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Sensitivity of force-detected NMR spectroscopy with resonator-induced polarization
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In the low-temperature regime where the thermal polarization P is of order unity and spin-lattice relaxation
is “frozen out,” resonator-induced relaxation can be used to polarize a nuclear-spin sample for optimal detection
sensitivity. We characterize the potential of resonator-induced polarization for enhancing the sensitivity of
nuclear-magnetic-resonance spectroscopy. The sensitivities of two detection schemes are compared, one involving
detection of a polarized sample dipole and the other involving detection of spin-noise correlations in an unpolarized
sample. In the case where the dominant noise source is instrument noise associated with resonator fluctuations and
with detection of the mechanical motion, a simple criterion can be used to compare the two schemes. Polarizing
the sample improves sensitivity when P is larger than the signal-to-noise ratio for detection of a fully-polarized
spin during a single transient. Even if the instrument noise is decreased to a level near the quantum-mechanical
limit, it is larger than spin noise for unpolarized samples containing up to a few tens of nuclei. Under these
conditions, spin polarization of order unity would enhance spectroscopic detection sensitivity by an order of
magnitude or more. In the limiting case where signal decay is due to resonator-induced dissipation during ideal
spin locking, and where resonator fluctuations are the noise source, the only parameter of the spin-resonator
system that affects the sensitivity per spin is the ratio of frequency to temperature. A balance between the
coupling strength, the noise power, and the signal lifetime causes the cancellation of other parameters from
the sensitivity formula. Partial cancellation of parameters, associated with a balance between the same three
quantities, occurs more generally when the resonator is both the dominant noise source and the dominant source
of signal decay. An intrinsic sensitivity limit exists for resonant detection of coherent spin evolution, due to
the fact that the detector causes signal decay by enhancing the spins’ spontaneous emission. For a single-spin
sample, the quantum-limited signal-to-noise ratio for resonant detection is 1/3. In contrast to the sensitivity,
the time required for sample polarization between transients depends strongly on resonator parameters. We
discuss resonator design and show that for a torsional resonator, the coupling is optimal when the resonator’s

magnetization remains aligned with the applied field during the mechanical oscillations.
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I. INTRODUCTION

Force-detected nuclear magnetic resonance (NMR) has
emerged in recent years as a sensitive tool for the study of mi-
croscopic spin samples. The sensitivity of magnetic-resonance
force microscopy (MRFM)'~3 has increased by approximately
seven orders of magnitude in the 20 years since MRFM
experiments were reported,! enabling nuclear-spin imaging
with a resolution better than 10 nm.* MRFM detectors have
been used for spatially-localized NMR spectroscopy, including
the detection of dipolar evolution,” chemical shifts,® double
resonance,”® and quadrupolar nutation.” Force-detected NMR
without the use of field gradients (BOOMERANG)'® has
been demonstrated by the spectroscopic measurement of scalar
couplings.!!

One of the goals inspiring the development of force-
detected NMR is signal detection with single-spin sensitivity.'?
In samples containing a small number of spins, signal detection
is complicated by the fact that the uncertainty in the sample
dipole is large compared to the mean dipole unless the
polarization is of order unity. At the millikelvin temperatures
needed to achieve this level of thermal polarization in a
magnetic field of several teslas, the spin-lattice relaxation
that restores polarization between transients becomes in-
conveniently slow,'> making signal averaging impractical.
Resonator-induced relaxation has been proposed as a means
of returning spins to thermal equilibrium between transients,'*
and a calculation based on a prototypical resonator design
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suggests that relaxation of nanoscale samples to polarization
of order unity with a rate constant R;, ~ 1 s~! may be possible
at millikelvin temperatures.'>

An alternative to restoring thermal polarization between
transients is to detect spin noise. MRFM methods based
on the measurement of spin noise'® have been used for
nuclear-spin imaging of nanoscale samples,* detection of
double resonance,’ and detection of a single electron spin.!”
Magnetic-resonance spectra of alkali-metal atoms have been
measured by optical detection of correlations in spin noise,'®
and NMR spectra of liquids and solids have been obtained
by detecting spin noise with a tuned circuit.'” A method of
encoding NMR spectra into correlated measurements of spin
noise has been proposed (CONQUEST).20-22

Although the record of sensitivity improvements for MRFM
methods is impressive, the achievement of single-proton
sensitivity remains a very challenging problem, requiring
an improvement of two orders of magnitude in sensitivity.'
BOOMERANG methods include a scheme for achieving
single-proton sensitivity,'> based on the use of a torsional
resonator to detect spin precession'' and restore thermal
polarization between transients. In contrast to MRFM, where
sensitive detection depends on the presence of a large field
gradient,' detectors for BOOMERANG are designed to yield a
homogeneous field at the sample. A homogeneous field
facilitates coherent manipulation of the entire spin system and
maximizes the sensitivity of both spectroscopy and imaging
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by allowing each shot to include signal from the entire
sample.'® BOOMERANG is also promising for combining
force detection with resonator-induced polarization, since
polarization of the entire sample rather than a resonant slice
is possible when the field is homogeneous.'*

The work presented here characterizes the potential of
resonator-induced polarization for enhancing the sensitivity
of force-detected NMR spectroscopy. In Sec. II, we derive
signal-to-noise-ratio formulas for two spectroscopic detection
schemes, one involving detection of a polarized sample dipole
and the other involving detection of spin-noise correlations in
an unpolarized sample. Our attention is centered on the case
where the thermal number of quanta in the resonator is small
and the effective sample volume contains up to a few tens of
nuclear spins, but the derived results are valid outside of this
regime. When the dominant noise source is instrument noise
associated with resonator fluctuations and with detection
of the mechanical motion, the relative sensitivity of the
two detection schemes is shown to be P2N/p, where P is
the thermal polarization, N is the number of spins, and p
is the single-shot signal-to-noise ratio (SNR) for detection
of the thermally-polarized sample dipole. If P is larger than
the SNR for detection of a fully-polarized spin during a
single transient, sample polarization improves spectroscopic
sensitivity. Even if instrument noise is decreased to a level
near the quantum-mechanical limit, it is larger than spin noise
for samples containing up to a few tens of unpolarized nuclei.
Under these conditions, spin polarization of order unity would
enhance spectroscopic detection sensitivity by an order of
magnitude or more over the sensitivity attainable by detection
of spin-noise correlations.

A strong spin-resonator coupling that yields fast thermal
relaxation between transients can also shorten the signal
lifetime.?® Section III examines the way in which resonator-
induced signal decay affects sensitivity. Relaxation during
pulsed spin locking is first characterized. Averaging of the
resonator-induced transitions requires nutation of the entire
spin system about the spin-locking field, which in turn requires
a field sufficiently strong to average the internal spin Hamilto-
nian Hy,. As in the case of continuous spin locking,?? effective
averaging during pulsed spin locking yields a signal that is
damped exponentially with time constant 77, = 2/R;, , where
Ry, is the rate constant for resonator-induced polarization in
the absence of the applied rf field.

In the case where spin noise is negligible, and where the
noise associated with the motion detector is equivalent to a
fixed number of thermal quanta added to the resonator, we
obtain a surprising simplification of the sensitivity formula for
detection during ideal spin locking. The sensitivity per spin
depends on the properties of the spin-resonator system through
only a single parameter: the ratio of frequency to temperature.
The cancellation of parameters from the sensitivity formula
is due to a balance between the coupling strength, the noise
power of the resonator’s fluctuations, and the signal lifetime,
which is shortened by resonator-induced dissipation. Partial
cancellation of parameters, associated with a balance between
the same three quantities, occurs more generally when the
resonator is both the dominant noise source and the dominant
source of signal decay. An intrinsic sensitivity limit exists
for resonant detection of coherent spin evolution, due to
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the fact that the resonant interaction enhances the spins’
spontaneous emission. For quantum-limited detection, signal
decay is due to the spontaneous emission of individual spins
into the resonant mode and the SNR for detection of a single
spin is 1/3. Formally, the limit on detection sensitivity can
be shown to exist when the detector is a damped harmonic
oscillator whose resonant interaction with the spins is governed
by the Jaynes-Cummings Hamiltonian,?* with the coupling
sufficiently weak that the detector perturbs the spin evolution
only by causing signal decay. Physical examples include
Rydberg atoms coupled to a damped cavity mode® and
nuclear spins coupled to a tuned circuit'* or a mechanical
resonator.

The time required for polarization between transients is
minimized when the resonator has a small motional mass
and a strong coupling to the spins and when the friction that
damps the resonator’s response to the spins is weak. For a
torsional resonator, the coupling does not depend on a gradient
generated by the resonator’s magnets or on relative motion
between the magnets and the sample. This form of coupling
is advantageous for spin polarization and NMR spectroscopy,
because it allows for designs that optimize field homogeneity
and place the resonator’s magnets arbitrarily close to the
sample, without the problem of friction due to relative motion
between the magnets and the sample.'> Section IV discusses
resonator design and shows that, for a torsional resonator,
the coupling strength is enhanced when the resonator’s
magnetization remains aligned with the applied field during
the mechanical oscillations. Order-of-magnitude estimates
are used to characterize the experimental regime relevant
for NMR spectroscopy with resonator-induced polarization.
For single molecules with resolved one-dimensional spectra,
direct detection of free evolution is possible, with signal
lifetime limited by resonator-induced dissipation and radiation
damping. For larger samples, where free evolution yields a
short-lived signal, pulsed spin locking during the detection
period optimizes the sensitivity of multidimensional methods
in which information is encoded into an arbitrary evolution
period before detection.

II. SENSITIVITY ANALYSIS

The sensitivity of force-detected magnetic resonance has
been studied in detail. In particular, the sensitivities of force
detection and inductive detection have been compared,'®-?
the factors that determine the SNR of MRFM!™ and
BOOMERANG'? have been analyzed, and the sensitivities
of MRFM methods based on spin-noise detection have been
characterized.'® In the current discussion, we compare the
sensitivities of two spectroscopic detection schemes in the
regime where the number of thermal quanta in the resonator is
small and the sample contains up to a few tens of nuclei.
SNR formulas are derived and used to characterize the
conditions under which polarization improves spectroscopic
sensitivity.

Figure 1 shows a prototypical design for a torsional
resonator, previously proposed for the polarization and spec-
troscopy of low-temperature nanoscale samples.'> We use this
resonator design for purposes of illustration and define notation
based on Fig. 1, but most of the analysis is not substantially
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Ferromagnetic * Enclosed
cylinders sample

FIG. 1. Prototypical resonator design proposed in Ref. 15 for
NMR spectroscopy of nanoscale samples. The sample is “sand-
wiched” between magnetic cylinders and rotates with the sandwich
about the torsional beam. The spin dipole couples to the oscillating
transverse field generated by the cylinders.

altered if this resonator is replaced with a translational
mechanical resonator whose motion is coupled through its
field gradient to the Larmor precession of the spins. (Results
that depend specifically on the use of a torsional resonator are
presented in Sec. IV.) The figure shows a “magnetic sandwich”
that consists of two ferromagnetic cylinders and a disk of
silicon that separates them, with the sample placed in a hollow
space in the center of the silicon disk. The sandwich encloses
the center of an elastic beam, and the beam and sandwich
together undergo torsional oscillations about the beam’s long
axis, labeled as the y axis in the figure. The structure consisting
of the sandwich and the beam is a torsional mechanical
oscillator with fundamental frequency w; and coordinate 6,
defined as the angular displacement of the sandwich axis from
the z axis. Since the motion of the ferromagnetic cylinders
modulates the magnetic field B(0) at the spins, the oscillator
is coupled to the spins, and the coupling does not depend on
the presence of a field gradient at the sample.

