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At the mean-field level, on fully connected lattices, several disordered spin models have been shown to belong
to the universality class of “structural glasses” with a “random first-order transition” (RFOT) characterized by
a discontinuous jump of the order parameter and no latent heat. However, their behavior in finite dimensions
is often drastically different, displaying either no glassiness at all or a conventional spin-glass transition. We
clarify the physical reasons for this phenomenon and stress the unusual fragility of the RFOT to short-range
fluctuations, associated, e.g., with the mere existence of a finite number of neighbors. Accordingly, the solution
of fully connected models is only predictive in very high dimension, whereas despite being also mean-field in
character, the Bethe approximation provides valuable information on the behavior of finite-dimensional systems.
We suggest that before embarking on a full blown account of fluctuations on all scales through computer
simulation or renormalization-group approach, models for structural glasses should first be tested for the effect
of short-range fluctuations and we discuss ways to do it. Our results indicate that disordered spin models do
not appear to pass the test and are therefore questionable models for investigating the glass transition in three
dimensions. This also highlights how nontrivial is the first step of deriving an effective theory for the RFOT
phenomenology from a rigorous integration over the short-range fluctuations.
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I. INTRODUCTION

The random first-order transition (RFOT) theory1,2 of the
glass transition builds on a mean-field scenario in which a
complex free-energy landscape with an exponentially large
number of metastable states emerges below a critical temper-
ature Td and the configurational entropy associated with these
metastable states vanishes at a lower temperature TK . At TK , an
RFOT, i.e., a transition with a discontinuous order parameter
yet no latent heat, to an ideal glass takes place. This scenario
is realized in mean-field-like approximations of a variety
of glass-forming systems (liquid models, lattice glasses,
uniformly frustrated systems) as well as in mean-field, fully
connected, spin models with quenched disorder2,3 (e.g., p-spin
model, Potts glass). The latter correspond to spin glasses
without spin inversion symmetry, and their behavior differs
from that of the fully connected Sherrington-Kirkpatrick Ising
spin glass, which is characterized by a continuous transition
in place of the RFOT. They have been investigated in great
detail and have provided most of the clues about the generic
behavior of “mean-field structural glasses.”

To make progress toward a theory of the glass transition,
one must, however, go beyond the mean-field description and
include the effect of fluctuations4 in finite-dimensional systems
with finite-range interactions. The main assumption behind
the RFOT theory of glass formation is that the mean-field
scenario with a dynamic and a static critical temperature retains
some validity when fluctuations are taken into account. The
ergodicity breaking transition at Td is expected to be smeared
and the metastable states no longer have an infinite lifetime
because of entropically driven nucleation events. This under-
lies the picture of a glass-forming liquid as a “mosaic state”
with its relaxation to equilibrium dominated by thermally
activated rare events involving “entropic droplets.”1 Yet, the
main ingredients associated with the RFOT are assumed to

persist, even if renormalized by the effect of the fluctuations.2

The issue can be understood in the much simpler setting of
the liquid-gas transition of simple fluids. The mean-field van
der Waals approach predicts a liquid-gas transition with a
terminal critical point. It is known that this homogeneous
mean-field picture needs to be modified, e.g., through the
classical nucleation theory and the renormalization group:
concepts such as metastability and spinodal are no longer
crisply defined, critical exponents as well as nonuniversal
quantities are modified, yet the transition with the two, liquid
and gas, free-energy states remains valid, at least when the
dimension d is larger than 1. In d = 1, the mean-field treatment
is plain wrong and predicts a transition that is not present.
Fluctuations can therefore have a more or less dramatic
influence on the mean-field scenario: this is the key-point
concerning the relevance of the RFOT theory to glass-forming
liquids.

One natural path to follow in order to investigate the effect
of the fluctuations on the RFOT and the two-temperature
picture is then to consider, both numerically and analytically,
the various proposed models of structural glasses in finite
dimensions. The disordered spin models are especially con-
venient as they are both well defined at the mean-field level
and much easier to investigate than more realistic models of
structural glass-formers or effective Ginzburg-Landau theories
in the replica formalism. In particular, they quite directly
lend themselves to computer simulations and to real-space
renormalization group (RG) treatments. The major obstacle
on this seemingly straightforward route is that so far no traces
of the RFOT scenario have been found in such studies on
finite-dimensional, finite-range models, with either a complete
absence of transition to a glass phase5 or a behavior more
compatible with a continuous spin-glass transition6 than a
discontinuous “random first-order” one.
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In this work, we clarify the reasons for the discrepancy
between the solution of mean-field fully connected disordered
spin models and their finite-dimensional behavior. All fully
connected models that we have studied (Potts glasses, M-p-
spin models and generalizations) provide predictions that turn
out to be correct in very high dimensions only: because of their
infinite connectivity, they indeed neglect local fluctuations
and strongly enhance frustration compared to their finite-
dimensional counterpart.

This stresses the importance of considering the implications
and the effects of local, short-range fluctuations on the
existence of the RFOT. If one envisages integrating out the
effect of the fluctuations in a renormalization group setting,
it is often possible to proceed in a stepwise manner. First,
one includes the short-range fluctuations up to a given scale
and derives in this way an effective theory that describes the
physics on longer distances (or lower energies). The next
stage is then to solve the effective theory by accounting for
the long-range fluctuations, a usually highly nontrivial task.
In the study of critical phenomena and phase transitions, the
first step is, in general, bypassed and one relies instead on an
effective Ginzburg-Landau model based on general symmetry
arguments or on the mean-field solution of the microscopic
model to which gradient terms are added in order to allow
for spatial fluctuations. Generically, the type of mean-field
theory considered does not matter. However, it does matter
in all of the disordered spin models that we have studied.
As we shall show, the solution on fully connected lattices
or in infinite dimension is not representative of the situation
in finite-dimensional systems because it misses the effect of
the (purely) short-range fluctuations associated with the mere
existence of a limited number of neighbors. On the other
hand, a better account of the latter is provided by the Bethe
approximation, which, despite being mean-field in character,
properly describes the local effect of a finite connectivity. The
case of the Potts glass, which we shall discuss in detail, is
paradigmatic. In their computer simulation study, Brangian
et al.5 found no transition and no glassy behavior for a ten-state
Potts glass model in three dimensions, contrary to what was
obtained in infinite dimensions. We show here that this is
actually expected on physical grounds and confirm this through
the solution of the model within the Bethe approximation.

The outcome of our study is twofold: (1) stressing the
importance to test the influence of short-range fluctuations on
models of structural glasses through the Bethe approximation
or similar approaches and (2) showing that disordered spin
models mostly appear to fail the test and are therefore ques-
tionable starting points for investigating the glass transition
in three dimension. We should however add a caution note:
we have only considered disordered models in which spins are
coupled on pairs of nearest neighbor sites (on a lattice); models
with interactions that irreducibly couple degrees of freedom
on more than two sites deserve further investigation.

II. FROM INFINITE TO FINITE DIMENSION:
DIFFICULTIES AND PUZZLES

On the way to finding a RFOT in finite-dimensional dis-
ordered spin models, several difficulties have been identified.
(1) The RFOT can give way to a continuous transition to a spin

glass, with a quite different phenomenology. This phenomenon
was observed for several models when studied by numerical
simulations in finite dimensions, see, e.g., Ref. 6. The lack of
evidence for the entropy crisis predicted by the RFOT theory in
finite-dimensional disordered spin models has been rational-
ized by invoking the fact that, already at the mean-field level,
the relative temperature interval between Td and TK is very
small for “reasonable values” of the number p of irreducibly
interacting spins in the p-spin glass model or of the number q

of states in the Potts glass model (say, p,q � 10); under such
conditions, the phenomenology should then look more like that
of a standard Ising spin glass than that coming with an RFOT.
Eastwood and Wolynes7 have related this to the small value
of the reduced surface tension between glassy states in such
models and argued that the p’s and q’s that would be necessary
to mimic structural glasses to be p � 20 and q � 1000.

(2) The RFOT to an ideal glass can be superseded by a
conventional (usually ferromagnetic) ordering transition. This
phenomenon takes place, for instance, in the disordered Potts
models where a tendency to a simple nonglassy ferromagnetic
order was observed. Actually, this is also what happens in more
realistic models of supercooled liquids in which there is always
a transition to the crystal. In the latter case, however, since
the transition is first-order one can supercool the liquid and
study the metastable glassy phase. This in turn is impossible
if the glass transition is superseded by a second-order phase
transition, as the above mentioned ferromagnetic one.

Either as a result of the above difficulties or in trying to avoid
them, it is often found that no remnants of the RFOT are present
in finite dimensions. Actually, it may also be that no transitions
at all are observed if one has succeeded in getting around points
(1) and (2). An example is provided by the model studied by
Brangian et al.5 These authors considered a disordered Potts
glass with a distribution of couplings that is displaced toward
the antiferromagnetic ones, and that, as a result, has only a
small fraction of ferromagnetic couplings. This is a general
procedure to avoid ferromagnetic ordering in models without
spin-inversion symmetry. (An alternative suggestion is to study
an all-ferromagnetic or all-antiferromagnetic Potts model with
random permutations of the q states; the latter enforce a
statistical gauge symmetry that prevents ferromagnetic or
antiferromagnetic ordering.)8–10 In practice, Brangian et al.
focused on a ten-state Potts glass model with a bimodal
distribution of the couplings having only a fraction x � 15%
of ferromagnetic (positive) ones. Their main result, which is
often cited as a major problem for the RFOT theory, is that the
three-dimensional model is not glassy at all despite the fact that
the mean-field solution in infinite dimension predicts a strong
RFOT transition for such a large number of states. This and
further analytical and numerical work led for instance Moore
et al.11 to put forward the drastic proposal that the RFOT never
survives in three dimensions, its phenomenology being instead
replaced by that of a conventional spin glass in a magnetic field
(which has no transition in three dimensions according to the
droplet theory).12,13

In the following, we investigate the robustness of the RFOT
in spin models with quenched disorder that display such a
transition in their mean-field fully connected limit. We clarify
how the above listed difficulties arise when lowering the
dimension from infinity down to three. We restrict ourselves to
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systems with short-range interactions involving only pairs of
nearest-neighbor sites on a lattice. This choice is motivated
by the fact that such models are amenable to real-space
RG analyses and that they are easier to study numerically
in comparison to systems where multisite interactions are
present, such as the p-spin model. We first focus on Potts
glasses and show that by trying to avoid problems (1) and
(2), one actually imposes contradictory requirements in finite
dimensions; when the distribution of couplings is mostly anti-
ferromagnetic, spontaneous ferromagnetic ordering is indeed
thwarted, but considering large values of the number of states
q then suppresses frustration and leads to no glass transition
at all. We then analyze two alternative types of models: the
M-p-spin models introduced in Ref. 14 and a new class
introduced by us. We discuss the physical reasons that make the
predictions based on the solution of the infinite-dimensional
model inadequate in low dimensions, pointing out, as already
mentioned, the importance of short-range fluctuations.

III. DISORDERED POTTS MODELS

This section is devoted to a systematic study of disordered
Potts models on lattices with finite connectivity. Our aim is to
understand the physical reasons that make the discontinuous
glass transition (RFOT) so elusive for these systems. We shall
show that the two conflicting requirements discussed above
actually put severe constraints on the dimensionality and the
connectivity of the possible lattices.

