cu1−xZnxO4 better than
the dilution-only model and that the effective frustrating
interactions via available electronic states of the impurity
should be taken into account when studying doped Mott and
charge-transfer insulators.

D. Further developments

Based on the analysis of the Néel temperature doping de-
pendence within the classical Heisenberg model, an alternative

suggestion has been put forward for additional interactions
introduced by dopants, such as Mg and Zn: lattice distortions
in the vicinity of the impurity site change the strength of
J bonds.57 The impact of this mechanism on M(x) and
its possible viability as an alternative to our proposal has
been investigated using the QMC analysis in Ref. 58. It was
found that changing the strength of the eight Cu-Cu bonds
in the immediate vicinity of the Zn site by as much as 15%
(≡δJ̃tot = 1.2J ) changes the slope of M(x)/M(0) by at most a
few percent. Such a weak effect rules out the lattice-distortion
mechanism as a viable alternative to our theory.

One of the natural consequences of our idea is that different
isovalent impurities, such as Zn2+ and Mg2+, should induce
different amounts of quantum fluctuations around them due
to differences in their electronic levels available to generate
frustrating interactions, and thus lead to a different rate of
suppression of the order parameter. Specifically, Mg2+ should
have no levels in any reasonable proximity to the chemical
potential, as opposed to Zn2+, and thus should not lead to any
substantial frustration, suggesting that the Mg-doped La2CuO4

must be described much better by a simple dilution-only
model. This scenario has been investigated recently by the μSR
experiments in Zn- and Mg-doped La2CuO4 at low doping.40

The crucial finding of this work is that the spin stiffness,
determined from the Néel temperature, shows a stronger
suppression rate in the case of Zn doping, in agreement with the
expectations from our theory. Although in addition to quantum
contributions the slope of TN (x)/TN (0) ≈ 1 − αx contains
significant classical terms as well as logarithmic contributions
from the three-dimensional interplane couplings,34,57 the
difference in such slopes found in Ref. 40 is significant:
αMg ≈ 2.7 vs αZn ≈ 3.5. These values are consistent with the
difference expected between the dilution-only model34 and
the dilution-frustration model with the parameters discussed
in Sec. III C.

IV. CONCLUSIONS

In this work, we have provided a detailed derivation of
the low-energy, spin-only model of the Zn-doped La2CuO4

starting from the realistic site-diluted three-band Hubbard
model. We have followed with an equally detailed analysis
of the order parameter in this low-energy model. We have
elaborated on the proposal of our previous work that the im-
purities in strongly correlated systems may induce significant
longer-range frustrating interactions among the spins, which
are absent or negligible in the corresponding undoped system,
due to hybridized electronic states of the impurity at the scale
less than the Hubbard U . Such impurity-induced frustrating
interactions are shown to significantly enhance local quantum
fluctuations compared to the dilution-only model. In par-
ticular, the dilution-frustration model demonstrates stronger
suppression of the order and, for a choice of parameters
appropriate for Zn-doped La2CuO4, it resolves discrepancies
between experiments and earlier theories. Recently, our theory
has received further experimental confirmation from the μSR
studies of spin stiffness in Zn- and Mg-doped La2CuO4.

Although our work considers a particular case of diluted
La2CuO4, this study has far-reaching consequences for other
diluted antiferromagnets and doped Mott and charge-transfer
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insulators.59 One of the intriguing consequences of the pro-
posed mechanism is the change of character of the percolation
transition due to frustrating interactions across the impurities.
The impurity doping of one-dimensional spin systems such as
spin chains and ladders should introduce weaker links between
their parts instead of breaking them into independent pieces.
Experiments in diluted frustrated spin systems is yet another
area, such as the recently studied diluted J1-J2 system,60,61

which should also be affected by the same mechanism.
Another perspective is offered by an extension of the proposed
mechanism of the impurity-induced frustrating interactions to
the case of the doping away from half-filling where it may
be responsible for the pair-breaking mechanism in the doped
CuO2 planes.
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APPENDIX A: DETAILS OF THE THREE-BAND MODEL
CONSIDERATION

1. Wannier orthogonalization of oxygen orbitals

The hopping terms in the three-band models (1) and (2)
couple the Cu and Zn states with the symmetric combination
of O states, i.e.,

Hpd = −tpd

∑
lα

(d†
lαPlα + H.c.), (A1)

with

Plα = (
px

l+(x/2) + px
l−(x/2) + p

y

l+(y/2) + p
y

l−(y/2)

)
α
, (A2)

where x and y are the vectors in the x and y direction of
length a0 = 1, the CuO2 lattice spacing. The problem is that
the operators Plα do not obey proper anticommutation relations
with the ones on the nearest-neighbor CuO4(ZnO4) clusters,
because one of the four p operators in Eq. (A2) belongs
to both clusters. The Wannier-orthogonalization procedure
is performed in the k space.43,46 Since the O lattice is fully
periodic even for the CuO2 plane doped with Zn, the Fourier
transform of the oxygen-hole operators p

x(y)
m can be written as

px(y)
mα = 1√

N

∑
k

e−ik·[rl±(x/2)(y/2)] p
x(y)
k,α , (A3)

where the sum is over the Brillouin zone and N is the number
of unit cells.