To first order in 8, only the field component B, is modulated
by the mechanical motion.!* The oscillating transverse field
component induces spin transitions if w; is resonant with
the Larmor frequency wy, and these transitions can polarize
the spins'* or cause dissipation of transients.”> The resonator
can also serve as a detector, since a precessing sample dipole
exerts a resonant torque that drives mechanical motion. The
interaction between the spin sample and the resonator is
governed by the potential energy

W =—n-B(@),

where u = yhlis the sample dipole, with y the gyromagnetic
ratio and I the spin operator, summed over the spins. Approx-
imating B(0) to first order in 6, we find that the torque exerted
by the spins is

AW dB,
= yh

— I..
a0 " ap

ey

This torque rotates the sandwich, pulling its axis toward
alignment with /.. In a conventional inductive spectrometer,
magnetization in the transverse plane similarly exerts a torque
on the coils that generate the static field, but the torque is of no
consequence because the coils are massive and fixed in place.
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A. Detection of a polarized dipole
1. Detection scheme

We first consider a detection scheme in which the spins are
polarized at the beginning of each transient, with resonator-
induced polarization replacing spin-lattice relaxation as a
means of restoring polarization between transients.'* For
simplicity, the polarization at the beginning of each transient
is assumed to equal the equilibrium value for spins 1/2:

ha)h
P = tanh . 2
o (%m) @

In Eq. (2), T}, is the temperature of the thermal bath that cools
the resonator. Note that the polarization process depends on
the resonance condition wy, = |wy|, and we typically express
equations in terms of wy, rather than wy.

In the BOOMERANG detection scheme,!%!! a conven-
tional NMR pulse sequence is applied to the spins, which then
evolve freely during a period ¢;, corresponding to the initial
part of a free-induction decay (FID). The FID is terminated by
application of rf fields that manipulate the spins and cause the
sample dipole to oscillate at the mechanical frequency, so that
the spins drive mechanical motion. In the present case, where
the mechanical motion is resonant with Larmor precession, this
spin manipulation can be implemented by means of pulsed
spin locking.?’-?® Between pulses, the resonator responds to
the driving torque exerted by the spin-locked component.
Detection and analysis of the resulting mechanical motion
yields ameasurement of (/) (¢1), which corresponds to a single
point on the FID. A record of the spins’ time evolution during
the FID is obtained by repeating this measurement for a range
of values 71, and Fourier analysis yields the NMR spectrum.
An additional feature of the detection scheme is the possibility
of shifting the spins out of resonance with the mechanical
oscillator during the period of spectral evolution in order to
eliminate modifications to the line shape associated with a
strong resonant coupling to the oscillator.'

Pulsed spin locking has previously been used as a
means of enhancing signal energy in inductively detected
experiments.””3? The resulting increase in sensitivity has
been characterized in the contexts of multiple-quantum
spectroscopy,?’ indirect detection of heteronuclei,?! and struc-
tural measurements based on dipolar recoupling and chemical-
shift anisotropy.?”> For the freely evolving system, the energy
of the signal is proportional to the time constant 7, for
signal decay, while pulsed spin locking yields a signal energy
proportional to DTj,, where D and Tj, are the duty cycle
of the detector and the time constant for signal decay during
pulsed spin locking, respectively. The sensitivity enhancement
associated with pulsed spin locking is thus oc,/DT;,/T;.!°
In the regime of interest for the current discussion, 75" can
be shortened by resonator-induced dissipation and radiation
damping, as well as by dephasing under the internal spin
Hamiltonian H,. As discussed in Sec. III A, nutation of the
entire spin system about the spin-locking field averages both
the resonator-induced transitions and the evolution governed
by Hiy, which yields a signal lifetime 77, = 2/R),, where R,
is the rate constant for resonator-induced polarization between
transients.
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2. Instrument noise

In analyzing the sensitivity of the BOOMERANG detection
scheme, we initially neglect the duty cycle and assume
that continuous observation of a torsional resonator yields a
measured coordinate Oy (¢). The noise in Gyp is

860(1) = Oobs(1) — (0(1))

where (0(¢)) is the statistical average over an ensemble of
spin-resonator systems. Note that (6(¢)) carries information
about the driving torque exerted by the polarized sample
dipole, while §6(¢) depends on spin fluctuations, mechanical
fluctuations, and noise associated with the detection of the
mechanical motion.

It is convenient to define the signal as a torque exerted on
the resonator by the spins, since for small mechanical displace-
ments, the torque at time ¢ is determined by the instantaneous
spin state and does not depend on the resonator’s previous
motion. Our sensitivity analysis is based on an idealized
signal-processing scheme, discussed in Appendix A 1, and this
scheme can be considered to include a calculation of the torque
Tops(?) needed to produce an expected displacement of Gyps(f)
in the resonator.

We begin the analysis by considering the quantum Langevin
equation®? for the Heisenberg operator 0(z):

d2

I,~—6 2L 4 k,0(t) =T N, 3
) (0+;E )+ kp0(t) =T(@)+ Nu(t). (3)

In Eq. (3), I, is the resonator’s moment of inertia, 7 is the
time constant for decay of the mechanical displacement, kj
is the torsional spring constant, Ny () is a fluctuating torque
associated with the thermal bath, and

dB,
do

is the torque exerted on the resonator by the spins. The
field B(f) has been approximated to first order in 6, as in
Eq. (1). The derivation of Eq. (3) is similar to the derivation
of the quantum Langevin equation for a particle moving in an
external potential.>*

The signal torque s(¢) is given by the expectation value of
T(1):

T(1) =yh——=1:(1) “

dB,
do

Taking the statistical average of both sides of Eq. (3) shows
that the motion of (6(¢)) is driven by s(¢), since (N (2)) = 0.

The spectral density of Ny(#) can be derived from an
analysis of the Langevin equation, or by means of the quan-
tum regression formula,® which can be used to characterize
the driven oscillator’s fluctuations. The single-sided spectral
density is

s(t)=vyh

(I(D)) . ®)

Sy(w) =

801 [nm(w) + 1} , (©6)
13 2

where
1
explhw/kpTy) — 1

is the number of thermal quanta in a harmonic oscillator
of frequency w at temperature 73. To simplify notation, we

nn(w) =
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drop the frequency argument from ny, and from noise spectral
densities when w = wy,.

If the temperature is sufficiently low that the P ~ 1,
the resonator’s zero-point motion makes a non-negligible
contribution to the mechanical fluctuations, since

1 /1

In this regime, quantum mechanics imposes a limitation on the
accuracy with which (6(¢)) can be measured.’*3” Quantum-
limited detection of the mechanical motion occurs when the
noise added by the detector is equivalent to the noise resulting
from the torque Ny, at temperature 7j, = 0 K.*® For quantum-
limited motion detection, the spectral density of the instrument
noise associated with resonator fluctuations and with motion
detection is

s 81
inst(@) = T—hhw [nn(w) +1]. ®)

Note that in moving from Eq. (6) to Eq. (8), we have doubled
the contribution to the spectral density associated with the
resonator’s zero-point motion.

Nonideal motion detection would conventionally be char-
acterized in terms of a noise temperature 7, which expresses
the noise added by the detector in terms of an equivalent
increase in the resonator temperature. Since 7, depends on
the resonator temperature, rather than being determined by the
properties of the detector itself, differing conventions exist for
the definition of 7,,.3° A convenient alternative to the use of
a noise temperature is to characterize nonideal detection in
terms of the noise number A, defined as the increase in the
resonator’s thermal quanta needed to account for the detector
noise.?’ For nonideal motion detection, we have

81 1
Sinst(w) = T—hhw |:nth((1)) +o A} . 9)

In the regime considered here, where the bandwidth of res-
onator fluctuations is broad compared to the signal bandwidth,
the use of Eq. (9) amounts to an assumption that the motion
detector adds white noise to the measured coordinate Op,(7).

The variance introduced into the measurement by in-
strument noise depends on the effective bandwidth of the
measurement. For the signal-processing protocol described in
Appendix A 1, which is based on the use of a matched filter to
analyze the data, the bandwidth is

2

Av = ,
DT,

and the variance associated with filtered instrument noise is
given by Eq. (A16) as
) 2
Oinst = D_TlpSinst- (10)
Note that Eq. (10) takes account of the loss of signal energy
associated with the fact that the resonator can only function as
a detector during a fraction D of the detection period.

3. Spin noise

The torque exerted on the resonator by the spins is described
by the operator 7(¢) of Eq. (4), and uncertainty associated
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with this operator introduces noise into the measurement.
Physically, this noise source can be identified with spin
fluctuations. An analysis of the power spectrum of these
fluctuations is not straightforward, since they cannot, in
general, be described as a stationary random process. For
example, the bandwidth of the spin fluctuations depends on
the time constants for spin relaxation, and these are affected
by the presence of the spin-locking field. The fluctuations
occurring during the detection period thus differ from those
occurring during the preceding period of free evolution, and a
detailed description of the frequency components of the spin
noise would need to take account of this fact.

Another complicating factor is that spin fluctuations depend
on the spin state, which changes during the measurement pro-
cess. A simple example, discussed in greater detail in Sec. III B,
illustrates this. Consider a single-spin sample that is polarized
by a resonator at 0 K and then detected during a period of free
precession, with signal decay caused by the spin’s spontaneous
emission into the resonator. The spin is aligned with the x axis
at the beginning of the detection period, and so the initial
uncertainty in the spin torque 7'(t) o I,(¢) is zero. However,
shot-to-shot variation in the duration of the transient due to
spontaneous emission constitutes a form of spin noise, since
it is associated with fluctuations away from (/,(¢)). The spin
noise therefore evolves during the detection period.

By defining a quantum-mechanical operator that corre-
sponds to the filtered spin torque, we can obtain a formal
expression for the filtered spin noise that does not depend
on the power spectrum of the fluctuations. As discussed in
Appendix A 1, our sensitivity analysis assumes that the signal
torque is analyzed by means of a matched filter L, chosen
in such a way that the value being measured appears at the
filter output. The operator corresponding to the experimental
observable can thus be defined as the filter output 7 in
response to the operator input 7'(¢). If instrument noise is
negligible, quantum-statistical uncertainty in 7;, is the only
source of shot-to-shot variation in the measurement. Noise
associated with spin fluctuations can therefore be identified
with this uncertainty. In particular, the variance in the measured
value due to filtered spin noise is

oo = (T7) — (T1)*. (11)

spin

The filter L is defined in Appendix A 1 by Egs. (A3), (A7),
and (A8), and T}, is given by Eq. (A18). With proportionality
constants suppressed, we have

T, o / T L0 (o) dr

where the lower limit of integration corresponds to the
beginning of the detection period. From Eq. (A22),

Tpin f / (LD L)) — (L) {L()]
(L:())(1:(t") dt dt,

which shows that aspm can be interpreted as the output of a two-

dimensional filter, where the spin fluctuations characterized by

(L)L) — (L)L)

are the filter input.
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In Appendix B, we evaluate oqp for the example where
a single spin is detected by a resonator at 0 K during free
precession, and we show that for detection of N spins during
ideal pulsed spin locking, o, Spm depends on the details of the
internal spin Hamiltonian Hj,. For the sensitivity analysis
presented here, a rough estimate of the filtered spin noise in an
N-spin system is sufficient. Rather than doing a detailed study
of the dependence of oszpin on Hi,, we use a simple model of
the spin fluctuations to make this estimate.