A. Models

We define in the following the two Potts models that we
shall focus on.

(1) Potts glass with q states. Its Hamiltonian is given by

H = −q
∑
〈i,j〉

Jij δσiσj
, (1)

where the coupling constants Jij are quenched random
variables, and the σi’s are N Potts variables that can take
q different values, {1,2, . . . ,q}. The symbol 〈i,j 〉 means
that each pair of nearest-neighbor sites i,j on the lattice is
included in the sum only once and δσσ ′ is the Kronecker
symbol. We consider bimodal and Gaussian distributions of
the coupling constants. The mean-field solution of this model
was worked out in Ref. 15 and depends only on the mean and
the variance of the coupling constant distribution, denoted J0

and (�J )2, respectively. By scaling J0 and (�J )2 with the
spatial dimension d as

J0 = Ĵ0

d
, (�J )2 = 1

2d
, (2)

where, for convenience, we use the rescaled �J as the unit of
energy and temperature, one obtains a well-defined mean-field
model in the limit d → ∞. (The same is true in the limit
N → ∞ when considering a completely connected lattice and
replacing d with the number of sites N .)

A detailed presentation of this model is postponed to the
following section. Here, we just recall the main result obtained
within mean-field theory. Note that we only focus on the case
q > 4. This corresponds to models displaying a dynamical

ergodicity-breaking transition at a temperature Td and a RFOT
at a temperature TK . The former is in the class of the singularity
found in the mode-coupling theory of liquids and the latter is
akin to an entropy-vanishing, Kauzmann-like, discontinuous
glass transition. Lower values of q lead to a continuous spin-
glass transition.6 As discussed before, it is important to take Ĵ0

negative enough in order to avoid ferromagnetic ordering. In
practice, this means Ĵ0 < −p−4

2
1

2T
. The dynamical and static

transition temperatures depend on q as Td ∼
√

q

2 ln q
and TK ∼

1
2

√
q

ln q
for q 	 1.16 The values of the jump in the (overlap or

spin-glass) order parameter at Td and TK both tend to one in
the large q limit, indicating that the larger the number of states
the more discontinuous the transition at TK .

(2) Random-permutation Potts magnet. Its Hamiltonian
reads

H = J
∑
〈i,j〉

δσi ,πij (σj ), (3)

where J > 0 (antiferromagnet) or J < 0 (ferromagnet) and πij

is a random permutation of the q colors that is attached to the
edge between i and j .17 This model has a “gauge invariance”
that prevents antiferromagnetic or ferromagnetic ordering;8–10

indeed, if one permutes the states of the spin at a given
site i, one can always find random permutations associated
with all edges emanating from i such that the energy does
not change; after averaging over the quenched disorder (i.e.,
random permutations), the (staggered) magnetization is then
zero. This model has been studied by numerical simulation9

in its ferromagnetic version and by the cavity method10 in its
antiferromagnetic version. In the latter case, the T = 0 limit
describes a form of “coloring problem,” the states being then
interpreted as colors.

B. Frustration and lack thereof for q � 1

In the search for finite-dimensional models displaying
glassy phenomenology, the disordered Potts models have
played a central role. They were actually at the root of the
RFOT theory of the glass transition in the pioneering papers
by Kirkpatrick, Thirumalai, and Wolynes.1 For this reason
and also because the mean-field studies cited above predicted
a strong discontinuous glass transition for a large number
of states (or colors), they seemed to be the most promising
candidates to find a RFOT in three dimensions. It thus came as
a surprise that simulation results5 instead showed a complete
absence of glassy phase for a q = 10 disordered Potts model.

Our claim, which we substantiate in the following, is that
the original intuition based on the infinite-dimensional limit (or
the study of fully connected lattices) is misguided. A first piece
of explanation comes by considering the degree of frustration,
which is known to be central for the existence of glassy phases.
This is most clearly understood in the case of the disordered
antiferromagnetic Potts model, which corresponds to a color-
ing problem at zero temperature. For any finite-connectivity
lattice, such a model becomes unfrustrated for q large enough:
in physical terms, if the number of states, i.e., colors, is too
large for a given coordination number then it becomes easy to
arrange them in a way that two neighboring sites do not have
the same color, hence lifting frustration. Therefore one does
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not expect any glassy phase for large q on a finite- connectivity
and, in particular, a finite-dimensional lattice.

The recent study of the antiferromagnetic Potts model with
random color permutations on (both regular and Erdös-Rényi)
random graphs of finite coordination number c (see Ref. 10)
supports our claim. It was shown that the model for q � 4
may have a phenomenology similar to that of other mean-field
structural glasses, with a RFOT accompanied by a dynamical
transition at Td . However, in agreement with our previous
discussion, the RFOT disappears at fixed coordination number
c when the number of colors q is sufficiently large; for instance,
for c � 8 the transition disappears already at q = 4, and for
c � 13 there is no phase transition at q = 5. Asymptotically,
the transition is absent when 2q ln(q) − ln(q) − 2 ln(2) > c

(see a footnote in Ref. 18). For a given lattice coordination
number, frustration, hence glassy phenomenology, is therefore
lost when q is too large, typically larger than (c/2)/ ln(c/2).

The same trend takes place in Euclidean lattices. We indeed
prove in Appendix A that the q-state antiferromagnetic Potts
model with random color permutations has no phase transition
on Euclidean lattices when q > 2c. This generalizes a proof
by Salas and Sokal19 that applies to the standard random
antiferromagnet Potts model. In particular, we show that there
is a unique infinite-volume Gibbs measure with exponential
decay of the correlations at all temperatures and for any
realization of the random permutations. Quite generally then,
frustration vanishes for a large number of colors or states, as
intuitively expected.

C. Bethe approximation of the ten-state three-dimensional
Potts glass model

In the previous section, we have shown that frustration van-
ishes when the number of states q becomes sufficiently large at
fixed coordination number in random antiferromagnetic Potts
models on both Euclidean lattices and random graphs. As a
result, any putative glassy phase transition is wiped out. We
now study the effect of adding a fraction of ferromagnetic
couplings. This should introduce frustration and possibly lead
to RFOT phenomenology. We shall see, however, that this is
not the case.

In the following, we focus on the model considered by
Brangian et al.,5 which we have investigated through the Bethe
approximation; in practice, we have then studied the q = 10
Potts glass on a random graph with the same coordination
number as the cubic lattice, c = 6. We have used the cavity
method that allows for an analytic solution. The main steps of
our calculations are illustrated in Appendix B. Potts glasses
(with a different coupling distribution) were already studied in
Ref. 10, where the general cavity approach for Potts glasses
is also discussed. In the following, we only report the main
results.

In this model, the distribution of the couplings is bimodal,

P (Jij ) = xδ(Jij − J ) + (1 − x)δ(Jij + J ), (4)

where J = √
2 and the fraction of ferromagnetic couplings x

varies from 0 to 1. The value considered by Brangian et al. is
x = (2 − √

2)/4 � 0.146.5 The phase diagram that we have
obtained within the Bethe approximation is reported in Fig. 1.
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FIG. 1. (Color online) Phase diagram of the ten-state three-
dimensional Potts glass with bimodal disorder predicted by the Bethe
approximation. The value of x shown by the arrow corresponds to
that studied by Brangian et al.5 The black circles correspond to the
transition between the paramagnetic and the spin-glass phases where
the spin-glass susceptibility diverges. The red squares correspond
to the first-order transition between the paramagnetic and the
ferromagnetic phases where the free energies of the two phases cross.
There is also a transition line between the ferromagnetic and the
spin-glass states, which we do not report. The uncertainty due to the
numerical solution of the cavity equations is smaller than the size of
the points (see Appendix B for a discussion). The line connecting the
points are guides for the eye.

There is no discontinuous glass transition (RFOT) for any
positive fraction x of ferromagnetic couplings. Instead, for
relatively small values of x, we find a continuous spin-glass
transition, and above some threshold, this spin-glass transition
is superseded by a ferromagnetic one. The model is not
glassy at all for x = (2 − √

2)/4 � 0.146, at any temperature.
Although there is no general proof, one expects that frustration
on Euclidean lattices is comparable or less than that found on
random graphs. Thus the absence of a RFOT on a random
graph for x = (2 − √

2)/4 � 0.146 is fully compatible with
the numerical results of Brangian et al.

From this analysis, we therefore conclude that adding a
small fraction of positive couplings is not sufficient to trigger
the appearance of a discontinuous glass transition when the
connectivity is finite and the number of states large. In addition,
this shows that the absence of RFOT in the three-dimensional
model studied by Brangian et al. is not primarily due to some
long-distance, possibly, nonperturbative fluctuations but is just
a consequence of the local property of the lattice, namely,
the fact that the connectivity is too small compared to the
number of colors. This effect is correctly captured by the Bethe
approximation. It is instead completely missed by the mean-
field analysis based on a fully connected lattice, which
therefore appears to be quite misleading to predict the behavior
of three-dimensional systems.

An additional question that could provide a valuable hint
for future studies concerns the smallest value of the spatial
dimension d (and of the associated number of states q)
such that Potts disordered models show a discontinuous
glass transition (RFOT) within the Bethe approximation. We
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FIG. 2. (Color online) Phase diagram of the five-state Potts glass
with bimodal disorder on a regular random graph of coordination
number c = 18 as a function of x and T , showing Tsp (green
squares) where the paramagnetic phase becomes unstable towards
the antiferromagnetic order, Tlocal (red circles) where the RS solution
becomes unstable towards RSB, and the dynamical temperature Td

(blue points). The numerical uncertainty on Tsp and Tlocal is smaller
than the symbols’ size. The error bars indicate the uncertainty on Td

due to numerical procedure (see Appendix B for a discussion). The
line connecting the points are guides for the eye. We do not know if
the virtual coincidence of the points at which Tlocal merges with Td

on the one hand and with Tsp on the other is a result of the numerical
uncertainty (that we cannot exclude, see the error bars) or has a deeper
significance.

consider as a prototypical example the case of the Potts model
with the distribution of the couplings given by Eq. (4) with q =
5 states and placed on a regular random graph of coordination
number c = 18 (which would mimic a hypercubic lattice in
nine dimensions).

The phase diagram of the model, which we have obtained
through the cavity method, is shown in Fig. 2 as a function
of x and T . For a small enough x (x � 0.22), where
most of the couplings are antiferromagnetic, there is enough
frustration to produce a RFOT, as previously shown for
x = 0.10 This is demonstrated by the fact that the dynamical
critical temperature Td is higher than the temperature Tlocal at
which the replica-symmetric (RS) solution becomes unstable
towards replica-symmetry breaking (RSB). However, the glass
transition is superseded by an antiferromagnetic transition,
which takes place at a much higher temperature. We have
computed the temperature Tsp at which the paramagnetic
solution becomes unstable towards antiferromagnetic order,20

see Fig. 2. This transition will likely be very difficult to avoid in
any numerical simulation on Euclidean lattices, unless random
permutation of colors is considered. As the value of x is
increased, Tsp decreases, but, at the same time, the distance
between Tlocal and Td reduces, and the glass transition becomes
less and less discontinuous. Finally, when x > 0.22, where
there is no instability towards the antiferromagnetic order,
the glass transition becomes continuous and a conventional
spin-glass phase is found.