Motivated by Eq. (A2) and using (A3), one can introduce
the orthogonalized symmetric and antisymmetric oxygen

operators in momentum space as

qk,α = λ−1
k

[
cos

(
ky

2

)
p

y

k,α + cos

(
kx

2

)
px

k,α

]
,

(A4)

q̃k,α = λ−1
k

[
cos

(
kx

2

)
p

y

k,α − cos

(
ky

2

)
px

k,α

]
,

with the normalization factor

λk =
√

1 + γk, (A5)

and γk = 1
2 (cos kx + cos ky). These operators are now prop-

erly normalized and obey regular fermionic anticommutation
relations.

Then, using

Plα = 1√
N

∑
k

e−ik·rl λk qk,α, (A6)

and applying the inverse Fourier transform yields the hopping
Hamiltonians in Eqs. (4) and (5) with the real-space Wannier
amplitudes given by

λll′ =
∑

k

λke
−ik·(rl−rl′ ), (A7)

which depend on the distance between the clusters. As a result,
the original three-band Hamiltonian (1) with Zn impurity (2) is
rewritten in a much more convenient, symmetric CuO4(ZnO4)
cluster form, containing oxygen degrees of freedom that couple
to copper and zinc orbitals most effectively. On the other
hand, the hopping terms in the new variables go beyond the
nearest-neighbor hopping. However, λll′ decrease rapidly with
distance,45 λll′ ∼ 1/|rl − rl′ |3, so the terms beyond the nearest
neighbor in the hopping parts of Eqs. (4) and (5) can be
neglected.

The most important result of the transformation{
px

m,α,p
y
mα

} → ql,α(q�,α), is that it allows one to take into
account the effects of the the intracluster hoppings separately
from the local, intracluster Cu-O (Zn-O) hybridization (Wan-
nier amplitude λ0), considered next.

2. Effective CuO4 and ZnO4 states and hoppings

Here we list a complete set of hybridized orthogonal
electronic states in CuO4 and ZnO4 clusters for the one- and
two-hole states. We omit the site index as the states are in
the same cluster. The states involving antisymmetric oxygen
orbitals (A4) are excluded since they do not contribute to the
hybridization. With the zero-hole state defined as |0〉, the CuO4

one-hole states include

|dα〉 = d†
α|0〉, |qα〉 = q†

α|0〉, (A8)

with energies εd and εp, respectively.
The two-hole sector is naturally divided into orthogonal

singlet and triplet sectors, to be diagonalized separately, with
singlet states

|ψ〉 = d
†
↑d

†
↓|0〉, |ϕ〉 = q

†
↑q

†
↓|0〉,

(A9)

|χ〉 = 1√
2

(d†
↑q

†
↓ − d

†
↓q

†
↑)|0〉,
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having energies 2εd + Ud , 2εp, and εd + εp, respectively, and
triplets

|τ1〉 = d
†
↑q

†
↑|0〉, |τ−1〉 = d

†
↓q

†
↓|0〉,

(A10)

|τ0〉 = 1√
2

(d†
↑q

†
↓ + d

†
↓q

†
↑)|0〉,

all with the energy εd + εp.
Similarly, for ZnO4 cluster the one-hole states are

|aα〉 = a†
α|0〉, |qα〉 = q†

α|0〉 , (A11)

with energies εZn and εp, respectively. The two-hole singlet
and triplet states are

|ψZn〉 = a
†
↑a

†
↓|0〉, |ϕZn〉 = q

†
↑q

†
↓|0〉,

(A12)

|χZn〉 = 1√
2

(a†
↑q

†
↓ − a

†
↓q

†
↑)|0〉,

with energies 2εZn + UZn, 2εp, εZn + εp, and

∣∣τZn
1

〉 = a
†
↑q

†
↑|0〉, ∣∣τZn

−1

〉 = a
†
↓q

†
↓|0〉,

(A13)∣∣τZn
0

〉 = 1√
2

(a†
↑q

†
↓ + a

†
↓q

†
↑)|0〉,

with energy εZn + εp. The states involving only oxygen
orbitals are the same for both ZnO4 and CuO4 clusters.