In developing the model, we identify the unfiltered fluctu-
ations in the spin torque with uncertainty in the operator 7'(¢).
The mean-square fluctuation is given by

2
} ) 12)

where [A I (¢)]? denotes the variance in I, (¢). Since most of our
attention is focused on the case where instrument noise is the
dominant noise source, our estimate of the spin noise is used
to characterize the conditions under which it can be neglected.
We therefore wish to replace the time-dependent term A/ (¢)
by a constant term that functions as a rough upper bound. Note
that for a system of N spins 1/2 in thermal equilibrium, the
uncertainty of all spin components is maximized when P = 0,
since

dB,
(T(t)) — (T (1))* = [y

N
(ALY = —(1 - P?
4
and

(ALY = (ALY = —

Our model of spin noise replaces [AL(]? in Eq. (12) by
N /4. The spin fluctuations of an unpolarized sample are thus
considered to be superimposed on the signal.

We assume that the fluctuations in the spin-locked com-
ponent decay exponentially with time constant 77,, while
the fluctuations in the other components decay so quickly
that their contribution to the filtered spin noise can be
neglected. In the laboratory frame, slow fluctuations in the
spin-locked component cause variation in the amplitude of
the oscillating spin torque. We treat the amplitude fluctuations
as a stationary random process, described by the correlation

function
Copin(t,1) = —N )/h—de ze"”’”/T‘ﬂ
spin\‘f 4 40

and the single-sided spectral density

dB.\*> T,
N ) —2 13
( de ) 1 —i—a)zT2 (13)

The variance of the spin noise appearing at the filter output is
then given by Eq. (A17) as

N [ _dB.\*
Oin = £} (yh T ) . (14)

Sspin(w) =
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4. Signal-to-noise ratio

The signal-processing scheme described in Appendix A 1
is designed to yield an estimate of

dB,

s(t) = Vhd—g (Ic(2)) ,

where s(f) is the signal defined by Eq. (5) and where time
t; corresponds to the beginning of the detection period. The
variance of the measured value is

2 _ 2 2
0" = Ojngt + Uspin’

where oi%m and o2, are given by Egs. (10) and (14),

spin

respectively. Defining the single-shot SNR p by
s
U 9
we obtain
lyn (d By /dB) (1:(11))]

p = . (15
J@/DT10) S + (N/2) [yh (d B, /dO)P

Note that Eq. (15) gives p as a function of #;, since the
numerator depends on #;. The single-shot SNR for the
experiment is found by averaging p2(t;) over the sampled
values of 7; and then taking the square root.

Much of our attention is focused on the case where
instrument noise is the dominant noise source, with
(I:(t;)) = PN /2, and with the effect of the duty cycle D
neglected. Under these conditions, we have

_ py /2B, /d6)

VCITi) S

In Eq. (16) and in similar equations appearing later in the paper,
the absolute value sign has been dropped from the numerator
to simplify notation.

(16)

B. Detection of spin-noise correlations

In order to characterize the sensitivity enhancement asso-
ciated with sample polarization, we analyze the sensitivity
of the CONQUEST detection scheme, which encodes spectra
into measurements of spin-noise correlations and thus does
not require sample polarization. Only a brief description
of the scheme is presented here; additional details can be
found in Refs. 20 and 21. We consider the regime where
the resonator temperature is low, as required for sensitive
detection, but where spin relaxation to thermal equilibrium
between transients is inconveniently slow. The sample is thus
assumed to be unpolarized.

Although the mean value of the sample dipole is zero,
the instantaneous dipole moment is in general nonzero due
to imperfect cancellation of the randomly-oriented spins.*®
Note that a nonzero dipole moment can be identified with spin
noise, since it represents a fluctuation away from the mean.
In the CONQUEST scheme, the dipole of the fluctuating spin
system is measured both before and after a period of coherent
evolution under a Hamiltonian H that is of spectroscopic
interest. In the case where the transverse spin component /.
is detected, the two measurements yield an estimate of the
correlation function (I,.(¢t;)I,), where t =0 and ¢t =, are
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the times of the first and second measurement, respectively.?’

A record of the evolution under H is obtained by varying the
evolution time #;.

In comparing the sensitivity of BOOMERANG and CON-
QUEST, we refer to the respective schemes as “first-order”
and “second-order” methods, highlighting the fact that the
signals are proportional to (/,(#;)) and (/.(¢;)1,). Note that
the strategy behind the second-order method is to use an
initial measurement to increase our knowledge of the sample
dipole. We can therefore expect it to be more sensitive than
the first-order method in the regime where the mean dipole is
small compared to the fluctuations and where instrument noise
is negligible. The sensitivity of the two methods in this regime
has been analyzed.?® Under the simplifying assumption that the
evolution of the Heisenberg operator /,(¢) under H is given by

I.(t;) = I, cos(wty) + I, sin(wty), (17)
the SNR of the second-order method is

_ /' N cos(wty)

VN + (N -2) cos>(wty)
Equation (18) takes account of the shot-to-shot variation
associated with quantum-mechanical uncertainty in the

operator (I,(t;)I,). Weak polarization is assumed, with
P+/N « 1. For cos(wt;) = 1, we obtain

1
= ———~1
J2=2/N

By way of contrast, the sensitivity of the first-order method in
the same regime is

p2 (18)

o1 = PVN <« 1.

Equation (18) was obtained by using projection operators to
represent the measurement process. To characterize sensitivity
in the regime where instrument noise is non-negligible, we use
a model of the experiment in which the period of evolution
under H is sandwiched between two detection periods of ideal
pulsed spin locking. As in the analysis of Sec. Il A, the res-
onator is assumed to be continuously observed throughout the
experiment, and the measured coordinate Gys(?) is converted
to a torque Typs(?). For the sensitivity analysis, we can consider
the acquired data to consist of the two-dimensional function

y(t’t/) = Tobs(t)Tobs(t/)' (19)

The noiseless signal is

/ / dBX ? /
s(t,0) =(T(OT (1)) = <V7l 70 > (L)1),

and the signal-processing protocol yields an estimate of

dB.\*
s5(t1,0) = (Vh ) (Le(n) 1) (20)
de

The measured torque Tyhs(?) includes instrument noise
Ninst(2) associated with resonator fluctuations and detection
of the mechanical motion. As shown in Sec. III C, instrument
noise in the measurement bandwidth is expected to be larger
than spin noise for sufficiently small samples. In particular, the
torque due to instrument noise in a bandwidth Av ~ 1/7;, is
larger than the torque from an unpolarized sample containing
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up to a few tens of nuclei, even if instrument noise is
reduced to a level near the quantum-mechanical limit. We
therefore make the simplifying assumption that the noise in
y(z,t") is dominated by the product N (z)Nipg(t'). In the
regime defined by this assumption, the sensitivity advantage
associated with measuring spin-noise correlations is limited
by the need to make two measurements per transient using a
noisy detector.

The sensitivity of the second-order scheme in this regime
can be quantified by an analysis based on the signal-processing
protocol described in Appendix A 2. The signal is expressed
in the form s(¢,1’) = Gso(t,t’), where s is a known function,
and where G = s(#1,0) is given by Eq. (20). An estimate of
G is obtained from the noisy data using a two-dimensional
filter, defined by Egs. (A25) and (A26). Appendix C carries
out the sensitivity analysis in the case where the evolution of
I,(¢) under H is described by Eq. (17). The SNR is found
to be

(yh/2)* (dB,/d6)’
,m=N
(2/ Tlp)Sinst
where cos (wt;) has been set to 1.
Since the second-order method involves a product of two
noisy measurements, p, is closely related to plz, where 04
represents the SNR for the first-order method in the regime

where spin noise is small compared to instrument noise.
Indeed, we find from Eq. (16) that

2 (yh/2)*(d B, /d6)*
(2/ Tlp)Sinst
The difference in the dependence of Egs. (21) and (22) on

P and N is due to the fact that (If) ~ N in an unpolarized
sample, while (I,)> ~ (PN)? in a polarized sample.

; ey

pi = (PN

(22)

C. Comparison of the detection sensitivities

For samples sufficiently small that instrument noise is the
dominant source of variance in the measurement, Egs. (21)
and (22) imply that

P°N
p1 = ( ),02' (23)

L1

The relative sensitivity of the methods is thus given by the ratio
P2N/p;. When P>N > p;, we gain more information about
the initial spin dipole by letting the sample relax to thermal
equilibrium than by using the noisy detector to measure a spin
fluctuation.

An alternative way to make the comparison is to note that
the first-order method is more sensitive when

P1
P>—
PN
Sample polarization thus improves sensitivity when P is larger
than the SNR for detection of a fully-polarized spin in a single
transient.

Even if instrument noise is reduced to a level near the
quantum-mechanical limit, the “sensitivity per polarized spin”
p1/ PN is substantially less than 1. In Sec. III C, a numerical
example is used to characterize sensitivity in this regime.
Under the assumption of ideal spin locking, the parame-
ters wp /27 = 600 MHz, T, = 10 mK, and A =16 yield
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P =0.9 and p;/PN = 0.08. For this example, detection
of the polarized sample dipole would be more sensitive than
detection of spin-noise correlations by an order of magnitude.
Under conditions where instrument noise is significantly larger
than this near-optimal level, resonator-induced polarization of
order unity would yield larger sensitivity enhancements.

It should be pointed out that Eq. (23) compares single-
shot sensitivities rather than acquisition times. Unlike the first-
order method, the second-order method does not require a
period of sample polarization between transients.”’ A more
thorough comparison of the two methods would need to take
account of the time constants that limit the repetition rate in a
given experimental context. Equation (23) is useful as a simple
characterization of the conditions where sample polarization
improves single-shot sensitivity.

III. RESONATOR-INDUCED SIGNAL DECAY

A. Signal lifetime

For the detection scheme described in Sec. IT Al, pulsed
spin locking optimizes the signal energy by collapsing the
detected transient into a narrow bandwidth and counteracting
resonator-induced signal decay due to dissipation?? and radia-
tion damping. Since pulsed spin locking is a well-established
tool for averaging the internal spin Hamiltonian to obtain a
narrow signal bandwidth,2-32 the discussion here is limited to
the problem of slowing resonator-induced signal decay.