This example confirms that even in a dimension as
high as d = 9, avoiding the two problems listed in Sec. II
imposes conflicting constraints that are very hard to fulfill.

Some improvement could come from considering random
permutations in order to avoid the appearance of an antiferro-
magnetic phase. Even in this case, one would have to consider
for q = 4 at least c � 12, i.e., d � 6 for a hypercubic lattice.

IV. THE APPROACH TO THE INFINITE-DIMENSIONAL
OR FULLY CONNECTED LIMIT

In this section, we study the 1/d expansion for the q-state
Potts glass on Euclidean hypercubic lattices of coordination
number c = 2d. The aim of this analysis is to better understand
the regime of validity of the mean-field results, which, as found
in the previous section, appears to be rather limited.

We have derived the 1/d expansion of the replicated
Gibbs free energy by following the method developed by
Georges, Mézard, and Yedidia.21,22 We have focused on a
Gaussian distribution of couplings. In order to perform the 1/d

expansion, it is useful to introduce the simplex representation
of the model as follows:

H = −
∑
〈i,j〉

Jij

q−1∑
a=1

Si,aSj,a. (5)

In this representation, q is the number of colors and the degrees
of freedom Si,a are vectors pointing toward the q vertices
of a tetrahedron in a (q − 1)-dimensional space.23 The order
parameter within the replica treatment reads

Q
αβ

i = 〈
Sα

i,aS
β

i,a

〉 = 〈
δ
σα

i σ
β

i

〉
, (6)

where α and β are replica indices. We refer to Ref. 23 for
more details on the replica theory for Potts glasses. When
using the simplex representation, the Hamiltonian of the Potts
model is very similar to that of the Edwards-Anderson (Ising)
model. The 1/d expansion can then be performed through
the high-temperature expansion of the replicated Gibbs free
energy.21 In the case of Potts variables the computation is more
cumbersome. For this reason, we only consider the first order
in 1/d. The detailed computation is presented in Appendix B
and in the following we only report the main results.

The Gibbs free-energy A can be obtained as an expansion
in Qαβ . We focus on the first three terms only since this is
enough to discuss the existence and the properties of the glass
transition:

−βA � N

[∑
α �=β

− t

4
(Qαβ)2 + w1

6
Tr(Q3)

+
∑
α �=β

w2

6
(Qαβ)3 + · · ·

]
. (7)

The coefficients of the expansion computed at the first order
in 1/d read

t = 1 − β2 − β4

4d
(q2 − 10q + 10)

− 2(q − 2)β3 J̃0

d
− 2

(βJ̃0)2

d (8)

w1 = 1 − 3β4

2d
(q − 1), w2 = q − 2

2
,
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where

βJ̃0 =
[
βĴ0 + β2(q − 2)

2

]
. (9)

As in the mean-field solution (d → ∞), we consider a one-step
replica symmetry broken (1-RSB) form for Qαβ : the replicas
are grouped in n/m groups of m elements and Qαβ is equal
to Q for all pairs belonging to the same group and to zero
otherwise. In order to study the glass transition, one has to
focus on the m → 1 limit of (βA)/(m − 1) which, within the
1-RSB ansatz, reads

lim
m→1

βA

m − 1
= t

4
Q2 − w2 − w1

6
Q3 + · · · .

Within this formalism, a discontinuous glass transition (i.e.,
a RFOT) is signaled by the sudden change of the global
minimum of (βA)/(m − 1) from Q = 0 to Q = QEA > 0
(where QEA is the Edwards-Anderson order parameter). A
negative sign of the coefficient of the cubic term, i.e., w2 >

w1, then insures that the transition, if it exists, must be
discontinuous. In addition, if the coefficient of the quadratic
term, t/4, becomes negative below a temperature Tlocal, then
a discontinuous transition surely takes place for T � Tlocal.
In the strictly infinite-dimensional limit, one finds w2 > w1

for q > 4 and Tlocal = 1, in agreement with the exact solution
of the model.15 (One also has to consider J̃0 equal to zero
or negative in order to avoid ferromagnetic ordering.) The
magnitude of the coefficient of the cubic term increases (i.e.,
the term becomes more negative) with the number of states.
This fact and the exact mean-field solution showing that
QEA → 1 for q → ∞ led to the belief that the larger the
number of states (or colors) the more strongly discontinuous
the transition in finite dimension. The 1/d corrections also
seem to support this conclusion. Indeed, at T � Tlocal, when
d 	 q2, which corresponds to the perturbative regime of the
1/d expansion, the corrections make w2 − w1 larger and Tlocal

higher when q increases (if J̃0 � 0). The latter condition
implies that the scaled mean of the couplings Ĵ0 is negative
enough, i.e., the model is antiferromagnetic enough. This is
however quite surprising since for a Ĵ0 that is very negative,
the corresponding finite-dimensional model has almost all
of the couplings antiferromagnetic. As we have shown in
the previous section, increasing the number of Potts states
leads to a decrease of frustration for such a system, and
eventually a disappearance of RFOT in finite dimensions. The
1/d expansion appears instead to predict just the opposite!

The disagreement between the two approaches (the study
on random and Euclidean lattices for a large number of states
and the 1/d expansion) can be traced back to the fact that in
the former case, one considers the limit of large number of
states at fixed dimension whereas in the latter, the number of
dimension tends to infinity at fixed, although large, number
of states. These two different ways of taking the limits of
large dimension and of large number of states do not seem to
commute. For instance, in the limit of large dimensions, the
couplings are such that the average value is typically much less
than the standard deviation; Ĵ0/d � �J = √

1/d if d is large
enough, no matter what is the value of Ĵ0. In consequence, the
starting point of the 1/d expansion is such that almost half of
the couplings are positive, whereas the other half are negative,

a situation quite different from the finite-dimensional one we
would like to describe, i.e., a Potts glass in which almost all of
the couplings are antiferromagnetic.

In conclusion, the mean-field infinite-dimensional theory
appears to be rather singular. It may still be representative of
the physics of finite-dimensional Potts glasses, but only for
a very large number of dimensions, and certainly not for the
three-dimensional case. (As discussed above, we expect that
d has to be larger than the square of the number of states in
order to be in the perturbative regime related to mean-field
theory.) As a consequence, the free energy in Eq. (7) with
the coefficients given by Eq. (8) does not provide a correct
effective model for the three-dimensional system even when
the first 1/d corrections are included.

V. ALTERNATIVE MODELS

In the following, we focus on two classes of disordered
models, one introduced in Ref. 14 and one tailored by us,
which might provide a better alternative to Potts glasses. Un-
fortunately, as we shall show, the drawbacks of the disordered
Potts models discussed above apply, at least partially, to these
alternative models too.

A. The M- p-spin model

The M-p-spin models were first introduced in Ref. 14 and
later generalized and studied in Refs. 24 and 11. M Ising
spins S

(α)
i , α = 1,2, . . . ,M are present on each site i of a

hypercubic lattice. In this work, we consider the p = 3 case,
whose Hamiltonian is given in terms of products of three spins
chosen from the spins in a pair of nearest-neighbor sites:

H = −
∑
〈ij〉

M∑
α<β

M∑
γ

[
J

(αβ)γ
ij S

(α)
i S

(β)
i S

(γ )
j + J

γ (αβ)
ij S

(γ )
i S

(α)
j S

(β)
j

]
.

(10)

The couplings are independently distributed quenched Gaus-
sian variables with zero mean and variance �J 2. Note that the
interactions involve three spins but only two sites.

The expansion of the Gibbs free energy in terms of Qαβ ,
analogous to the one described above, was worked out in
Ref. 24 for general values of M and p and d = ∞. The
unique value of M such that w2 > w1, i.e., leading to a
discontinuous glass transition (RFOT), is M = 3 for p = 3.
This model was later studied by Migdal-Kadanoff real-space
RG in three dimensions by Yeo and Moore.11 They concluded
that no glass transition is present in finite dimension and that
the behavior of the system resembles more that of a model
displaying an avoided continuous spin-glass transition. There
is still no numerical simulation testing this prediction (work
is in progress).25

In order to understand the disagreement between the two
approaches (infinite-dimensional mean-field and real-space
RG in d = 3), we have solved the model on a fully connected
lattice with the same choice of scaling for the variance as in
Ref. 24: �J 2 = 1

9N
(this is equivalent to take d = ∞ and a

variance of the coupling scaling as 1/d). More details are
given in Appendix C. We have found that the dynamical
MCT-like transition takes place at Td � 0.5970 and that the
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FIG. 3. Plot of V = (βA)/(m − 1) as a function of the overlap
for the M-p disordered model with M = 3 and p = 3 at Td (dashed
line) and at TK (continuous line). As discussed in the main text and
in Appendix C, the exact solution of the model lead to two kinds of
overlaps (or order parameters) Q(1) and Q(2). We plot the Gibbs free
energy as a function of Q(1) along the line Q(2) = Q(1)/3; a similar
behavior is obtained for other choices.

static RFOT takes place at TK � 0.5963. The plot of the
Gibbs free energy, (βA)/(m − 1), within the 1-RSB ansatz
is shown in Fig. 3 for T = Td and T = TK . The most
striking fact is the very small value of the free energy for the
whole range of overlap. Actually, in the exact solution of the
models, two different overlaps emerge: Q(1) = ∑

i〈Sα
i 〉2/N

and Q(2) = ∑
i〈Sα

i S
β

i 〉2/N . We have plotted the free energy
along the line Q(2) = Q(1)/3 but a similar behavior is obtained
for other choices. As we discuss below, the smallness of the
free energy is possibly the cause of the lack of robustness of
the mean-field results as the finite-dimensional fluctuations
not taken into account within mean-field theory are then
overwhelming compared to the structure of (βA)/(m − 1)
found in d = ∞.

We have not tried to develop a 1/d expansion for this
model because in finite dimension, due to the lack of inversion
symmetry, Si → −Si , a nonzero value of the overlap Q0 (in the
1-RSB scheme) emerges even at high temperature: an amor-
phous, but trivial, disordered magnetization profile is induced
by the quenched disorder. As a consequence, the 1/d expansion
is more involved (one should make an expansion in Q − Q0).

B. The F model

We now consider another class of models, which is new and
presented for the first time in this work. As the previous one,
it is characterized by spins with nearest-neighbor interactions.
The partition function of the model is defined as

Z =
∑
{Si }

∏
i

μ
(
S1

i ,S
2
i ,S

3
i

)
exp(−βH ),

where the spins can take the values −1,0,+1 and μ gives
different weights to the 33 states per site; μ is a kind of
generalized fugacity. We focus on the case where the only
allowed states are {1,1,1}, {1,−1,−1}, {−1,−1,1}, {−1,1,−1}
and {0,0,0}, i.e., μ = 0 for all other states. Moreover, we
introduce P as the ratio between μ(1,1,1) and μ(0,0,0) and

we assume that the first four allowed states are all characterized
by the same value of μ. (We have considered other variants
which have all led to similar results; thus we just present the
simplest one.)