Hybridization terms in Hloc in Eq. (4) and in Hloc
Zn in

Eq. (5) originate from hoppings between the orbitals within
each cluster and lead to mixing of the states in each of
the orthogonal sectors of states in Eqs. (A8)–(A10) and
(A11)–(A13). Thus, the diagonalization of the local Hilbert
space in each cluster amounts to bringing a few 2 × 2 and
3 × 3 matrices to a diagonal form. We do not list explicit
expressions for the resulting eigenenergies and eigenvectors,
which can be found in Ref. 46, and simply assume that they
can be easily determined for a given choice of the three-band
model parameters.

Since we are interested in the lowest states from each of the
n-hole sectors, we denote them as follows. The lowest one-hole
state of the Cu cluster is |f (1)

α 〉, which is a normalized linear
combination of |dα〉 and |qα〉 in Eq. (A8), with the energy
E1. The lowest one-hole state for the Zn cluster is |f̃ (1)

α 〉, a
combination of |aα〉 and |qα〉 from Eq. (A11), with the energy
Ẽ1. The lowest two-hole states are |f (2)〉 for the Cu cluster,
which is a combination of the singlets |ψ〉, |ϕ〉, and |χ〉 in Eq.
(A9), with the energy E2 and |f̃ (2)〉 for the Zn cluster, a mix
of the singlets in (A12), with the energy Ẽ2.

Setting the energy E1 of the |f (1)
α 〉 state on the Cu cluster to

zero, as in Figs. 3 and 4, defines the relevant energy scales of
the effective t-ε-U model as εZn

eff = Ẽ1 − E1 for the lowest
one-hole state of the Zn-cluster, UCu

eff = E2 − 2E1 as the
effective Hubbard gap on the Cu cluster, and UZn

eff = Ẽ2 − 2Ẽ1

for the effective repulsion on the Zn cluster. Ignoring the
hoppings that involve higher-energy states, the effective t-ε-U
model, which is an abbreviated version of the models in

Eqs. (6) and (7), is given by

H =
∑

l

UCu
eff

∣∣f (2)
l

〉〈
f

(2)
l

∣∣
+

∑
〈ll′〉

{
F 01

10

(∣∣f (1)
αl

〉|0l′ 〉
〈
f

(1)
αl′

∣∣〈0l| + H.c.
)

+F 20
11

(∣∣f (1)
αl

〉∣∣f (1)
αl′

〉〈0l′ |
〈
f

(2)
l

∣∣ + H.c. + {l ↔ l′})} (A14)

and

δH =
∑

�

{(
UZn

eff + 2εZn
eff

)∣∣f̃ (2)
�

〉〈
f̃

(2)
�

∣∣ +
∑

α

εZn
eff

∣∣f̃ (1)
α�

〉〈
f̃

(1)
α�

∣∣}
+

∑
〈�l〉

{
F̃ 01

10

(∣∣f̃ (1)
α�

〉|0l〉
〈
f

(1)
αl

∣∣〈0�| + H.c.
)

+ F̃ 20
11

(∣∣f̃ (1)
α�

〉∣∣f (1)
αl

〉〈0l|
〈
f̃

(2)
�

∣∣ + H.c.
)

+ F̃ 02
11

(∣∣f̃ (1)
α�

〉∣∣f (1)
αl

〉〈
f

(2)
l

∣∣〈0�| + H.c.
)}

, (A15)

where the explicit expressions for hopping integrals can be
obtained by evaluating matrix elements of the Hamiltonian in
terms of the original Cu, Zn, and O operators, (4) and (5),
between the initial and final states in the basis of the local
eigenstates. For example,

F 01
10 = 〈

f
(1)
αl

∣∣〈0l′ |(H + δH)
∣∣f (1)

αl′
〉|0l〉. (A16)

In the effective hopping terms shown in Fig. 5 and used in
Sec. II we have employed the shorthand notations t1 = F 01

10 ,
t2 = F 20

11 , t11 = F̃ 01
10 , t21 = F̃ 02

11 , and t12 = F̃ 20
11 .

APPENDIX B: DETAILS OF THE T -MATRIX
CALCULATION

Here we provide some of the technical details of the
T -matrix approach, which closely follows Ref. 34. The 2 × 2
matrix Green’s function of a magnon in the square-lattice
antiferromagnet can be written in a Dyson-Belyaev form:

Ĝk(ω) = −1(
ω − ωk − 
11

k

)(
ω + ωk + 
22

k

) + (

12

k

)2

×
(−ω − ωk − 
22

k 
12
k


21
k ω − ωk − 
11

k

)
. (B1)

The low-doping consideration requires an expansion of (B1)
in powers of 
, which is given by

G11 = G0,11 + G0,11
11G11 + G0,11
12G21

� G0,11 + G0,11
11G0,11 + O(x2),
(B2)

G12 = G0,11
11G12 + G0,11
12G22

� G0,11
12G0,22 + O(x2),

where we drop the common k and ω dependencies for
shorthand notations and the noninteracting magnon Green’s
function is

Ĝ0
k(ω) =

(
1

ω−ωk+i0 0

0 −1
ω+ωk−i0

)
, (B3)
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where we normalize all the energies to �0 = 4SJ and the
magnon frequency is ωk =

√
1 − γ 2

k , with γk = (cos kx +
cos ky)/2.