During a period of pulsed spin locking, the rotating-frame
Hamiltonian for the rf field can be expressed in the form Hy =
w1 (1)1, where the time-dependence of w;(¢) is due to the
cyclical pulsing of the field. It is convenient to express w; ()
as

wi(t) = &1 + wp(1),

where @, is the average of w;(t) over one cycle.”’ A strong
time-averaged component @, functions as a spin-locking field,
and the sidebands associated with the periodic term w,(t) do
not hinder the averaging process, provided the spacing between
pulses is sufficiently short.?” The spacing between pulses can
be characterized by the nutation angle per cycle
¢p =0 Tps

where 7, is the period of the modulation cycle. While initial
investigations of pulsed spin locking focused on the case where
¢, =1 /2,”7 other values of ¢, have also been used.?8-30-32

The approach previously used to analyze resonator-induced
relaxation during continuous spin locking®® can be adapted to
the study of pulsed spin locking. We limit the discussion to
the case where the bandwidth of the mechanical fluctuations
is broad compared to the maximum value of |w;(¢)|, as well
as to the spectral width of Hj,. The spins are assumed to have
identical couplings to the resonator. The rotating-frame master
equation governing the evolution of the spin density matrix o

isl4,25

do

dt

In Eq. (24), A is a relaxation superoperator, given by
Ao = Ry(nw+ 1) (Iyol- — [I-1,014)

+ Ronw(I_o 1y — 3 (141,01, ), (25)

—i [Hine + Hit,0] + Ao. 24
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where Ry is the rate constant governing spontaneous emission
by the spins into the resonant mode,'* and where I, and I_
are the raising operator and lowering operator, respectively,
summed over the spins. For reference later in the discussion,
we note that'*

Ry = 2¢°1, (26)
where
Y h dB, @7
8= 2\ 2, do

is the coupling constant for the resonant interaction between
the spins and the mechanical oscillator, which is governed by
the Hamiltonian

H, = g(I.a' + I_a). (28)

In Eq. (28), a' and a are the raising and lowering operators for
the harmonic oscillator, respectively. The product operators
appearing in H; exchange a quantum of energy between
the spins and the resonator; this resonant exchange survives
averaging over the fast unperturbed motion of the spins and
the oscillator. Equations (25) and (28) assume y > 0 and
incorporate the convention that the time-averaged field at the
spins points along the positive z axis. If the sign of y is
reversed, resonant exchange of quanta is governed by the
operators I_a' and I,a, as in the conventional description
of the coupling between two-level atoms and a cavity mode of
the electromagnetic field.* Consistent with Egs. (25) and (28),
we assume throughout Sec. III that y > 0.

Letting Uys represent the propagator associated with the
applied rf field, we transform Eq. (24) to the reference frame
where H;¢ has been eliminated, commonly known as the
toggling frame:

dé

o —i[Hn,614 AG. (29)

In Eq. (29), a tilde over an operator A indicates the transfor-
mation of A into the toggling frame,

A=U;"AUy, (30)

and A is obtained by transforming each operator on the right
side of Eq. (25) into the toggling frame.

Transformation into the toggling frame causes the internal
Hamiltonian and the relaxation superoperator to become time
dependent. If the flip angle ¢, satisfies the equation n¢, =
m2m, where n, m are integers, then H,. and A oscillate
periodically in time 7, = nt,.** For simplicity, we assume
that m = 1, so that T, = 2r /&, .

Consider first the case where H; =0 and where T), is
sufficiently short that A can be approximated by its time
average, which we denote by A;. Appendix D shows that
A is given by

MG = Ry(L6 1 — 5[17,6],) +a*Ru(1,6 1, — 3[17,6],)
+ bRy (L5 1. — 3[12,5],). 31
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In Eq. (31), a® and b? are numbers that depend on the details
of the modulation cycle and satisfy a®> + b> = 1, and

Rj = Ro 2nyn + 1) (32)

is the rate constant governing resonator-induced
polarization.!* As in the case of continuous spin
locking, averaging of A by the spin-locking field yields
a superoperator that can be interpreted as relaxing individual
spins independently.”® The resulting equation of motion for
the spin-locked component (/) is

d Ry,

77 ) === L), (33)

which gives
Ti, =2/Ry. (34)

In the general case, A can be replaced with its average
only if the modulated terms in A oscillate quickly on the
time scale of the evolution governed by Eq. (29). Physically,
the resonator-induced transitions responsible for signal decay
are averaged only if the entire spin system nutates about the
spin-locking field, which requires the averaging of Hiy as well
as A. If @, is sufficiently large, and if ¢, is chosen so as to
eliminate slowly-oscillating secular terms from H.,,2 then
H;, and A can both be approximated by their time averages
in Eq. (29). The toggling-frame master equation simplifies to

dé

dt
where Hi, represents the time average of Hi,. Note that
¢, = /2 guarantees both that H,,. does not contain slowly-
oscillating secular terms and that Hi, commutes with I,.”’
The commutator in Eq. (35) then makes no contribution to the
evolution of (I, ), and we recover Egs. (33) and (34).

Although evolution under H;,; would typically be expected
to occur on a shorter time scale than the transitions associated
with the relaxation superoperator, it is possible that when
many spins are present and the coupling to the resonator
is strong, radiation damping could determine the time scale
for the evolution of & and thus the necessary strength of
the spin-locking field. To find the characteristic time for
radiation damping, we use a macroscopic model presented
by Abragam,* in which a precessing sample dipole g nutates
toward alignment with the static field due to the backaction of
the resonator. Abragam’s derivation for an inductive resonator
can easily be adapted to a mechanical resonator, and we find
that the nutation of p is described by the equation

da

— =—Ro(w/ymsina, (36)

where o represents the angle between p and the static field.
For a system of spins 1/2, radiation damping is thus roughly
characterized by the angular frequency

wg = Ry (PN/2),

= —i[Hin,G]+ A5, (35

the maximum angular derivative obtained from Eq. (36) by
identifying u with yA PN /2. In discussing resonator design
in Sec. IV C, we use wyq as a measure of the coupling between
the sample and the resonator, illustrating the way in which it
depends on parameters of the spin-resonator system.
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We simulated resonator-induced signal decay in three-
spin and four-spin systems in order to characterize the
effectiveness of nonideal pulsed spin-locking in extending
signal lifetime. Twenty structures that contained carbon,
nitrogen, oxygen, and either three or four hydrogen atoms were
randomly selected from the Cambridge Structural Database
(CSD).*! Resonator-induced signal decay during continuous
spin-locking with w; /2w = 50 kHz was previously simulated
for these systems.?® Since some systems included dipolar
couplings in the range of 25-30 kHz, departures from ideality
were observed. We used the methods described in Ref. 23
to simulate resonator-induced signal decay in the same
systems during pulsed spin locking with @; /27 = 50 kHz and
¢, = /2. The decay curves were nearly identical to those for
continuous spin locking with w; /2w = 50 kHz, independent
of the pulse width.

B. Sensitivity limit

The sensitivity formula for detection of a polarized sample
dipole can be significantly simplified when 7, = 2/R; and
D = 1. Equations (26), (27), and (32) can be used to obtain
an explicit formula for Tj,, and substitution of this formula
into Eq. (15) yields

(1 (1))]
VQng + D) @ng + T+ 24) + NJ2

In the case where spin noise is negligible compared to
instrument noise and (/,(¢;)) = PN /2, Eq. (37) reduces to

p= 37)

B PN/2
T V@na + 1) Qg + 1+ 24)

The factor (2ny, + 1) under the radical can be traced to
Eq. (32), where it characterizes the extent to which thermally-
stimulated spin transitions contribute to resonator-induced
relaxation. If this factor is set to 1, the relaxation is due
entirely to spontaneous emission, which is governed by the rate
constant Ry. The factor 2ny + 1 + 2A) comes from Eq. (9),
which gives the spectral density of the instrument noise.

Note that P and ny depend on the properties of the
spin-resonator system only through the parameter w;/T,.
Equation (38) thus implies that if y, ©;,, I, and dB,/dO
were “knobs” that could be controlled experimentally, the
single-shot SNR per spin would be unaffected as these knobs
were turned, provided w,/7;, and A were held constant.
Changes in the signal lifetime would exactly compensate for
changes in the coupling strength and the noise power.

Note as well that the criterion for a classical description
of the resonator to be valid is wy, /T, < kpg/h. Near-optimal
sensitivity corresponds to the regime where departures from
classical behavior are significant, with P ~ 1 and ny < 1,
and ideal measurement conditions are approached asymp-
totically as the temperature is lowered. For a fixed value
of A in Eq. (38), we can roughly say that the sensitivity
per spin depends only on “how quantum mechanical” the
resonator is.

The cancellation of parameters from Eq. (38) is due to
the presence of the following three terms: (1) the factor
y(dB,/df) in the signal torque, (2) the factor wy,l,/t; in

P (38)

PHYSICAL REVIEW B 87, 064413 (2013)

the spectral density of the instrument noise, and (3) the
factor 1/Ry in the signal lifetime. In general, the same
three terms are present if the noise power is associated with
resonator fluctuations and if the signal lifetime is limited by
decay due to resonator-induced spin transitions. Rather than
being an artifact of the detection scheme or the assumption
of ideal spin locking, the cancellation of the parameters
associated with these terms is due to a balance between three
physical quantities, and it can be considered a fundamental
aspect of resonant signal detection in the low-temperature
regime.

Consider, for example, the way in which sensitivity is
affected by the duty cycle of the detection during pulsed spin
locking. Dropping the simplifying assumption that D =1
causes the right side of Eq. (38) to be multiplied by ~/D.
The decay time t;, then influences sensitivity indirectly, since
it affects the duty cycle. However, a balance between the
coupling strength, the noise power, and the signal lifetime
still exists: If the parameters of the spin-resonator system
are varied, with wy,/T;, held constant, the combined effect
of the changes in these three quantities leaves sensitivity
unchanged. The same balance exists for the detection of
spin-noise correlations, as characterized by Eq. (21).

More generally, consider the case where the detailed
functional form of a filtered spin signal is characterized by
means of a set of sampled points. Direct detection of an
FID would typically correspond to this case, for example.
As discussed in connection with Eq. (A24), the SNR can be
defined by

2
=Y —s{(ztk)),

0 VL

where s; and ny, are the filtered signal and noise, respectively,
and where #;, ranges over the set of sampled points. We can con-
sider this sum to be proportional to the signal energy E. Since
Eq. (25) implies that the time scale of resonator-induced decay
is c1/Rp, we have E o 1/Ry if the resonator is the dominant
source of signal decay, which gives p & v/E o 1/+/Ro. If the
resonator is also the dominant noise source, then parameters
associated with the coupling strength, the noise power, and
the signal lifetime cancel from the sensitivity formula, which
implies a balance between these three quantities.