The Hamiltonian of the model reads

H = −
∑
〈i,j〉

∑
a

J a
ij S

a
i Sa

j ,

where the J a
ij ’s are independently distributed Gaussian random

variables with zero mean and variance �J 2. A welcome
characteristic of this model is that it has a kind of spin-inversion
symmetry, if one flips, say, all S1

i ,S
2
i the probability measure

is invariant (likewise for S1
i ,S

3
i and S2

i ,S
3
i ). In consequence,

the average magnetization is zero at high temperature, i.e., Q0

is equal to zero.
As for the previous model, we have first obtained the

development in powers of Qαβ of the Gibbs free energy for
the completely connected model, corresponding to d = ∞, by
using the scaling �J 2 = 1/N :

−βA � N

[∑
α �=β

−3t

4
(Qαβ)2 + w1

2
Tr(Q3)

+
∑
α �=β

w2

2
(Qαβ)3 + · · ·

]
, (11)

where 〈Sa,α
i S

a,β

i 〉 = Qαβ independently of a, i.e., the symme-
try between the spins is not broken. The coefficients of the
expansion are equal to

t = 1 − β2〈(S1)2〉, w1 = 〈(S1)2〉3, w2 = 〈S1S2S3〉2,

where 〈(S1)2〉 and 〈S1S2S3〉 are on-site spin-spin correlation
functions that can be easily computed, see Appendix D.
Because of the property of the probability measure μ that
we have chosen, it is easy to show that 〈(S1)2〉 = 〈S1S2S3〉.
Then, by using that 〈(S1)2〉 < 1 (the equality only applies to
the P = 1 case that we disregard), we obtain that w2 > w1.
In consequence, this model, as the previous ones, undergoes a
discontinuous glass transition (RFOT) at a temperature higher
than Tlocal (always defined as the temperature at which the
coefficient t becomes negative).

We have also worked out the complete mean-field solution
of the model and found that if P is too small the glass transition
is pre-empted by a standard first-order transition from the
high-temperature paramagnetic (liquid) state directly to the
amorphous glass state. For values of P larger than P � 0.035
the model displays a RFOT, which becomes less discontinuous
as P is increased (the barrier at the transition decreases). For
instance, for P = 0.05, we find Td � 0.6608 and TK � 0.6607
and Q(TK ) � 0.073. As found for the M-p-model, the Gibbs
free energy is very small for the whole range of overlap Q

between the first and the second minimum: see Fig. 4. This
feature is observed for any choice of P and for all variants
of the weights that we have analyzed. It suggests, as for the
M-p-model, that the predictions of the infinite-dimensional
mean-field theory remain valid for very high dimensions only.

In addition, we have indeed solved the model on a random
graph of connectivity c = 6 by using the cavity method.
As anticipated, we only find only a continuous spin-glass
transition as the temperature is lowered.
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FIG. 4. Plot of V = (βA)/(m − 1) as a function of the overlap
for the F model for P = 0.05 at Td � 0.6608 (dashed line) and TK �
0.6607 (continuous line). Note the scale of the free energy.

C. Surface tension and a possible origin for the lack of
robustness of infinite-dimensional mean-field glassy

phenomenology

In the infinite dimensional versions of the M-p-spin and
F-models, we have found that the typical scale of the Gibbs
free energy between the first and the second minimum is very
small, much smaller than TK . In the following, we argue along
lines similar to those in Ref. 7 that this makes the mean-field
predictions very fragile, except in very high dimensions.

The Gibbs free energy as a function of the overlap is the
starting point to compute the so-called “surface tension” Y ;
the latter is equal to the reduction, per unit area, of the total
configurational entropy that is caused by fixing the overlap at
the value of the secondary minimum outside a ball of radius
R. This quantity plays a crucial role in establishing that the
glass transition in finite dimension is associated to a growing
length scale, called “point-to-set correlation length,” and a
growing time scale.2 Moreover, it is also the starting point
for RG analyses of the glass transition.4,26 Studies performed
by using instanton techniques27,28 have shown that the first
nonperturbative corrections to mean-field theory lead to a
value of Y equal to

∫ QEA

0 dQ
√

βA/(m − 1). Thus a Gibbs
free energy that is very small between the two minima Q = 0
and Q = QEA, as we found for the previous models, leads to
Y � TK . This is problematic because, as it has become clear
in recent years, some of the fluctuations not considered within
mean-field theory correspond to adding an effective quenched
disorder and lead to local fluctuations of the surface tension
Y and of the configurational entropy density sc.29–31 Actually,
this is expected on intuitive grounds: on small length scales,
the values of Y and sc must fluctuate in an amorphous system,
especially that envisioned as a “mosaic state.”1 The effective
quenched disorder affecting Y on microscopic length scales
is expected to be of the order of the typical energy scale,
i.e., TK , since it is due to local microscopic fluctuations. In
consequence, on small length scales, the disorder is much
larger than the surface tension Y when the latter is much
smaller than TK . In this case, heuristic arguments as well
as RG-based ones26 suggest that the RFOT found within

mean-field theory is destroyed. This is similar to what happens
for the random-field Ising model in finite dimension if the
disorder is too strong compared to the ferromagnetic coupling
(which plays the role of the surface tension Y ).

The same phenomenon is present in the Potts glass model
for a reasonable number (less than ten) of states. Eastwood
and Wolynes7 have argued that one could cure the problem
and make the surface tension Y large by considering a large
number of states, q � 1000, thereby preserving the RFOT in
three dimensions. However, this is not a proper resolution as
one then encounters another obstacle; as we have previously
discussed, one indeed expects that frustration, and as a result
glassiness, disappear for large q in three dimensions.

VI. FRAGILITY OF THE RFOT SCENARIO FOR FINITE
DIMENSIONAL SYSTEMS AND PROPER

EFFECTIVE THEORY

As already stressed, there are two main issues to address in
order to understand the effect of fluctuations on the RFOT.
(1) Once short-range fluctuations are taken into account,
is the resulting effective theory RFOT-like? To be so, the
model should favor two phases: one (the liquid) in which
replica remain uncorrelated and another (the ideal glass)
in which replica are correlated and display a high overlap
between typical interreplica configurations (the latter phase
being metastable with respect to the former for T > TK ).
(2) If the answer to the previous question is affirmative,
do long-distance and, possibly, nonperturbative fluctuations
destroy the transition and alter the scenario developed by
mean-field and heuristic arguments or not?

These two issues are mutatis mutandis always present
in physics but the first one is often of little relevance and
easily handled in the field of critical phenomena and phase
transitions. This is not so in the present case. We have found in
the case of the disordered spin models under study a striking
fragility of the RFOT scenario to the effect of short-range
fluctuations. Despite the fact that the description obtained
from the infinite-dimensional/fully connected limit displays a
ubiquitous RFOT, the models instead show in finite dimensions
no glassy behavior at all or one that is characteristic of a
conventional spin-glass transition. The answer to the above
first question is therefore negative for these models. This leads
us to propose that a model with a putative RFOT should
better be first tested for the effect of short-range fluctuations
only, before carrying out a full-blown calculation including
fluctuations on all scales either by computer simulation or RG
treatment. This makes sense for a schematic model that is
itself a caricature of the glass-forming liquids one is aiming
at describing. For a realistic glass-forming liquid model, the
question is rather whether the RFOT approach has any chance
to describe its glassy behavior. The issue is then whether one
can arrive, by some reasonably well-defined coarse-graining
or RG procedure that integrates the short-range fluctuations,
at an effective theory in the expected universality class of the
RFOT. We discuss below these two aspects without dwelling
too much on the first one, which we have already addressed.

(1) Does a given microscopic schematic model lead
to RFOT-like behavior once short range fluctuations are
included? Most schematic models showing a RFOT in the
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infinite dimensional mean-field limit that have been proposed
are formulated in terms of discrete variables on a lattice. We
suggest to use the Bethe approximation as a first test of the
influence of introducing a finite connectivity in the problem.
The Bethe approximation is equivalent to solving the model on
random regular graphs. These have the same finite connectivity
as the Euclidean lattices that they mimic, but of course not the
same behavior at long distance due to the absence of loops on
all scales and the essentially treelike structure. Thus, within
the Bethe approximation, one is able to take into account at
least some short-range fluctuations (one can always improve
the results by cluster methods) and as a result get a reasonable
description of the local physics. If short-range fluctuations
completely change the behavior of a model, one expects the
Bethe approximation to be able to capture this effect.

As an example, we mention again the ten-state Potts
glass studied by Brangian et al.5 The fact that no glass
transition was found in the computer simulation study on
the three-dimensional cubic lattice could in retrospect have
been predicted from the result of the Bethe approximation,
which already shows the disappearance of any RFOT for the
same connectivity. The approximation is known to overlook
the effect of long-distance fluctuations and is mean-field in
character. However, it does have some merit to study the
physics at short distance.

(2) Is the replicated Ginzburg-Landau free energy predict-
ing a strong RFOT (at the mean-field level) representative of
realistic glass-forming liquid models? The Ginzburg-Landau
functional that has been postulated to represent the effective
theory of structural glasses27 is given in a replica formalism by

βF[Q] =
∫

ddx

(∑
α �=β

{
1

2
[∂Qαβ(x)]2 + t

2
Qαβ(x)2

− w2

6
Qαβ(x)3 + · · ·

}
− w1

6
Tr[Q(x)3]

)
, (12)

where Qαβ(x) is a local, but coarse-grained, (matrix) order
parameter describing the overlap among replicas and the
number m of replicas has to be taken to 1, m → 1+, to describe
the physics associated with an exponentially large number of
metastable states (above the RFOT). At the mean-field level,
the glass transition can be made as strongly discontinuous
as wanted by increasing w2 − w1. (On the other hand, the
transition becomes that of a conventional spin glass in a
magnetic field when w2 < w1.)

However, besides heuristic arguments about coarse
graining32 and guidance from the infinite-dimensional/fully-
connected limit [see, e.g., Eqs. (7) and (11)], there has been
no serious derivation of the above functional from a proper
renormalization step accounting for the contribution of the
local short-range fluctuations in a realistic model of glass-
forming liquid. As we have precisely seen above how fragile
to the latter fluctuations is the RFOT scenario, in the case of
disordered spin models, this step should be a prerequisite to
validate the RFOT theory as a starting point for describing
the glass transition in real systems. Long-range fluctuations
can of course destabilize the RFOT even when starting from
the replicated Ginzburg-Landau functional with a strongly
discontinuous RFOT at the mean-field level, but matters would

be much worse if the RFOT is already wiped out by short-range
fluctuations. The latter possibility is advocated by Moore and
coworkers11 who suggest that coarse-graining a glass-forming
liquid model leads to a Ginzburg-Landau functional akin to
that in Eq. (12), but with w2 < w1, hence with no RFOT at all.