The self-energies in Eqs. (B1) and (B2) are linear in
the doping concentration x and are related to the forward-
scattering components of the T matrix via



ij

k (ω) = x
∑
μ,I

δk,k′T
Iμ,ij

k,k′ (ω), (B4)

where the sum is over the sublattice index (I = A,B) and
μ = s-, p-, and d-wave components.

Using the sublattice A as an example,34 the s-, p-, and
d-wave components of the T matrix are

T̂
Aμ

k,k′(ω) = V̂Aμ

k,k′�μ(ω) (μ ∈ p,d),

T̂ As
k,k′(ω) = V̂As

k,k′�s(ω) − ω
∣∣�sA

k

〉 ⊗ 〈
�sA

k′
∣∣

+ ∣∣sA
k

〉 ⊗ 〈
�sA

k′
∣∣ + ∣∣�sA

k

〉 ⊗ 〈
sA

k′
∣∣, (B5)

where we use ⊗ to denote the direct product of the column
and row vectors and V̂Aμ

k,k′ stands for the s-, p-, and d-wave
components of the scattering potential that can be written as

V̂A
k,k′ =

∑
μ∈s,p,d

Cμ|μk〉 ⊗ 〈μk′ |, (B6)

in which the s-, p-, and d-wave vectors are given by〈
sA

k

∣∣ = ωk(uk,−vk),
〈
�sA

k

∣∣ = (uk,vk),
(B7)〈

pA
kx(y)

∣∣ = 1√
2

sin kx(y)(vk,uk),
〈
dA

k

∣∣ = γ −
k (vk,uk),

with the Bogolyubov parameters uk = √
(1 + ωk)/2ωk and

vk = −sgn(γk)
√

(1 − ωk)/2ωk. The ω-dependent resolvents
�μ(ω) in Eq. (B5) are listed below [see (B8)].

The coefficients in Eq. (B6) contain the dependence on the
frustrating terms in the dilution-frustration model

Cs = 1, Cp = 1 + 2
J ′

Zn

J
+ 2

J ′′
Zn

J
, Cd = 1 + 4

J ′
Zn

J
.

For the sublattice B, the equivalent expressions are obtained
via T̂

Bμ

k,k′(ω) = T̂
Aμ

k,k′(−ω){u ↔ v} (see Ref. 34).

The resolvents �μ(ω) are

�s(ω) = (1 + ω)ρ(ω)

1 − ω(1 + ω)ρ(ω)
,

�p(ω) = −2

2 − Cp(1 − ω)[1 − ω2ρ(ω) + ρd (ω)]
, (B8)

�d (ω) = −1

1 + Cd (1 − ω)ρd (ω)
,

where the functions ρ(ω) and ρd (ω) are

ρ(ω) =
∑

k

1

ω2 − ω2
k

, ρd (ω) =
∑

k

(γ −
k )2

ω2 − ω2
k

, (B9)

with γ −
k = (cos kx − cos ky)/2. They can be expressed

through the complete elliptic integrals of the first and second
kind.34

The self-energy matrix elements are related via 
22
k (ω) =


11
k (−ω) and 
12

k (−ω) = 
21
k (ω). The partial-wave terms in

the self-energies are


̂s
k(ω)

xCsωk
= �+

s (ω)

(
1 γk
γk 1

)
− ω

ωk

(
1 0
0 −1

)
+�−

s (ω)

(
ωk 0
0 −ωk

)
+ 2

(
1 0
0 1

)
(B10)

for the s wave,


̂
p

k (ω)

xCpωk
=

[
1 −

(
γ −

k

ωk

)2]{
�+

p (ω)

(
1 −γk

−γk 1

)
+�−

p (ω)

(−ωk 0
0 ωk

)}
(B11)

for the p wave, and


̂d
k (ω)

xCdωk
=

(
γ −

k

ωk

)2{
�+

d (ω)

(
1 −γk

−γk 1

)
+�−

d (ω)

(−ωk 0
0 ωk

)}
(B12)

for the d wave. Here �±
μ = 1

2

[
�μ(ω) ± �μ(−ω)

]
and


̂
p

k (ω) = 
̂
px

k (ω) + 
̂
py

k (ω).
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