This cancellation of parameters can be generalized
beyond force-detected magnetic resonance. Formally, the spin-
resonator system under consideration consists of a damped
harmonic oscillator weakly coupled to spins by the Hamilto-
nian H; of Eq. (28). An additional formal feature of the system
is that the evolution governed by H, is slow on the time scale
of the oscillator’s relaxation to thermal equilibrium, which
implies that quanta transferred from the spins to the oscillator
are quickly dissipated into the thermal bath, rather than being
cycled back to the spins. Under these conditions, the oscillator
perturbs the spin evolution only by causing signal decay
through the action of the relaxation superoperator A,'*? given
by Eq. (25). For a detector described formally as a damped
harmonic oscillator weakly coupled to spins by the resonant
interaction H;, the detection sensitivity can be analyzed
using arguments similar to those we have presented for
the torsional resonator.*? Physical examples include Rydberg
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atoms coupled to a damped cavity mode® and nuclear spins
coupled to a tuned circuit'* or a mechanical resonator. The
balance between the coupling strength, the noise power, and
the signal lifetime can be generalized to the case where this
formal description of the system is applicable and where the
detector is both the dominant noise source and the dominant
source of signal decay.

The balance between these quantities is associated with an
intrinsic sensitivity limit for resonant detection of coherent
spin evolution. In characterizing this limit, we consider an
example where a freely precessing spin 1/2 is detected
by a resonator at O K, and where the noise added during
the transduction and amplification of the resonator signal
is quantum limited. The spin is aligned with the x axis
at the beginning of the detection period, and the decay
of the spin signal is due to spontaneous emission into the
resonator. The resulting time constant for transverse relaxation
is T» = 2/Ry.?> We assume that a matched filter is used to
extract the signal from the noise, with the output of the filter
an estimate of the signal torque at the beginning of the detection
period,

) 1 hd B,
s(0) =< .
27" ao
The filter bandwidth is given by Eq. (A23) as
Av = 2/ T2 = Ro,

and the variance in the measurement due to instrument noise

18
5 dB.\’
Oinst = inst AV = 2 Vh 460 ,

where the spectral density Sig of Eq. (9) is evaluated at
the mechanical frequency, with ny, =0 and A =1/2. As
discussed in Sec. II A3, filtered spin noise can be identified
with quantum-statistical uncertainty in the operator that
corresponds to the filtered spin torque. The variance afpm due
to spin noise is given by Eq. (B6) as

1 dB.\’
2 X
Ogpin = 7 (yh 2 > .

The quantum-limited SNR for resonant detection of a spin
signal is therefore

5O 1

3

2 2
Oinst T Gspin

C. Near-optimal sensitivity

Section II C compares the sensitivities of two spectroscopic
detection schemes in the regime where instrument noise is the
dominant noise source. The condition for sample polarization
to improve sensitivity is P > p/PN, where p/PN is the
sensitivity for detection of a fully-polarized spin during a
single transient.

Equation (38) can be used to characterize p/PN under
near-optimal measurement conditions. We assume ideal spin
locking with duty cycle D = 1, and near-ideal motion de-
tection with noise number A = 16, which has been achieved
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at millikelvin temperatures using a single-electron transistor.*3
Frequency wj, /2 = 600 MHz and temperature 7, = 10 mK
give nyg, = 0.06 and P = 0.9, which are close to the limiting
values. From Eq. (38), we then obtain p/N = 0.07 and
p/PN = 0.08.

The relative magnitude of spin noise and instrument noise
under these measurement conditions can be roughly estimated
by means of Eq. (37). Spin noise is smaller than instrument
noise when

N/2 < 2ngy +1)2ngp + 14 24),

which corresponds to N < 75. Note that this estimate is based
on a model of spin noise in which the fluctuations of an
unpolarized sample are superimposed on the polarized spin
dipole, as discussed in Sec. I A3. This simple model was
chosen to overestimate the spin noise, and it is likely that
a more accurate model would give a larger estimate of the
number of spins needed for spin noise and instrument noise to
be equal.

IV. RESONATOR DESIGN
A. Acquisition time

Although the single-shot sensitivity per spin of Eq. (38) is
independent of most resonator parameters, the rate constant Rj,
that governs resonator-induced polarization between transients
depends strongly on resonator parameters. The number of
transients required to detect a spectrum with acceptable
sensitivity is oc1/p2, and if the time per transient is oc1/Ry,
then the acquisition time is oc1/R,p?. In minimizing the
acquisition time, we thus maximize

dBy /d9>2 P2
VI, op 2ng + 1+ 24A)°

where the spin noise and the duty cycle have been neglected.
The dependence on (dB,/d6)/+/T, is due to the presence of
this factor in Eq. (27), which gives the coupling constant g
for the resonant interaction that exchanges quanta between
the spins and the harmonic oscillator. The dependence on t;
arises because the resonator’s correlation time limits the period
during which spin-resonator correlations can build up before
being disrupted by fluctuations. Since the magnitude of these
correlations determines the rate at which quanta are exchanged,
Rh X Tp.

The optimal frequency for fast acquisition depends on the
function

Ryp* x 1) ( (39)

P(w)
o 2np(w) + 14+ 241

In Eq. (40), the denominator contains a factor of w because
R, « 1/wy, while the remaining terms can be traced to the
SNR formula of Eq. (38). The values of 7, and A determine
the frequency at which f reaches its maximum. For quantum-
limited detection at 7;, = 10 mK, the optimum is w;, /2w ~
525 MHz, and the value of f stays within 10% of its peak
value over the range 375 to 775 MHz. Increasing A by a factor
of 20 shifts this range slightly, so that f stays within 10% of
its peak value from 300 to 700 MHz.

From examination of Eq. (39), we see that an optimal
resonator will be weakly damped and have both a strong

flw) =

(40)
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angular field derivative at the spins and a small moment of
inertia. A similar set of criteria has been obtained for MRFM
cantilevers,® where the angular field derivative and moment of
inertia are replaced by the field gradient and motional mass,
respectively. Note that if the signal lifetime 77, is not limited by
resonator-induced decay, but is instead shortened by dephasing
of the transverse dipole under Hj, or by imperfections in
the pulsed rf field, the same three criteria are significant for
optimization of either the sensitivity or the acquisition time.
From Eq. (16), for example, we obtain

dB, /d9)2 P2
VT wp Qng + 1 +2A)°

For a torsional resonator coupled to spins by a torque of the
form yh (dB,/d0) I, the sample can in principle be placed
arbitrarily close to the magnets without increasing the friction
that damps the resonator.'> Damping due to relative motion
between the sample and nearby moving magnets, which has
limited the sensitivity of MRFM,' is associated with the use of
translational oscillators as detectors. A spin-resonator coupling
is present only if the mechanical oscillations modulate the
field at the spins; in the case where the oscillations cause
magnets to move along a straight line, there is no coupling if
the spin sample moves in unison with the magnets. However,
rotation of the sample and the magnets in unison allows for the
presence of a torque proportional to d B, /d6. Note as well that
the torque does not depend on a field gradient; it exists even
if the resonator’s field at the spins is perfectly homogeneous.
This form of spin-resonator coupling is advantageous for
spin polarization. Placing the spins arbitrarily close to the
magnets gives a maximal value of d B, /d6 and allows for a
small motional mass. The lack of dependence on a gradient
facilitates the optimization of field homogeneity, needed for
the efficient polarization of samples containing many spins
and for the resolution of spectroscopic splittings.

0% o Tip T ( (41)

B. Coupling strength

Whether the single-shot sensitivity or the acquisition time is
used as a figure of merit, optimal performance depends on the
presence of a large applied field By. Even with a temperature
as low as 7, = 10 mK, for instance, an applied field of order
10 T is needed for near-optimal detection of H nuclei with
P ~ 1. A field of this magnitude will tend to saturate the
resonator’s magnetization M and hold it pinned along the
direction of the field during the mechanical oscillations. This
effect is illustrated in Fig. 2(a), which shows two limiting cases
for the orientation of M after the resonator of Fig. 1 has rotated
away from the equilibrium position. The limiting case where
M rotates with the cylinders is incompatible with the presence
of an applied field sufficiently large to yield P ~ 1.

Indeed, the opposite limiting case, where M remains
aligned with the applied field, can be considered a good
description of the resonator’s magnetization unless the mag-
nets are fabricated from a material with a large crystal
anisotropy. Calculation of R, for simple resonator designs
showed that polarization times ~1 s can occur when magnet
dimensions are ~100 nm. Since magnetic particles in this size
range often consist of a single magnetic domain,** and since
an applied field ~10 T would be substantially larger than the
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FIG. 2. (Color online) Comparison of the resonator’s transverse
field in two limiting cases. In (a), arrows represent the magnetization
M of the resonator’s ferromagnetic cylinders after a mechanical
rotation away from the equilibrium position. In (b), magnetization
that remains aligned with the applied field is expressed as the sum
of two perpendicular components, one of which rotates with the
cylinders. The transverse fields generated by the two components
add constructively at the location of the spins. If M rotates with
the cylinders, only the first of these components is present. The
spin-resonator coupling is thus stronger when M remains aligned
with the applied field during the mechanical oscillations.

demagnetizing field, M can be modeled as uniform when
the resonator is in the equilibrium position. To characterize
the error associated with the approximation that M remains
continually aligned with the applied field field during the me-
chanical oscillations, we used a model in which the resonator’s
cylindrical magnets were replaced by uniformly-magnetized
spheroids. Formulas for the demagnetizing fields within the
spheroids* were used to find the minimum-energy orientation
of M corresponding to a given angular displacement of the
resonator. For this model, the angular displacement of M
is only a few percent of the resonator’s displacement 6 for
M ~2T/uy and By~ 10T, with the effects of crystal
anisotropy neglected.*®

Interestingly, the spin-resonator coupling is optimal in
the case where M is held motionless by the applied field.
Figure 2(b) presents a qualitative explanation of this result.
Magnetization that remains aligned with the applied field can
be expressed as the sum of two perpendicular components, one
of which rotates with the cylinders. The field generated by each
component can be very roughly characterized by replacing
the four cylinders on the right side of Fig. 2(b) by dipoles
aligned with the magnetization components. This rough model
is sufficient to show that the transverse fields generated by the
two components add constructively at the spins, yielding a
larger field than would be generated if M rotated with the
cylinders.
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The enhancement to the coupling due to this effect can
be calculated analytically for the model where the resonator’s
cylindrical magnets are replaced by spheroids. Formulas for
the external fields of uniformly-magnetized spheroids*’ can be
used to show that when M remains aligned with the applied
field,

dB, 3

a6 —aow “2)
where B, is the resonator’s field at the spins. Since the
corresponding result for magnetization that rotates with the
cylinders is dB,/d6 = By, the spin-resonator coupling is
enhanced by a factor of 3/2 when M is pinned to the
applied field. The qualitative explanation of Fig. 2(b) can be
formalized by expressing the magnetization of the spheroids
as the sum of two perpendicular components, one of which
rotates with the spheroids. The contribution to dB,/d6 due
to this rotating component is By, while the contribution due to
the perpendicular component is By, /2.

Equation (42) can be generalized to the case where the
resonator’s magnets are cylindrically symmetric. If one of the
magnetic cylinders shown in Fig. 1 is removed and the other is
replaced by a coaxial circle of uniformly-magnetized material,
Eq. (42) still holds in the case where the magnetization is
pinned to the applied field. More generally, the equation holds
for aresonator whose magnets can be described as a continuous
sum of such circles.