A possible means to capture short-range fluctuations in
liquid models is to consider the system within a cavity with
amorphous boundary conditions. This method has recently
been proposed33 and applied34 to measure the growth of
amorphous order in glassy systems. It amounts to studying
the thermodynamics of a system constrained to have all
particles (or spins) outside a cavity in the same positions (or
configuration) as those of a typical equilibrium configuration.
By construction, degrees of freedom are then integrated out
only up to a length-scale which is the size of the cavity.
Provided that the size of the cavity is not too large, for
instance by working far enough from the putative RFOT so
that the point-to-set correlation length is not much bigger than
the size of the atoms (which in practice is always the case
in computer simulations), such a numerical experiment may
then provide the information we are after: if the crossover
between a high overlap with the reference configuration for
a small cavity size to a small overlap for a large cavity size
becomes sharper and takes place at an increasing length scale
as one decreases the temperature, this is the sign that on the
probed length scale, the finite-size system behaves according
to the predicted RFOT scenario. It may still be hard to go
from here to a determination of the parameters in the effective
Ginzburg-Landau functional but it is enough to dismiss the
alternative scenario with w2 < w1 and a (possibly avoided)
continuous spin-glass transition.11 In the latter case, the system
constrained in a cavity would display a completely different
behavior. In particular, in the first regime, when the point to
set starts to grow, the overlap would always smoothly decrease
as a function of the cavity size, without leading to a sharp
crossover, and this behavior would be observed on a small,
never increasing length scale for overlaps of the order of one.
Only the tail at large cavity size would display a decrease
to zero, characterized by a range growing as the spin-glass
correlation length: this, however, is besides our goal of probing
only the influence of the local fluctuations.35 The published
results of computer simulations of glass-forming liquids with
the cavity method34 point in favor of the RFOT scenario, giving
credit to the effective RFOT functional as a bona fide starting
point. Again, we reiterate that passing the test concerning the
robustness with respect to the short-range fluctuations still
does not guarantee the fate of the scenario at long distance
when fluctuations on all scales are taken into account.

VII. CONCLUSION

In order to clarify the starting point for studying the effect of
the fluctuations on the discontinuous glass transition (RFOT)
found in infinite-dimensional (fully connected) glass models,
we have analyzed disordered spin models characterized by
interactions that couple spins on pairs of nearest-neighbor
sites on a lattice. (This restriction to short-range two-site
interactions was motivated by the fact that such models are
amenable to real-space RG analyses and that they are easier
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to study numerically than multisite interaction systems akin to
the p-spin model.)

Proceeding along the way, we have disentangled two
possible causes for destabilizing an RFOT in finite dimensions.
The more obvious, which was anticipated, is that long-distance
and, possibly, nonperturbative fluctuations could wipe out, or
alter, the transition. The other one is that already accounting
for short-range fluctuations, as the local effect of a finite
number of neighbors, could drastically change the physics of a
finite-dimensional system compared to its infinite-dimensional
counterpart. Our present work is an assessment of the latter,
which shows the fragility of the RFOT scenario to the effect of
short-range fluctuations in the case of disordered spin models.
This highlights how nontrivial is the step of deriving an
effective theory for the RFOT phenomenology from a rigorous
integration of the local short-range fluctuations.

We have identified and studied several mechanisms ham-
pering the existence of a RFOT in finite (not too high)
dimensional disordered spin models. For Potts glasses, the
two-fold requirement of having (1) mainly antiferromagnetic
couplings in order to avoid long-range ferromagnetic ordering
and (2) a large number of states (or colors) in order to
have a strongly discontinuous glass transition imposes that
the lattice dimensionality has to be high, typically larger
than the number of states. Otherwise, the model becomes
unfrustrated and glassiness is wiped out. For instance, we have
verified by using the Bethe approximation that the 10-states
disordered Potts model studied by Brangian et al.5 is not glassy
in three dimensions. The other disordered models that we
have considered, the M-p-spin models14 with M = p = 3,
and the F model introduced by us, which both display a
RFOT in the infinite-dimensional limit, are characterized
by a very small surface tension Y . As a consequence, we
expect finite-dimensional fluctuations to be overwhelming
compared to Y and to lead, in a RG sense, to a vanishing
renormalized surface tension on larger length scales and,
accordingly, to the absence of a glass transition. These results
and the 1/d expansion performed for Potts glasses suggest that
the perturbative regime in 1/d where (infinite-dimensional)
mean-field results remain predictive is restricted to very high
dimensions only.

We stress that we have nonetheless not found a fundamental
principle or a general mechanism forbidding a priori the
existence of a RFOT and of the associated glassy phenomenol-
ogy in all possible disordered spin models involving only
interactions between pairs of nearest-neighbor sites in realistic
dimensions (e.g., d = 3). However, it is a fact—actually a
puzzling one—that none of these models so far proposed
display a RFOT beyond the large-dimensional limit. The
RFOT theory originated from the analysis of disordered spin
models. Somewhat ironically, structural glass physics turns out
to lack robustness precisely in these models, whereas it appears
instead to be less fragile at least to the effect of short-range fluc-
tuations in liquid models.36 Other simple statistical mechanical
models for structural glasses have also been proposed that
usually consider interactions that couple degrees of freedom
on more than two sites, such as plaquette models37 and
variants (see also Refs. 38–41 for recent alternative proposals).
Models with multisite interactions and no quenched disorder
such as lattice-glass models do show the anticipated glassy

behavior42–44 even after that short range fluctuations are taken
into account (by solving them within the Bethe approximation,
for instance) and seem to provide a better starting point to
study the effect of long-range fluctuations on the ideal glass
transition. However, they are prone to simple long-range
ordering, in particular, to crystallization. The addition of
quenched disorder could then possibly prevent the formation
of the crystalline phase without altering too much the glassy
one.45 In any case, we suggest that any new proposal should be
first tested to assess the robustness of the RFOT to the effect of
short-range fluctuations by, e.g., studying the Bethe approxi-
mation or similar procedures. The quest for a simple statistical
mechanical model showing RFOT behavior is still open.
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APPENDIX A: PROOF OF THE ABSENCE OF PHASE
TRANSITION IN THE ANTIFERROMAGNETIC POTTS
MODEL WITH RANDOM COLOR PERMUTATIONS ON

EUCLIDEAN LATTICES

In this Appendix, we aim at proving, in the case of
Euclidean lattices, the absence of phase transition in the
antiferromagnetic q-state Potts model with random color
permutations when the number of colors/states is large enough
compared to the lattice coordination number. To do so, we
generalize the proof given by Salas and Sokal19 of the absence
of phase transition for the antiferromagnetic Potts model
and apply it to the disordered model with random color
permutations (note that the Salas-Sokal proof also applies to
a random-bond Potts model, provided all couplings are neg-
ative, i.e., antiferromagnetic). The Salas-Sokal demonstration
makes use of the Dobrushin-Lanford-Ruelle approach to the
equilibrium statistical mechanics of infinite volume classical
lattice systems46 and of Dobrushin’s uniqueness theorem.47

They show that the antiferromagnetic q-color Potts model on
a lattice of maximum coordination number c has no phase tran-
sition (at any temperature T � 0) when q > 2c. Again, a large
number of colors/states precludes the existence of a transition.

The antiferromagnetic Potts model with random permuta-
tions on a d-dimensional Euclidean lattice is defined by the
following Hamiltonian:

H = J
∑
〈i,j〉

δσi ,πij (σj ), (A1)

where J > 0, 〈i,j 〉 denotes distinct pairs of nearest neighbors
on the lattice, the spin variable σ can take q values {1,2, . . . ,q},
δσ,σ ′ is the Kronecker symbol, and πij is a random permutation
of the q colors that is attached to the (oriented) edge between
i and j . This model has a “gauge invariance” that prevents
antiferromagnetic ordering;8–10 indeed, if one permutes the
states of the spin at a given site i, one can always find random
permutations associated with all edges emanating from i

such that the energy does not change; after averaging over
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the quenched disorder (random permutations), the (staggered)
magnetization is then zero.

Following the Salas-Sokal development, we introduce the
conditional probability distribution for a single spin σi at site
i with external conditions given by all other spins {σk}′ with
k �= i. The new ingredient is that this probability distribution
is defined for a given realization π of the random permutations
on all (oriented) edges of the infinite-volume lattice. It is given
by the following Boltzmann-Gibbs measure:

Pπ (σi |{σk}′) = Zπ ({σk}′)−1 exp

⎡⎣−βJ
∑
k �=i

δσi ,π̂ik (σk)

⎤⎦ , (A2)

where the a priori single-spin distributions over the colors are
left implicit, β = 1/(kBT ), and π̂ik is equal to πik if the edge
is oriented from i to k and to π−1

ki otherwise [we have used
the fact that δσk,πki (σi ) = δσi ,π

−1
ki (σk )]. Note that, as the notations

π is used for the random permutations, we have chosen P for
the conditional probabilities, which is then different from the
Salas-Sokal notation.19

We also introduce the quantity cπ
ij that measures the strength

of the direct dependence between the spins on sites i and j :

cπ
ij ≡ sup{σ },{̃σ }:σk=σ̃k∀k �=j d[Pπ (σi|{σ }),Pπ (σi|{̃σ })], (A3)

where d[,] is the distance between the conditional probability
measures whose definition is irrelevant here.19 It is easy to
check that cπ

ij = 0 when i = j or when i and j are not nearest
neighbors on the lattice. The interesting situation is therefore
when j is one of the c nearest neighbors of i, which will be
assumed from now on (we consider here a lattice of constant
coordination number c but the reasoning works as well when
c is the maximum coordination number).

Salas and Sokal19 have proven a lemma which implies that

cπ
ij � max

[
ρπ

i [1 − fij]

ρπ
i [fij]

,
ρπ

i [1 − f̃ij]

ρπ
i [f̃ij]

]
, (A4)

where the functions fij and f̃ij are defined as

fij (σi |σj ) = exp[−βJδσi ,π̂ij (σj )],
(A5)

f̃ij (σi |̃σj ) = exp[−βJδσi ,π̂ij (̃σj )],

where π̂ij is defined from πij as above; ρπ
i is the probability

distribution at site i in the presence of all its nearest neighbors
except j ,

ρπ
i (σi) = (

Zπ
i

)−1
exp

[
−βJ

∑
k/i,k �=j

δσi ,π̂ik (σk)

]
, (A6)

where the notation k/i means that k is one of the c nearest
neighbors of i and the normalization factor Zπ

i is the trace over
the q distinct states/colors that the spin σi can take. Finally,
ρπ

i [fij ] and ρπ
i [fij ] are short-hand notations for

ρπ
i [1 − fij ] =

q∑
σi=1

ρπ
i (σi)[1 − fij (σi |̃σj )], (A7)

ρπ
i [fij ] =

q∑
σi=1

ρπ
i (σi)fij (σi |̃σj ). (A8)

Similar expressions hold for ρπ
i [1 − f̃ij ] and ρπ

i [f̃ij ]. The
demonstration of the Salas-Sokal lemma requires that fij and

f̃ij be in the interval [0,1], which is verified when all couplings
are antiferromagnetic as considered here.

Note that by construction, ρπ
i [1 − fij ] + ρπ

i [fij ] = 1, so
that

ρπ
i [1 − fij ]

ρπ
i [fij ]

= 1
1

ρπ
i [1−fij ] − 1

, (A9)

and, similarly, for the expression with f̃ij .
The procedure now involves deriving an upper bound for

ρπ
i [1 − fij ] and ρπ

i [1 − f̃ij ]. From Eqs. (A4) and (A9), this
provides then an upper bound for cπ

ij .
An upper bound for ρπ

i [1 − fij ] is derived by noting first
that from the definition of fij in Eq. (A5), the only nonzero
contribution to the sum in Eq. (A7) comes from states such
that σi = π̂ij (σj ). There is only one such state. The next step
is to find a bound for the contribution of any of the q states
σi to the conditional probability distribution ρπ

i . Since J > 0,
the maximum possible weight is when

∑
k/i,k �=j δσi ,π̂ik (σk) = 0.

This occurs when σi is different from all π̂ik(σk)’s with k

any nearest neighbor of i different from j . Since there are
c − 1 such nearest neighbors, there are at most q − (c − 1)
states with maximum weight. (The number of states is less
when in the set {π̂ik(σk)} several colors are repeated.) The
contribution of all the other states is strictly smaller. As a
result the weight of any of the q states σi with the conditional
probability distribution ρπ

i is always less than 1/[q − (c − 1)].
Putting together the above results we arrive at the conclusion
that ρπ

i [1 − fij ] � 1/[q − (c − 1)]. From Eq. (A9), it then
follows that

ρπ
i [1 − fij ]

ρπ
i [fij ]

� 1

q − c
, (A10)

and, similarly, for the ratio involving f̃ij .
One then concludes that for all pairs of nearest neighbors

i,j on the lattice,

cπ
ij � 1

q − c
. (A11)

For any given realization of the quenched disorder, the
so-called Dobrushin constant απ ≡ supi

∑
j�=i cπ

ij therefore
satisfies

απ � c

q − c
. (A12)

The Dobrushin uniqueness theorem47 states that there is a
unique infinite-volume Gibbs measure when the condition
απ < 1 is satisfied. Under the same condition, an additional
theorem implies that the correlations in the infinite-volume
Gibbs measure decay exponentially with distance (see Ref. 19
and references therein). By using Eq. (A12), the above
condition amounts to

q > 2c. (A13)

This is true for any realization of the random permutations on
the infinite-volume lattice. This proves the absence of phase
transition and the exponential decay of the correlations, hence
the absence of any glassy behavior, when the number of colors
is larger than a threshold depending on the lattice coordination
number.
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APPENDIX B: THE POTTS MODEL ON RANDOM GRAPHS.
ANALYTIC SOLUTION USING THE CAVITY METHOD

In this Appendix we report the main steps of the analytic
solution of the Potts model on random graphs and explain
briefly how the phase diagrams of Figs. 1 and 2 were derived.
We refer to Refs. 10, 49, and 43 for more details. The
Hamiltonian of the model as defined in Brangian et al.5 is

H = −
∑
〈i,j〉

Jij

(
qδσi ,σj

− 1
)
, (B1)

where 〈i,j 〉 denotes the sum over all couples of nearest-
neighbor sites of the lattice, and Jij are quenched independent
and identically distributed random variables extracted from
the bimodal distributions, Eq. (4). The lattice we focus on is a
random (k + 1)-regular graph, i.e., a graph chosen uniformly
at random among all graphs of N sites where each of the
sites has connectivity k + 1. The properties of such random
graphs have been extensively studied in the past years. It is
known in particular that any finite portion of the graph is a
loopless tree with probability 1 in the thermodynamic limit,
but there are large loops whose average size scales as ln N .
Random-regular graphs are like Cayley trees wrapped onto
themselves. The advantage of this construction compared to
infinite regular trees is the absence of boundary effects, which
is particularly important for frustrated and disordered models.

The Potts model (B1) on a tree can be solved exactly by an
iterative method called the cavity method, which is, in fact, a
classical tool in statistical physics to deal with tree structures
that dates back to the original ideas of Bethe, Peierls, and
Onsager.48 It allows one to compute the marginal probabilities
that a given node is in a given state and observables such as
energy, entropy, average magnetization, etc.

Denote ψ
i→j
α the probability that the spin i is in state α

when the edge (ij ) is not present. Such a probability follows a
recursion relation in terms of the marginal probabilities on the
neighboring sites:

ψi→j
α = 1

Z
i→j

0

∏
l∈∂i/j

[(eβJil (q−1) − e−βJil )ψl→i
α + e−βJil ], (B2)

where Z
i→j

0 is a normalization constant insuring that∑
α ψ

i→j
α = 1 and is defined as

Z
i→j

0 =
∑

α

∏
l∈∂i/j

[(eβJil (q−1) − e−βJil )ψl→i
α + e−βJil ]. (B3)

To compute averages of observables over different quenched
disorder realizations, we need to solve the self-consistent
cavity functional equation

P ({ψα}) =
∫

dP (Jil)
∫ k−1∏

l=1

dP
({

ψl
α

})
δ
[
ψα − F

({
ψl

α

})]
,

(B4)

where F({ψl
α}) denotes the right-hand side of Eq. (B2), and

P (Jil) is the bimodal distribution of the coupling constants,
Eq. (4). It is immediate to observe that P ({ψα}) = δ(ψα −
1/q) (i.e., each of the q components of each cavity field ψ

i→j
α

equals 1/q), is always a solution of Eq. (B4). This solution

corresponds to the RS paramagnetic phase and is the only
solution at high temperature. The free energy density of the
RS paramagnetic phase can be easily computed within the
cavity method in the thermodynamic limit, as explained in
Ref. 10. In the derivation of the equations above, we assumed
that the cavity probabilities ψl→i

α for the neighbors l of the
node i are “sufficiently” independent in absence of the node
i itself (only then does the joint probability factorize). This
assumption would be true if the lattice were a tree with
uncorrelated boundary conditions, but loops, or correlations in
the boundaries, may create correlations between the neighbors
of node i (even in absence of i) and the RS cavity assumption
used above might thus cease to be valid in a general graph.
A simple to compute, necessary but not sufficient, validity
condition for the RS assumption is the nondivergence of
the spin-glass susceptibility, χSG = 1/N

∑
i〈σiσj 〉2

c . If the
latter diverges, a spin-glass transition occurs, and the replica
symmetry has to be broken. Using the fluctuation-dissipation
theorem, we relate the correlation 〈σiσj 〉c to the variation of
magnetization in σi caused by an infinitesimal field in σj ,
which can be computed from the Jacobian evaluated at the RS
paramagnetic solution (see Refs. 10 and 49):

Tαβ = ∂ψ
i→j
α

∂ψl→i
β

∣∣∣∣
RS

. (B5)

This matrix has only two different entries (all the diagonal
elements are equal and all the nondiagonal elements are also
equal) and only two distinct eigenvalues:

λ1 =
(

∂ψ
i→j

1

∂ψl→i
1

− ∂ψ
i→j

1

∂ψl→i
2

)∣∣∣∣
RS

,

(B6)

λ2 =
(

∂ψ
i→j

1

∂ψl→i
1

+ (q − 1)
∂ψ

i→j

1

∂ψl→i
2

)∣∣∣∣
RS

.

The second eigenvalue corresponds to a homogeneous eigen-
vector and describes fluctuations preserving the permutational
symmetry among states. It is thus not likely to be the relevant
one and, indeed, λ2 = 0. The first eigenvalue is (q − 1)-fold
degenerate. Its eigenvectors correspond to fluctuations which
explicitly break the permutational symmetry among states and
are in fact the critical ones. By using the cavity recursion
(B2), the two derivatives can be easily computed and the
critical temperature below which the instability sets in can
be obtained from the condition kλ2

1 = 1 (see Refs. 10 and 49).
This temperature corresponds to Tlocal, defined in the main text
as the temperature at which the RS solution becomes unstable
towards RSB (red line of Fig. 2).

Another important instability appears when k|λ1| = 1. This
corresponds to the instability towards the appearance of the
usual ferromagnetic (if λ1 > 0, red dashed line of Fig. 1)
or antiferromagnetic (if λ1 < 0, green line of Fig. 2) order,
corresponding to the divergence of the magnetic susceptibili-
ties related, respectively, to the breaking of the permutational
symmetry among states or to the translational invariance and
permutational symmetry. The condition k|λ1| = 1 yields either
the spinodal point of the PM phase with respect to the ordered
one if the transition between the two is first order (Tsp, green
line of Fig. 2) or the transition temperature between the PM
and the ordered phase if the transition is second order. In the

064202-12



FRAGILITY OF THE MEAN-FIELD SCENARIO OF . . . PHYSICAL REVIEW B 87, 064202 (2013)

case of Fig. 1, the transition between the paramagnetic phase
and the ferromagnetic one is discontinuous. However, instead
of plotting the spinodal line of the paramagnetic phase (which
could be obtained from the stability condition as described
above), we have plotted the transition line between the two
phases (red dashed line of the figure), which corresponds to
the set of points where the free energies of the two phases
cross. Moreover, note that the antiferromagnetic (AF) solution
is incompatible with the structure of the random graph defined
above because of the existence of frustrating loops of arbitrary
length. As a consequence, in order to analyze the AF phase, we
have also considered bipartite random regular graphs (which
are compatible with the AF order). We have solved Eq. (B2)
on such a bipartite graph, computed the free energy associated
to the AF phase, and compared it with the other solutions.

So far, we have described the RS cavity method. This
method does not allow one to describe the glass and the
spin-glass phases, since it neglects the possibility of the
existence of several pure states in which the Gibbs measure
is decomposed. In order to take into account the existence
of several pure states, a one-step replica symmetry breaking
(1RSB) cavity formalism is necessary. In general, dealing
with exponentially many pure states is a nightmare for all
known rigorous approaches in the thermodynamic limit. The
heuristic cavity method overcomes this problem elegantly,
as was shown originally in the seminal work of Ref. 49. A
detailed description of the 1RSB cavity solution goes beyond
the scope of this work, and we refer to Refs. 10, 43, and 49
for more details. The different pure states correspond to the
different fixed points of Eq. (B2). The goal is thus to analyze
the statistical properties of these fixed points. Each one of
the states is weighted by the corresponding free energy to the
power m, where m is just a parameter analogous to the inverse
temperature. The probability measure over states {ψ} is then

μ({ψ}) = 1

Z1
e−βmNf ({ψ}), (B7)

where Z1 is a normalization constant. One can show that,
once the average over different pure states is performed, the
analog of the recursion equations (B2) becomes

P i→j
({

ψi→j
α

}) = 1

Z
i→j

1

∫ ∏
l∈∂i/j

dP l→i
({

ψl→i
α

})
× δ

[
ψi→j

α − F
({

ψl→i
α

})](
Z

i→j

0

)m
, (B8)

where Z
i→j

0 has been defined by Eq. (B3). In order to compute
averages of observables over different quenched disorder
realizations, we need to introduce the probability distribution
Q[P i→j ({ψi→j

α })] and solve the following self-consistent
1RSB cavity functional equation:

Q
[
P i→j

({
ψi→j

α

})]
=
∫

dP (Jil)
∫ k−1∏

l=1

dQ
[
P
({

ψl→i
α

})]
δ
[
P i→j

({
ψi→j

α

})
−F1

({
P l→i

({
ψl→i

α

})})]
, (B9)

where F1({P l→i({ψl→i
α })}) is the right-hand side of Eq. (B8).