Anupper bound ond B, /df can be obtained from the model
where the resonator’s magnets are replaced by spheroids. In
the limiting case where the spheroids become arbitrarily long
and thin, and where the separation between them is negligible,
the derivative achieves its maximum value:

d By
do

By way of comparison, the field inside a long, uniformly-
magnetized cylinder is poM . The factor of 3 in Eq. (43) can
be associated with two effects: the increase in dB,/d6 over
By, by afactor of 3/2 when M does not rotate, and the presence
of a finite gap between the spheroids. In the limiting case of a
negligible gap, the field of each of the spheroids at the spins is
oM , for a net field B, = 2uoM.

C. Discussion

In this section we highlight the importance of size con-
straints for resonator design, as well as the need for further
development, particularly with regard to detection of the
mechanical motion. The relevant experimental regime is
characterized by order-of-magnitude estimates based on the
resonator design proposed in Ref. 15 and shown in Fig. 1.

We first note that since (dB./d6) ~ By, the parameter
(dB./d®)//T, appearing in Eqs. (39) and (41) can be
approximated by the simpler quantity Bj/+/T,. When the
resonator’s magnets make a significant contribution to the
moment of inertia, optimization involves decreasing the size of
the magnets to minimize I, while keeping enough magnetic
material to create a strong field B;,. For the design of Ref. 15,
the optimization process reduced the magnets to the point
where the elastic beam’s contribution to the moment of inertia
was twice that of the “magnetic sandwich.” The resulting
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spin-resonator torque was smaller by a factor of four than
the limiting value associated with Eq. (43). The figure of
merit for the optimization was the single-shot SNR for a
single-spin sample, as given by Eq. (15). The optimization was
performed using the values 7, =6 us, T\, =1s, D=1,
A=1/2, and T, =10 mK, with a minimal separation of
25 nm between the magnetic cylinders, and a minimal beam
cross section of 50 x 50 nm.'>* The optimized design had
a magnetic sandwich of height 105 nm and diameter 55 nm,
with wy,/2m = 630 MHz. The rate constant for polarization
between transients was Rj, = 1.3 s~!. Since the value of T} P
assumed for the optimization turned out to be 1.3/ R, which is
similar to the limiting upper value of 2/R;, given by Eq. (34),
sensitivity estimates obtained from the full SNR formula
correspond fairly well to the values obtained from Egs. (37)
and (38). These simpler formulas are used in Sec. III C to char-
acterize detection sensitivity under near-optimal conditions.

Since different types of mechanical motion were found to
yield similar values of the coupling constant g,*® the primary
criteria used in selecting the design to be optimized were
the absence of relative motion between the sample and the
magnets and the homogeneity of the resonator’s field at the
spins. A practical resonator design would need to take account
of additional criteria, such as constraints associated with the
detection of the mechanical motion. Experimental tests would
be needed for optimization.

It is informative to estimate the range of values that can be
expected for

wa = Ry (PN/2). (44)

As discussed in Sec. III A, this angular frequency is obtained
from a simple macroscopic model of radiation damping.
In considering the significance of system parameters for
resonator design, we use w;g as a measure of the coupling
between the sample and the resonator, since it quantifies in a
simple way the net effect of changes in the sample size and the
rate constant

Ro = 2¢’7,

when system parameters are varied.

The coupling constant g can be estimated from the res-
onator’s dimensions and material properties to be ~300 s~! 4
but 7, cannot be accurately predicted. The assumption
T, = 6 us, discussed in Ref. 15, yields Ry~ 1 s7L. The
Larmor frequency can be considered nearly resonant with
the mechanical motion if |wg| differs from w;, by no more
than 1/t, = 27 x 25 kHz. This frequency offset decreases
the spectral density of the mechanical fluctuations at wy by
a factor of two, which decreases Ry by the same factor.'*
Finite-element simulations showed that the resonant volume
is a cylinder of height 1.4 nm and diameter 2 nm.!> An ice
sample filling this volume would contain N ~ 300 protons,
and with P ~ 1, we obtain

wa/27 ~ 150 Hz.

Scaling up the spin-resonator system would give a larger
value of N in Eq. (44) but would be expected to decrease w4,
since g scales strongly with size. For example, uniform scaling
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of the resonator gives
g2 X —— X r_4,
Iy
where r is a characteristic resonator dimension.'* In the regime
where the magnetic sandwich makes the dominant contribution
to the moment of inertia, the frequency can be adjusted
independently of I, by changes to the elastic beam. If the
Larmor frequency is held constant during the scaling, so that
P is preserved, we have
g2 X i oxr>.
I,

Moving beyond the assumption that 1, = 6 us, we note
that although a shorter 7;, would yield a larger resonant
volume, the need to efficiently manipulate the spins with
applied rf fields limits the frequency range that can be
studied spectroscopically. The 50-kHz field inhomogeneity
across the resonant volume for t, = 6 us is a characteristic
proton spectral width, and for this discussion, we treat it as
a rough upper limit on the field inhomogeneity across the
sample volume, independent of the value of t,. With this
assumed constraint, a drop in 7, below 6 us causes a drop
in Ry without affecting the sample volume. An increase in
above 6 us gives an increase in R but shrinks the resonant
volume. For instance, 7, = 60 us gives Ry ~ 10s~! and a
resonant spectral width of 5 kHz. An ice sample filling the
resonant volume would contain about 10 protons, yielding
w/2m ~ 50 Hz.

Although weak damping is advantageous for the develop-
ment of strong spin-resonator correlations and the efficient
transfer of quanta from the spins to the resonator during the
polarization process, the damping must be sufficiently strong to
dissipate quanta into the thermal bath before they can be cycled
back to the spins. For a resonator at temperature 7, = 0 K,
the condition

2
gVN K . (45)
h

guarantees that the resonator causes spin relaxation rather
than participating in a coherent exchange of quanta with the
spins.'**® For the example with 7, = 6 us and N = 300, the
left side of Eq. (45) is smaller than the right side by a factor of
60, while the ratio drops to 30 for the example with 7, = 60 us
and N = 10. Note that at the estimated mechanical frequency
of 630 MHz, a temperature of 7;, = 10 mK gives P = 0.9
and ng = 0.05, which are close to the limiting values. For
many purposes, the approximation 7, ~ 0 K can be used to
characterize this frequency and temperature, and in particular,
the use of Eq. (45) is justified.

For the polarization process, the edge of the resonant
volume can be defined by the condition |wg| = w, £ 1/7),.
However, for pulsed spin locking, the delay between pulses
must be several multiples of 7;, and so the range of spectral
frequencies should be small compared to 1/7,. Direct driving
of the resonator by the rf field can be minimized by applying
the pulses along the length of the torsion beam, so that the
torque exerted on the resonator by the field is orthogonal
to the torque needed to drive torsional motion. However, a
short ring-down time between pulses is a likely a practical
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requirement for detection of a spin-locked signal, due to
unavoidable imperfections in the rf field and excitation of
off-resonant mechanical modes.

These rough estimates illustrate the significance of size
constraints associated with resonator fabrication. In particular,
the coupling constant g and the volume of resonant spins
both depend strongly on the size constraints chosen for the
optimization. The resonant volume, with dimensions ~1 nm,
is a small fraction of the volume separating the two magnets,
which is a cylinder of diameter 55 nm and height 25 nm.
Although this is partly an artifact of having used single-spin
sensitivity as the figure of merit for the optimization, it is true
more generally that the separation between the magnets plays
a key role in determining field homogeneity. The resonator’s
moment of inertia, which is responsible for the scaling
properties of g, is limited by the constraint of a 50 x 50 nm
cross section for the elastic beam. These size constraints
were chosen to be roughly consistent with current fabrication
capabilities, but they do not represent fundamental limits.
Practical size constraints depend on fabrication technology
that is under active development.

Implementation depends on the capability to manipulate the
spins by means of rf fields without heating the resonator. At
frequency 600 MHz, for example, the polarization is sensitive
to temperature increases above 10 mK, dropping from 0.9 to
0.3 as the temperature increases to 50 mK, with P o< 1/T},
for continued temperature increases. Eddy currents in the
resonator’s magnetic material are a principal concern with
regard to heating. Although a quantitative prediction of eddy-
current heating in the size and temperature regime of interest is
difficult, a rough estimate suggests the using low-conductivity
material as the source of the resonator’s field could render
eddy-current heating insignificant.'>*¢ EuO is promising for
this purpose, since it has a large saturation magnetization and
a low electrical conductivity at low temperatures,*’ and since
methods of integrating it into microfabricated devices have
been developed.>®

The sensitivity of the motion detection is of critical
importance for spectroscopic sensitivity, as illustrated by the
numerical example presented in Sec. IIIC. The quantum-
limited sensitivity for a single-spin sample is 1/3, while
the measurement conditions described as “near-optimal” give
p/N = 0.07. The difference between these two values is
primarily due to the assumption that the noise associated with
the near-optimal motion detector is equivalent to A = 16
thermal quanta in the resonator, rather than to the limiting
value A =1/2. In the regime where P ~ 1, the motion
detector is likely to be the dominant noise source, since
the noise associated with resonator fluctuations is nearly
equal in magnitude to the noise added by a quantum-
limited motion detector. Methods for detecting microscopic
mechanical motion at temperatures below 100 mK with a
sensitivity near the quantum limit have been demonstrated
experimentally,”! including capacitive measurement by means
of a single-electron transistor.** For the resonator design we
have discussed, detector geometries for capacitive motion
detection have been proposed.'> However, the problem of
implementing sensitive motion detection for force-detected
NMR in the relevant regime has not been studied in detail,'
and substantial development is needed in this area.
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Our focus in this paper has been the sensitivity of
multidimensional methods in which an arbitrary evolution
period is followed by optimized detection during a period
of pulsed spin locking. One-dimensional spectroscopy with
direct detection of free evolution is also possible. Of particular
interest in this regard are single-molecule samples sufficiently
small and isolated to yield resolved spectra. In the absence
of line broadening due to a broad distribution of couplings
and chemical shifts, the signal lifetime during free evolution
is limited by resonator-induced dissipation and radiation
damping, which become more significant with improvements
in the resonator’s efficiency. Although its applicability is
limited by line broadening in larger samples, one-dimensional
NMR spectroscopy could be used for systems of a few spins
in the low-temperature regime.

V. CONCLUSION

Even if instrument noise is decreased near the level
associated with the resonator’s zero-point motion and with
the quantum limit on motion detection, it is larger than
spin noise for sufficiently small samples. In this regime,
resonator-induced polarization of order unity would enhance
spectroscopic detection sensitivity by an order of magnitude
or more. More generally, under conditions where instrument
noise dominates spin noise, polarizing the sample enhances
the sensitivity of NMR spectroscopy if P > p/PN , thatis, if
P is larger than the SNR for detecting a fully-polarized spin
during a single transient.

When the signal lifetime is limited by resonator-induced
decay and the noise is associated with resonator fluctuations, a
balance exists between the coupling strength, the noise power,
and the signal lifetime. In the limiting case of ideal pulsed spin
locking, the only parameter of the spin-resonator system that
affects the sensitivity per spin is wj/Tj. Since the criterion
for a classical description of the resonator to be valid is
wp/ Ty, < kp/h, near-optimal sensitivity occurs in the regime
where departures from classical behavior are significant, with
np<1land P~ 1.