Once the fixed point of the above equation is found,

the replicated 1RSB free energy of the glass phase can be
computed.10,49 In principle, Eq. (B9) could be solved using the
population dynamics algorithm10,49 with arbitrary numerical
precision, by representing the probability distribution
Q[P i→j ({ψi→j

α })] with a population of populations of q-
components fields {ψi→j

α }. Numerical precision is thus limited
by populations’ sizes (our numerical solutions of Eq. (B9)
has been obtained with a population of 212 populations of 212

fields). Three different cases are then observed: (a) At high
enough temperature, there is only the trivial (RS) solution at
m = 1 of Eq. (B9). Then the RS approach is correct and the
system is in the paramagnetic phase. (b) As the temperature
is lowered, a nontrivial solution at m = 1 appears, and m = 1
yields the minimum of the total free energy (this corresponds
to a positive configurational entropy associated with the pure
states). This is not a true thermodynamic transition, since the
correct solution is still given by the RS one. However, the
phase space is broken into exponentially many components
and, as a consequence, the dynamics fall out-of-equilibrium.
Thus, the highest temperature where a nontrivial solution of
Eq. (B9) at m = 1 first appears corresponds to the dynamical
critical temperature Td (blue dashed line of Fig. 2). (c) As the
temperature is further decreased, the minimum of the total
free energy is found for 0 < m� < 1 (this corresponds to a
negative configurational entropy). The system is in the ideal
glass phase. The Kauzmann temperature TK , where a genuine
thermodynamic transition takes place, is defined as the
temperature at which m� → 1. Note that when a continuous
transition from the paramagnetic phase to the spin-glass
one occurs, one observes a direct transition from case (a)
to case (c). Then the dynamical transition temperature Td

and the Kauzmann one TK coincide, and they are also equal
to Tlocal.

We conclude this Appendix with a discussion about the
numerical uncertainty on the location of the transition lines
shown in Figs. 1 and 2. There are three sources of error which
are, respectively, due to (1) finite number of iteration of the
cavity equations, (2) finite population size, and (3) dichotomy
procedure. The first source is due to the fact that in order
to find the fixed point solution of the cavity equations one
solves them by iteration; in the limit of an infinite number
of iterations the fixed point is reached but, in practice, one
is bound to only do a finite number of them (we performed
between 102 and 103 iterations). This introduces an error which
is quite small since the convergence is exponential except for
the spin-glass phase where it is power-law-like. The second
source of error is the finite size of the population used to
reproduce the probability distribution. This leads to an error
that scales as the inverse of the square root of the population
size. Finally, for the dynamical transition only, a third source of
error is present: the transition corresponds to the limiting point
at which the m = 1 RSB solution disappears. This is found by
dichotomy by reducing progressively the interval to which the
transition point belongs. In consequence, there is unavoidably
an uncertainty in the location of the transition due to the size
of the interval corresponding to the stopping of the numerical
dichotomy procedure. The error bars drawn in Figs. 1 and
2 are obtained by taking into account all these sources of
error.
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APPENDIX C: THE 1/d EXPANSION FOR
THE POTTS MODEL

As discussed in the main text, we use the simplex represen-
tation of the Potts glass:

H = −
∑
〈i,j〉

Jij

q−1∑
a=1

Si,aSj,a. (C1)

In this representation, q is the number of colors and the degrees
of freedom Si,a are vectors pointing toward the q vertices of
a thetrahedron in a (q − 1)-dimensional space. These vectors
satisfy the following relations:

q∑
s=1

es
ae

s
b = q δab, (C2)

q−1∑
a=1

es
ae

s ′
a = q δss ′ − 1, (C3)

q∑
s=1

es
a = 0, (C4)

(
q−1∑
a=1

es
ae

s ′
a

)2

= (q − 2)
q−1∑
a=1

es
ae

s ′
a + q − 1. (C5)

Integration of the partition function replicated n times over the
quenched disorder gives

Zn =
∑
{sα}

∏
〈i,j〉

exp

⎡⎣β2

2d

∑
(α,β)

∑
a,b

Sα
i,aS

β

i,bS
α
j,aS

β

j,b

+ βJ̃0

∑
α

∑
a

Sα
i,aS

α
j,a

]
, (C6)

1. Large-dimension (or large-temperature) expansion

The large-dimension expansion is a kind of high-
temperature expansion, as discussed by Georges and
Yedidia.22 Following Refs. 21 and 22, we introduce a small
parameter υ in front of the terms that couples different sites.
We also introduce two sets of Lagrange multipliers λ

αβ

i and
ηα

i to ensure that the following relations hold for each value of
the small parameter υ:〈

Sα
i,aS

β

i,b

〉 = δab Q
αβ

i (C7)

and 〈
Sα

i,a

〉 = mα
i . (C8)

As a result, we have

−βA
({

Q
αβ

i

}
,
{
mα

i

}
;
{
λαβ

i

}
,
{
ηα

i

})
= ln Tr{Sα} exp

{
υH +

∑
i

∑
α,β

λ
αβ

i

[∑
a

Sα
i,aS

β

i,a − (q − 1)qαβ

i

]
+
∑

i

∑
α

ηα
i

[∑
a

Sα
i,a − (q − 1)mα

i

]}
, (C9)

where N is the number of sites in the system and

H = β2

2d

∑
(i,j )

∑
(α,β)

∑
a,b

Sα
i,aS

β

i,bS
α
j,aS

β

j,b +βJ̃0

∑
(i,j )

∑
α

∑
a

Sα
i,aS

α
j,a.

We have implicitly assumed that by symmetry

Q
αβ

i,ab = δabQ
αβ

i ∀a

and

m
αβ

i,a = mα
i ∀a.

To preserve the relations in Eqs. (C7) and (C8) we impose, λ
αβ

i so that

∂A

∂λ
αβ

i

= 0, which gives Q
αβ

i = 1

q − 1

∑
a

Sα
i,aS

β

i,a, (C10)

and ηα
i so that

∂A

∂ηα
i

= 0, which gives mα
i = 1

q − 1

∑
a

Sα
i,a. (C11)

A large-temperature/large-dimension expansion of −βA can be obtained expanding exp(υH ) around υ = 0 and putting υ = 1
at the end.21 The terms of the expansion are expressed in terms of averages 〈 〉0 with the same weight as in Eq. (C9), except that
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υ is set to zero:

〈O({Sα})〉0 = Tr{Sα}

(
exp

{∑
i

∑
α,β

λ
αβ

i

[∑
a

Sα
i,aS

β

i,a − (q − 1)Qαβ

i

]
+
∑

i

∑
α

ηα
i

[∑
a

Sα
i,a − (q − 1)mα

i

]}
O
)/

Z0,

(C12)

where

Z0 = Tr{Sα} exp

{∑
i

∑
α,β

λ
αβ

i

[∑
a

Sα
i,aS

β

i,a − (q − 1)Qαβ

i

]
+
∑

i

∑
α

ηα
i

[∑
a

Sα
i,a − (q − 1)mα

i

]}
. (C13)

The expansion is of the form

A = A0 + A1υ + 1
2A2υ

2 + · · · (C14)

with, at the zeroth order,

−βA0 = (−βA)|0 = ln Z0, (C15)

and at the first order,

−βA1 = ∂(−βA)

∂υ

∣∣∣∣
0

. (C16)

Then,

−βA1 = 〈H 〉 = β2

2d

∑
(i,j )

∑
(α,β)

∑
a,b

〈
Sα

i,aS
β

i,bS
α
j,aS

β

j,b

〉
0 + βJ̃0

∑
(i,j )

∑
α

∑
a

〈
Sα

i,aS
α
j,a

〉
0 (C17)

and by using Eq. (C7), we obtain that −βA1 is equal to

β2

2d
(q − 1)

∑
〈i,j〉

∑
(α,β)

Q
αβ

i Q
αβ

j + βJ̃0(q − 1)
∑
〈i,j〉

∑
α

mα
i mα

j .

To more easily compute the second order, we introduce the operator

U = H − 〈H 〉 +
∑

i

∑
(α,β)

∂λ
αβ

i

∂υ

[∑
a

Sα
i,aS

β

i,a − (q − 1)Qαβ

i

]
+
∑

i

∑
α

∂ηα
i

∂υ

[∑
a

Sα
i,a − (q − 1)mα

i

]
, (C18)

which is such that

∂ 〈O〉
∂υ

=
〈
∂O
∂υ

〉
+ 〈OU〉 . (C19)

Useful properties of the operator U are listed in Ref. 21. The term A2 can be written as

−βA2 = ∂2(−βA)

∂υ2

∣∣∣∣
0

= 〈
U2

0

〉
0 , (C20)

where U0 is the operator U such that all the averages it contains are those with υ = 0 in the weight. Focusing on the m = 0 case
(no ferromagnetic ordering), we get

−1

2
βA2 =

∑
〈i,j〉

⎡⎢⎣ β4

8d2

∑
(α,β)
(γ,δ)

∑
a,b

c,d

(〈
Sα

i,aS
β

i,bS
γ

i,cS
δ
i,d

〉
0 − δabδcdQ

αβ

i Q
γδ

i

)(〈
Sα

j,aS
β

j,bS
γ

j,cS
δ
j,d

〉
0 − δabδcdQ

αβ

j Q
γδ

j

)

+ β2

2d
βJ̃0

∑
(α,β)

γ

∑
a,b

c

〈
Sα

i,aS
β

i,bS
γ

i,c

〉
0

〈
Sα

j,aS
β

j,bS
γ

j,c

〉
0 + 1

2
(βJ̃0)2

∑
α �=β

(q − 1)Qαβ

i Q
αβ

j

⎤⎥⎦, (C21)

as in the last sum the terms with α = β give only a constant.
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2. Zeroth- and first-order terms

The first-order term is directly obtained as

−βA1 = β2

2d

∑
〈i,j〉

∑
(α,β)

(q − 1)Qαβ

i Q
αβ

j . (C22)

On the other hand, the zeroth-order term reads

−βA0 = ln Tr{Sα} exp

{∑
i

∑
(α,β)

λ
αβ

i

[∑
a

Sα
i,aS

β

i,a − (q − 1)Qαβ

i

]}
. (C23)

In the following, we compute this expression in an expansion in λ
αβ

i and Q
αβ

i . First, we pull out the term not involved in the
trace, which gives

−βA0 = −
∑

i

∑
(α,β)

(q − 1)λαβ

i Q
αβ

i + ln Tr{Sα}
∏

i

exp

⎛⎝∑
(α,β)

λ
αβ

i

∑
a

Sα
i,aS

β

i,a

⎞⎠ . (C24)

Next, we expand the argument of the trace to cubic order in the λi’s:

ln Tr{Sα}
∏

i

exp

⎛⎝∑
(α,β)

λ
αβ

i

∑
a

Sα
i,aS

β

i,a

⎞⎠ = ln
∏

i

Tr{Sα
i }

⎛⎜⎜⎜⎜⎜⎝1 +
∑
(α,β)

λ
αβ

i

∑
a

Sα
i,aS

β

i,a + 1

2

∑
(α,β)
(γ,δ)

λ
αβ

i λ
γ δ

i

∑
a,c

Sα
i,aS

β

i,aS
γ

i,cS
δ
i,c

+ 1

6

∑
(α,β)
(γ,δ)
(ε,ζ )

λ
αβ

i λ
γ δ

i λ
εζ

i

∑
a,c,e

Sα
i,aS

β

i,aS
γ

i,cS
δ
i,cS

ε
i,eS

ζ

i,e

⎞⎟⎟⎟⎟⎟⎠ . (C25)

From Eqs. (C2) and (C4), it is easily realized that one has to pair the replicas to obtain nonzero contributions from the trace. As
a result, we find

Tr{Sα}
∑
(α,β)

λαβ
∑

a

Sα
a Sβ

a = 0, (C26)

1

2
Tr{Sα}

∑
(α,β)
(γ,δ)

λαβλγ δ
∑
a,c

Sα
a Sβ

a Sγ
c Sδ

c = 1

2

∑
(α,β)