An intrinsic sensitivity limit exists for resonant detection
of a spin signal, due to the fact that the resonant interaction
shortens the signal lifetime by enhancing the spins’ sponta-
neous emission. When instrument noise is quantum limited and
signal decay is due to spontaneous emission into the resonator,
the SNR for detection of a single spin is 1/3.

For implementation of force-detected NMR spectroscopy
with resonator-induced polarization, the polarization time
~1/R;, must be sufficiently short to allow for averaging over
many transients. The delay between transients is minimized
when the coupling constant g for the resonant interaction
is large, and when the damping of the resonator is weak.
Together these conditions allow for the buildup of strong
spin-resonator correlations that efficiently transfer quanta
from the spins to the resonator. However, a short resonator
ring-down time is desirable for fast recovery during pulsed
spin locking, for polarization of samples with broad spectra,
and for fast dissipation of quanta transferred to the resonator.
The magnitude of the coupling constant is therefore of key
importance for resonator design. The achievable strength of
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the resonant interaction depends on practical size constraints,
since g scales strongly with size.

Torsional resonators offer advantages for force-detected
NMR. The interaction between the spins and the resonator
does not depend on a gradient generated by the resonator’s
magnets or on relative motion between the sample and the
magnets. As a result, the sample can in principle be placed
arbitrarily close to the magnets without a problematic increase
in damping, consistent with the design goal of a strong
coupling constant. The lack of dependence on a gradient
facilitates the optimization of field homogeneity, needed for
the polarization and spectroscopy of samples containing many
spins. The torque acting between the spins and the resonator
is enhanced by the presence of a strong applied field that
holds the resonator’s magnetization motionless during the
mechanical oscillations and yields a large thermal polarization
at low temperatures. Analysis of a prototypical resonator
design suggests that although substantial development is
needed, resonator-induced polarization could enable NMR
spectroscopy as a tool for studying low-temperature nanoscale
samples, down to the single-spin limit.

APPENDIX A: SIGNAL PROCESSING

1. Detection of a polarized dipole
a. Filter definition

The sensitivity analysis in Sec. IT A is based on an idealized
signal-processing protocol in which the sum of the signal s(¢)
and the noise n(z),

y(0) = s(t) + n(1),

is passed through a time-invariant linear filter L. To motivate
the definition of the filter, we consider the problem of analyzing
the data acquired during ideal pulsed spin locking. If the signal
lifetime 77, has been measured independently, the functional
form of s(¢) is known. The data analysis should yield an
estimate of s(¢;), where time #; corresponds to the beginning of
the detection period. As discussed in Sec. Il A1, measurement
of s(#;) yields a single point of an FID that follows an arbitrary
pulse sequence.

The signal-processing scheme described here is based on
the assumption that the functional form of s(¢) is known. A
matched filter is used to measure s(¢;), where #; represents
the beginning of an arbitrary detection period. We write the
signal torque

=y 2 oy
s@) =yh— = (L
in the form
s(t) = Gso(1), (A1)
where
G = = thx I A2
=s(t)=y 70 (I (1) (A2)

is the quantity to be measured, formally analogous to a signal
amplification or gain. The normalized signal sy(¢) is defined by

(L:(0))

00 =

(A3)
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for times ¢ > t;, with so(t) = 0 before the beginning of
the detection period. For detection during ideal pulsed spin
locking, we have

cos [wo(t — t;)] e~ =1/ Tir

so(t) = {O,

The signal processing is performed by passing
y(1) = Gso(t) + n(t)

through a normalized filter L, that is, a filter that produces
output 1 at some known time #; in response to the input
so(t). Since we can consider the filter to be implemented using
software, we set ty, = 0 for convenience. Passing y(#) through
the normalized filter then gives

y(0) =G +n.(0),

where a subscript “L” has been used to indicate the output of
the filter. The filter is designed to maximize the SNR p, which
is defined by

t>t,

r<t. (A4)

(AS5)

() G?
P = o T A (A6)
(1) {ni)
Note that in the second equality, we have assumed that n(t) is
a stationary random process, which implies that (n7 ) does not
depend on time.

In general, the transfer function of the optimum filter is
determined by the Fourier transform of the signal and the
spectral density of the noise.” In the case where the noise is
white, the optimum choice is a matched filter that extracts the
signal from the noise using only the Fourier components of
50(¢).%% In response to an input f(¢), the output of the filter at
time o = 0 is

1 o0
fL0) = —/ f(@)so (@) dt, (A7)
EO —o0
where the normalization constant
o0
Ey= / sa(t)dt (A8)
—00

can be interpreted as a measure of the energy in so(¢). In the
case where sy(¢) is given by Eq. (A4), we have

T
Ey = T”.

Note that when the signal and the spin fluctuations decay
on the same time scale, the spectral density of the spin noise
varies within the signal bandwidth. In the case where narrow-
bandwidth spin noise is a significant noise source, a filter
that takes account of the power spectrum of the spin noise
would improve sensitivity. Our use of a matched filter for
the sensitivity analysis is therefore best suited to the regime
where the spin noise is small compared to broad-bandwidth
instrument noise.

(A9)

b. Instrument noise

The variance o introduced into the measurement by the
filtered noise is

1 oo
o, ={n7)= E/o |H(w)|* Sy(w) do, (A10)
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where H (w) is the filter’s transfer function and §,, is the spectral
density of n(¢). In order to evaluate Eq. (A10), we note that

|so(@)]?
Ej

where so(w) is the Fourier transform of sy(#), defined by

|H(w)]* =

’

so(w) = / ” e so(t) dt.

oo

Equation (A10) can thus be written in the form

1 o]
2 2
o7 = so(w)|” Sy(w)dw.
n 271E§/0|0()| (w)
In the case where spin noise is negligible, n(z) can be
identified with instrument noise, and Eq. (A11) gives

o2, =
st 2E0
where Sy is the spectral density of Eq. (9), evaluated at the
mechanical frequency, and where o2, represents the variance
due to filtered instrument noise. Defining

(Al1)

Sinsl’ (A12)

(A13)

we write Eq. (A12) as

02 = SinstAv. (Al14)

For detection during ideal pulsed spin locking, the band-
width is Av =2/T;,, which gives
) 2

Oinst = Sinst-

2 — (A15)
inst Tlp

Since the resonator must in general ring down after a pulse
before detecting the spin signal, it can only function as a
detector during a fraction D of the detection period. We can
take account of the duty cycle by replacing the normalized
signal so(¢) of Eq. (A4) with a function that is switched to zero
during the times when the resonator is not detecting a signal.
The energy Ey is decreased as a result of this change, and the
bandwidth is multiplied by 1/D:

2
- DTy,
Assuming that the bandwidth of the instrument noise is broad
compared to the Fourier transform of the switched signal,
Eq. (A15) is then replaced by
2
2
Oinst = 57~
DTy,

Av

Sinst' (A16)

¢. Spin noise

In Sec. I1 A3, we consider two methods of describing spin
noise. For detection of N spins during pulsed spin locking,
we model the fluctuations of the spin-locked component
as a stationary random process that causes variation in the
amplitude of the signal torque. The spectral density of the
amplitude fluctuations is given by Eq. (13) as

Sm(@) = Ny T Ty
() = .
wpin "o ) Ty
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The spin noise passed into the filter can be written in the form
n(t) = n*(t) cos (wpt) ,

where n*(t) represents the amplitude noise and where the
beginning of the detection period has been set to #; = 0. With
the normalized signal given by Eq. (A4), the filtered spin noise
is

4 [e’e}
n.(0) = o / n*(t) cos? (wot) e/ Tv dt
p JO
o0

~— | n*@t)e /T dr.
Ti, Jo

The arguments used in deriving Eq. (A11) can be adapted to
show that the variance of the filtered spin noise is

5 1 /00 4 S d
O = — ———5 OspinW) dw
spin 27 0 1+w2T120 pin

_N( 4B 2
2\ )
A more rigorous approach to characterizing spin noise is
to find the variance of the quantum-mechanical operator that
corresponds to the filtered spin torque. If the input to the filter
is the operator T'(¢) of Eq. (4), which represents the torque
exerted on the resonator by the spins, the filter output is given
by

(A17)

dB, 1 [
do Eo ) o

T, = yh I.(t)so(t) dt (A18)

X /oo L.(t) (LI,(t)) dt, (A19)

n
where the time argument of the filter output has been
suppressed.

The significance of treating the filter output as an operator
can be highlighted by considering the way in which Eq. (AS)
is modified when the input s(¢) is replaced with 7T'(¢). Passing
the signal s(¢) = Gso(¢) into the filter yields the output G, and
variance in the measurement is associated with filtered noise
n . When the filter output is treated as an operator, the outcome
of the measurement depends on the statistical properties of 77 .
Equations (A2), (A3), (A8), and (A18) imply that

(T.) = G, (A20)
but the variance of 7, represents a noise source, which can be
identified with the filtered spin noise oszpin:

Uszpin = (T7) — (T1)*. (A21)
Substituting Eq. (A18) into Eq. (A21) gives
o0 o0
Uszpm x f / [(L(DL(t") — (L)) (L:(t')]
n h
X (L (1) (I (t") dt’ dt, (A22)

which expresses aszpin as the output of a two-dimensional filter,

with spin fluctuations characterized by
(LML) — (L)L (1)
as the filter input.
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d. Discussion

Although we motivated the use of a matched filter by
considering the problem of analyzing a spin-locked signal, the
idealized method of signal analysis that we have discussed does
not depend on an assumption that the detection period involves
spin locking. Certain results derived here can therefore be
applied to the example considered in Sec. III B, where a
single-spin sample is detected during free precession. The
normalized signal so(¢) used to define the matched filter is a
sinusoid that decays exponentially with time constant 75, and
the measurement bandwidth is given by Eqgs. (A8) and (A13)
as

Av =2/T. (A23)

From Eq. (A14), the instrument noise is
011215; = (2/ TZ)Sinst-

The spin noise, as defined by Eq. (A21), is evaluated in
Appendix B.

The use of a matched filter for signal analysis is assumed
throughout most of this paper, but Sec. IIIB extends the
discussion to the case where the detailed functional form of
the signal s(¢) is characterized by means of a set of sampled
points, rather then being known in advance. The definition of
SNR given by Eq. (A6) can be generalized to this case in a
natural way. We define

2 sz(tk)
pr=Y =R

k L

(A24)

where #; ranges over the set of sampled points, and where the
filter L depends on the spectral width and the details of the
detection method. Note that Eq. (A24) implicitly depends on
the assumption that the noise at different times #; is indepen-
dent. If the noise for different sampled points is correlated,
then knowledge of the correlations could, in general, be used
to increase the information extracted from the measurement,
and the sensitivity would be underestimated by Eq. (A24). In
the regime where the noise has a broad bandwidth, however,
Eq. (A24) provides a measure of sensitivity which takes
account of the energy in all Fourier components of the filtered
signal that are within the sampled bandwidth. Equations (A6)
and (A24) allow for rigorous comparison of detection schemes
that measure a single value per shot and those that sample a
continuous time-dependent function during each shot.

2. Detection of spin-noise correlations

The signal-processing protocol for detection of a polarized
sample dipole can be adapted for detection of spin-noise
correlations, which is discussed in Sec. Il B. The signal and
noise are defined as functions of two time-domain arguments:

y(t,t') = s(t,t) + n(t,t).

The signal corresponding to a single shot of the experiment is
expressed in the form

s(t,t") = Gso(t,1),
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where s is a known function and G is the quantity to be
measured. The filter L used to analyze y(¢,t’) is defined by

1 oo o
fL= E_/ / f(@.t)so(t,t)de dt’, (A25)
0J-c0J—-0
where
[o.¢] o0
Ey = [ / si(t,t")dedt'. (A26)
—00 J —00
As in Eq. (A6), the single-shot SNR p is defined by
2 G2
pr= k= (A27)
<”L> <”L)

In Appendix C, we use Egs. (A25) through (A27) to analyze
the sensitivity of the CONQUEST detection scheme.

APPENDIX B: FILTERED SPIN NOISE

In this Appendix, we evaluate the filtered spin noise afpm

for the single-spin example discussed in Sec. III B. We also
derive a differential equation that illustrates the dependence
of aspm on the details of the internal spin Hamiltonian Hjy for
detection of N spins during pulsed spin locking.

As discussed in Sec. I A3 and Appendix A 1, filtered spin
noise is associated with quantum-statistical uncertainty in the
operator that corresponds to the filtered signal. The variance

in the measurement due to spin noise is given by Eq. (A21) as
ng]n - <T2> <TL>27
where T} is defined by Eq. (A18). From Eqgs. (A2) and (A20),

we obtain

dB
T;) = yh——
(TL)=vy 70

where time #;, the beginning of the detection period, has been
set to zero. In order to find (TLZ), we must obtain an expression
for the correlation function

Cr(t.t') = {L(O1(t) + L (1)), (B2)

= (1,(0)), (BI)

since
2) o f h f Crltt VLWL di' di. (B3)
0 0

We first consider the example where a spin 1/2 initially
aligned with the x axis is detected during free precession. The
quantum regression formula®> can be used to evaluate C;(z,t’).
The master equation is

do
dt
where the relaxation superoperator A is given by Eq. (25). Us-

ing Eq. (B4) in the quantum regression formula in combination
with the identities

= —i[wol;,0]+ Ao, (B4)

12=1/4, I, + 1,1, =0,
gives

Ci(t,t) = %cos(a)o|t —t'e 1T
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From Eq. (A18), we obtain
1

(Tz)z—( dB 4)/ /cosa)(t—t)]
L= 2 \" a0 1 0

x cos (wot ) cos(wot e 2 dt’ dt,

which evaluates to

1/ dB.\’
7)== (yvi— | . BS
(72) 2<y de) (BS)
Equations (B1) and (B5) then give
1( _dB.\’
b= lri)- 0 = () - @0

For detection of N spins during ideal pulsed spin locking,
Eq. (35) can be used to study the decay of correlations in the
toggling frame. We find that for ¢’ > ¢,

(L(OI:(1)

where Ti, = 2/R),. The equation of motion for (Ixz(t)) in the
toggling frame is

= (I2(1))e™ /T, (B7)

S20) = ~R20)+ R[20O)+ R(L0]], B8
where a® + b* = 1.

Equation (B8) shows that resonator-induced transitions
cause the decay of (I2(¢)) while simultaneously converting
(If(t)) and (Izz(t)) to (Ixz(t)). Since the equations of motion
for (Iyz(t)) and (Izz(t)) include coherent evolution under the
time-averaged Hamiltonian Hi,, the details of the internal
Hamiltonian play an essential role in determining the evolution
of (I%(¢)) during spin locking. Rather than doing a detailed
study of this evolution, we have based the sensitivity analysis
on a simplified model of spin noise in which the fluctuations
of an unpolarized sample are superimposed on the spin-
locked component. The resulting estimate of o2, is given
by Eq. (A17).

spin

APPENDIX C: SIGNAL-TO-NOISE RATIO FOR
DETECTION OF SPIN-NOISE CORRELATIONS

In this Appendix we derive Eq. (21), the sensitivity
formula for detection of spin-noise correlations. Since the
spin system is assumed to be completely disordered before the
measurement is performed, the density matrix is proportional
to the identity throughout the measurement process. For
simplicity, the evolution of I,(¢) during the time period of
spectroscopic interest is assumed to be given by

I.(t1) = I, cos(wty) + I, sin(wty), (C1)

as in the derivation of Eq. (18).

We wish to use the signal-processing scheme described in
Appendix A 2 for the sensitivity analysis. We therefore begin
by expressing the signal

1) = thx 2I O
s(t, )—<V %> (L) 1(t)))
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in the form
s(t,t) = Gs,(t,t),

where so(z,t') is a known function. This is done by using
the quantum regression formula,® in combination with some
simplifying assumptions, to evaluate the correlation function

Ri(t,t") = (L()I(1").

The evolution period from # =0 to r = #; is assumed to
be short on the time scale of spin fluctuations. In evaluating
R,(t,t'), we approximate the evolution that occurs during
this period as an instantaneous rotation of the operator I, (¢)
through an angle ¢ = wt;, consistent with the fact that
Eq. (C1) includes no relaxation. The physical quantity of
interest in the measurement is the value of ¢, since it carries
information about the spectral frequency w.

In the toggling frame where the Hamiltonian for the rf
field has been eliminated, the master equation is given by
Eq. (35). Application of the quantum regression formula
shows that correlations in the spin-locked component decay
exponentially with time constant 77, in this frame, as described
by Eq. (B7), with (I2(t)) = N /4 for the disordered system.
The other spin components in general decay quickly during
spin locking, and we assume that laboratory-frame correlation
functions for transverse spin components can be obtained from
Eq. (B7) simply by taking account of the rotation about the z
axis that occurs in the laboratory frame. When ¢,#" < 0, this
approximation gives

N ,
R,(t,) = 7 cos (wot) cos(wot e~ =1/ o, (C2)
When ¢ > t; and ¢’ < 0, we obtain

R(t,t) = %cos¢> cos [wo(t — 1,)] cos(aot’)e ==/ Tio,
(C3)

Note that Eq. (C2) does not depend on ¢ and thus carries no
physical information for the measurement. Similarly, at times
(z,t") for which 7,/ < 0 or t,t' > ¢, the data y(¢,7’) does not
carry any information about the correlation to be measured,
and the analysis is simplified if we set y to zero at these points.
An additional simplification can be made by noting that

Y(t,1") = Tops() Tons(t') = y(1',1).

Since the data y(z,t’) is identical in quadrants II and IV of the
plane, there is no loss of information if we set y to zero in
quadrant II and restrict the analysis to points in quadrant IV,
where r > 0 and ¢’ < 0. Finally, we assume that the torques
observed during the short time period from r = 0 to t = #; are
insignificant. We thus redefine the data y(z,#’) to exclude this
time period:

>0t <0,

Tobs(t + tl) Tobs(t/),
, otherwise.

y(t,t") = {0

The signal s(z,¢’) can then be expressed as Gsy(t,t"), where

dB.\> N
G =(T(t)T ) = (Vh 70 > Zcoscb, (C4)
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and where

/ cos(wot ) cos(wot)e (=Tt > 0,1 <0,
so(t,t’) = s
0, otherwise.

The filter L of Eq. (A25) is used to extract an estimate
of G from the noisy data. The variance introduced into the
measurement by the instrument noise is (n%), where

4 ()
np = — Ningt () cos(wot)e ™"/ 17 dt
Tlp 0
0 ’
X —— Ninsi(t) cos(wot e /T dt’. (C5)
Tlp —00

The two integrals in Eq. (C5) are statistically independent,
since the noise at time ¢ > 0 is not correlated with the noise at
time # < 0. We can thus evaluate (n7) by finding the variance
of each integral individually and then taking the product.
Note that the normalization constant defined by Eq. (A26),
Ey = lep /16, has been split into two factors of T7,/4, which
separately normalize the two integrals in Eq. (C5). Each of the
normalized integrals is equal to the filtered instrument noise for
the first-order method in which a polarized dipole is detected.
The variance of each integral is therefore given by Eq. (A15)
as (2/T1,)Sinst, and we find that

From Eq. (A27), the SNR is |G| /,/ (n?), where G is given by
Eq. (C4):
(yh/2)* (dB,/d6)’
(2/T1p)Sinst
Setting cos ¢ = 1 yields the SNR formula of Eq. (21).

p2 = N |cos ¢|

APPENDIX D: TIME AVERAGE OF THE
RELAXATION SUPEROPERATOR

Section IIT A analyzes signal damping during pulsed spin
locking and shows that if the internal Hamiltonian Hj,; and
the relaxation superoperator A are averaged by the applied rf
field, then 71, = 2/R;,. This result depends on Eq. (31), which
gives the time average of the toggling-frame superoperator A
during pulsed spin locking. Equation (31) is derived in this
Appendix.

For simplicity, we assume that ¢, = 27 /n for some integer
n > 2, which implies that the period of A is T, = 27 /@; . We
also limit the discussion to the problem of calculating the time
average of the term

A == I~+6 I~ —
over the period T, since the analysis is similar for the other
terms appearing in A. The frequency @; is assumed to be
sufficiently large that & can be considered constant during the
period 7).
Note first that

L) =1, £il,@),
since I, = I,. We thus have

A =1L6 1, +il,()6 I, —il, 6 1,(t) + I,(t) & I,(1).
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If the spin locking were continuous rather than pulsed, I~y(t)
would be given by

I,(t) = cos(—w )1, + sin(—aw; 1)1
During pulsed spin locking, we instead have

1,(t) = cos [¢p(t)] I, + sin[¢(1)] I,

where
o) = —f wi(t)dt'.
0

Note that if 7, (1) is visualized as a vector rotating in the yz
plane, then ¢(¢) is the angle between this vector and the y axis.
Under the assumption that the modulation cycle consists of a
square pulse followed by a delay, it is straightforward to verify
that the time averages of cos [¢(¢)] and sin [¢(#)] are both zero.
In particular, the average of fy(t) over the delays is shown to
be zero by means of the identity

n—1 n—1
Zexp(il«b,,) = Zexp [ik(2m/n)] = 0.
k=0 k=0
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It follows that the time average of A(#) can be written as
_ | -
A=I161 + —/ I,(@)6 1,(t)dt. (D1)
T, Jo
To evaluate the integral in Eq. (D1), we expand the integrand
as
I,(t)& I,(t) = cos* [p()] 1, & I, + sin® [¢p(1)] I, G I,
+cos[gp(t)] sin[¢p(®)] (I, 6 1.+ 1.6 1))

and let @ and b? denote the time averages of cos? [¢(¢)] and
sin? [¢(2)], respectively. Since cos? ¢ + sin® ¢ = 1, we have

a+b*=1.
Since the time average of
cos [¢()] sin [¢(1)] = 4 sin [2¢(1)]
is zero, Eq. (D1) simplifies to the form
A=161+a’l,61,+ b6 I,.

Using similar arguments to find the time average of the other
terms appearing in A yields Eq. (31).
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