(λαβ)2(q − 1)qn (C27)

and

1

6
Tr{Sα}

∑
(α,β)
(γ,δ)
(ε,ζ )

λαβλγ δλεζ
∑
a,c,e

Sα
a Sβ

a Sγ
c Sδ

cS
ε
e S

ζ
e = 1

6

∑
(α,β)

(λαβ)3(q − 1)(q − 2)qn + 1

6
Trλ3(q − 1)qn,

where we have used Eq. (C2) and

∑
a,b,c

(
q∑

s=1

es
ae

s
be

s
c

)2

= (q − 1)(q − 2)/q2. (C28)

Finally, the expression of the zeroth-order contribution is obtained to a O(λ4) as

−βA0 = N (q − 1)

⎡⎣−
∑
(α,β)

λαβQαβ + n ln q + 1

2

∑
(α,β)

(λαβ)2 + q − 2

6

∑
(α,β)

(λαβ)3 + 1

6
Trλ3

⎤⎦ . (C29)
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3. Second order

We start with Eq. (C21). To compute this expression as a
function of λ

αβ

i and Q
αβ

i , we again expand the weight in 〈 〉0
around λαβ = 0 to a O(λ4). The only contributions that can be
nonzero involve

Sαβγ

3 = 〈
Sα

i,aS
β

i,bS
γ

i,c

〉
0 (C30)

with α �= β, for
(1) γ �= α and γ �= β,

(2) γ = α and γ �= β,
and

Sαβγ δ

4 = 〈
Sα

i,aS
β

i,bS
γ

i,cS
δ
i,d

〉
0 (C31)

with α �= β and γ �= δ, for
(1) γ �= α, δ �= α, γ �= β, and δ �= β,

(2) γ = α and δ �= β,

(3) γ = α and δ = β.
In the end, we need an expression that is cubic in the Q

αβ

i ’s.
For each term, we therefore make an expansion up to the
third order in λ

αβ

i at most. The detailed computation is quite
cumbersome. Here, we only present the results term by term.

Let us start with the first term, Sαβγ

3 = 〈Sα
a S

β

b S
γ
c 〉0 with

α �= β. (1) When γ �= α and γ �= β, the terms of order O(1)
and O(λ) are zero. Hence one only has terms of order O(λ2)
that become of order O(λ4) when the square is taken in the
Gibbs free energy and can therefore be neglected. (2) When
γ = α, the only term of order O(1) is zero, and we thus have
to compute terms of order O(λ) and O(λ2). We find that the
linear term Sαβα

3,λ reads

q−1λαβ
∑

S

Sα
a Sα

b Sα
c , (C32)

whereas the quadratic term Sαβ

3,λ2 reads

1

2
p−2(λαβ)2

∑
a1,a2

(∑
S

Sα
a Sα

c Sα
a1

Sα
a2

)(∑
S

S
β

b Sβ
a1

Sβ
a2

)

+ q−1
∑
η �= α

η �= β

λαηληβ

(∑
S

Sα
a Sα

b Sα
c

)
.

Now we consider the terms from Sαβγ δ

4 = 〈Sα
a S

β

b S
γ
c Sδ

d〉0

with α �= β and γ �= δ. (1) When γ �= α, γ �= β, δ �= α, and
δ �= β, the terms of order O(1) and O(λ) are zero and there is
no need to compute the term of order O(λ2). (2) When γ = α

and δ �= β, the term of order O(1) is zero but not the term of
order O(λ):

Sαβαδ

4,λ = λβδδacδbd . (C33)

(3) For the quadratic term, there are several contributions that
will be denoted according to the way spins are grouped in the
sums:

Sαβαδ

4,λ2 (4,2,2) = q−1λαβλαδ

(∑
S

Sα
a Sα

b Sα
c Sα

d

)
, (C34)

Sαβαδ

4,λ2 (3,3,2) = q−2λβδ(λαβ + λαδ)
∑
a1

(∑
S

Sα
a Sα

c Sα
a1

)

×
(∑

S

S
β

b S
β

d Sβ
a1

)
, (C35)

Sαβαδ

4,λ2 (2,3,3) = 1

2
q−2(λβδ)2δac

∑
a1,a2

(∑
S

S
β

b Sβ
a1

Sβ
a2

)

×
(∑

S

Sδ
dS

δ
a1

Sδ
a2

)
, (C36)

Sαβαδ

4,λ2 (2,2,2,2) =
∑
η �= α

η �= β

η �= δ

λβηληδδacδbd . (C37)

(4) When γ = α and δ = β, all terms are nonzero. The term
of order O(1) is given by

Sαβαβ

4,1 = TrSαSα
a Sα

c S
β

b S
β

d = δacδbd . (C38)

Note that it is not needed to go to the term of order O(λ3)
because

〈 〉2
0 = (〈 〉0 − δacδbd + δacδbd )2

= (〈 〉0 − δacδbd )2 + 2δacδbd (〈 〉0 − δacδbd ) + (δacδbd )2.

(C39)

Since δacδbd〈 〉0 is a constant, only the first term matters and
computing the term 〈 〉0 to the order O(λ2) is enough to give a
result of order O(λ3).

The linear term reads

Sαβαβ

4,λ = q−2λαβ
∑
a1

(∑
S

Sα
a Sα

c Sα
a1

)(∑
S

S
β

b S
β

d Sβ
a1

)
.

(C40)

For the quadratic one, we find several contributions:

Sαβαβ

4,λ2 (4,4) = 1

2
q−2(λαβ)×

∑
a1,a2

(∑
S

Sα
a Sα

c Sα
a1

Sα
a2

)

×
(∑

S

S
β

b S
β

d Sβ
a1

Sβ
a2

)
, (C41)

Sαβαβ

4,λ2 (4,2,2) = 1

2
(q − 1)δacδbd

⎡⎣∑
η �=α

(λβη)2 +
∑
η �=β

(λαη)2

⎤⎦ ,

(C42)

Sαβαβ

4,λ2 (3,3,2) = q−2
∑
η �= α

η �= β

λαηληβ
∑
a1

(∑
S

Sα
a Sα

c Sα
a1

)

×
(∑

S

S
β

b S
β

d Sβ
a1

)
. (C43)
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4. The Gibbs free energy

In Eq. (C21), one has to consider the following
terms:

S3 =
∑
(α,β)

γ

∑
a,b

c

〈
Sα

a S
β

b Sγ
c

〉2
0, (C44)

S4 =
∑
(α,β)
(γ,δ)

∑
a,b

c,d

〈
Sα

a S
β

b Sγ
c Sδ

d

〉2
0, (C45)

T4 =
∑
(α,β)
(γ,δ)

∑
a,b

c,d

δacδbdQ
αβQγδ

〈
Sα

a S
β

b Sγ
c Sδ

d

〉
0. (C46)

To compute these terms, we use the relations obtained in
Ref. 23 where after introducing

vabc =
(∑

S

SaSbSc

)
(C47)

and

Fabcd =
(∑

S

SaSbScSd

)
(C48)

and using the Einstein convention of summing over repeated
indices, one has

vabcvade = qFbcde − q2δbcδde, (C49)

vabcvabd = q2(q − 1)δcd, (C50)

v2
abc = q2(q − 1)(q − 2), (C51)

Faabc = q(q − 1)δbc, (C52)

Faabb = q(q − 1)2, (C53)

FabcdFabef = q2

(
q − 2

q
Fcdef + δcdδef

)
, (C54)

F 2
abcd = q2(q − 1)(q2 − 3q + 3), (C55)

from which it also follows that

δabδcdvabevcde = 0. (C56)

In Eq. (C44), only the terms in which α = γ or β = γ are
different from zero. This means that

S3 =
∑
α �=β

∑
a,b

c

〈
Sα

a S
β

b Sα
c

〉2
0. (C57)

After substituting the terms of order O(λ) and O(λ2), one
finds

S3 =
∑
α �=β

∑
a,b

c

⎡⎢⎢⎢⎣q−1λαβvabc + 1

2
q−2(λαβ)2

∑
a1,a2

Faca1a2vba1a2 + q−1
∑
η �= α

η �= β

λαηληβvabc

⎤⎥⎥⎥⎦
2

, (C58)

which finally gives

S3 = (q − 1)(q − 2)
∑
α �=β

(λαβ)2 + (q − 1)(q − 2)2
∑
α �=β

(λαβ)3 + 2(q − 1)(q − 2)Tr(λ3). (C59)

In Eq. (C45), the nonzero terms are those for which γ or δ is equal to α or β, while the other is different from both, or such
that γ and δ are equal to α and β. Hence we have

S4 = Sa
4 + Sb

4, (C60)

where

Sa
4 =

∑
α �= β

α �= δ

β �= δ

∑
a,b

c,d

〈
Sα

a S
β

b Sα
c Sδ

d

〉2
0 (C61)

and

Sb
4 = 1

2

∑
α �=β

∑
a,b

c,d

〈
Sα

a S
β

b Sα
c S

β

d

〉2
0. (C62)
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Equation (C61) can be reexpressed as

Sa
4 =

∑
α �= β

α �= δ

β �= δ

∑
a,b

c,d

⎛⎜⎜⎜⎜⎜⎝λβδδacδbd + q−1λαβλαδFabcd + q−2λβδ(λαβ + λαδ)
∑
a1

vaca1vbda1

+ 1

2
q−2(λβδ)2δac

∑
a1a2

vba1a2vda1a2 + δacδbd

∑
η �= α

η �= β

η �= δ

λβηληδ

⎞⎟⎟⎟⎟⎟⎠
2

, (C63)

which gives
Sa

4 = −2(q − 1)2
∑
β �=δ

(λβδ)2 − 2(q − 1)3
∑
β �=δ

(λβδ)3 − 4(q − 1)2Tr(λ3). (C64)

Equation (C62) can be reexpressed as

Sb
4 = 1

2

∑
α �=β

∑
a,b

c,d

⎛⎜⎜⎜⎝q−2λαβ
∑
a1

vaca1vbda1 + 1

2
q−2(λαβ)2

∑
a1a2

Faca1a2Fbda1a2

+ 1

2
(q − 1)δa,cδb,d

⎡⎣∑
η �=α

(λβη)2 +
∑
η �=β

(λαη)2

⎤⎦+ q−1
∑
η �= α

η �= β

λαηληβ
∑
a1

vaca1vbda1

⎞⎟⎟⎟⎠
2

, (C65)

which gives

Sb
4 = 1

2
(q − 1)(q − 2)2

∑
α �=β

(λαβ)2 + 1

2
(q − 1)(q − 2)3

∑
α �=β

(λαβ)3 + (q − 1)(q − 2)2Tr(λ3). (C66)

Finally in Eq. (C46), we only need the nonzero terms of order O(1) and O(λ), i.e.,

T4 =
∑
a,b

c,d

δacδbd

⎡⎢⎢⎢⎢⎢⎣
∑
α �= β

α �= δ

β �= δ

QαβQαδλβδ + 1

2

∑
α �=β

(Qαβ)2 + q−2 1

2

∑
α �=β

(Qαβ)2λαβ
∑
a1

vaca1vbda1

⎤⎥⎥⎥⎥⎥⎦ , (C67)

which can be reexpressed as

T4 = (q − 1)2
∑
α �= β

α �= δ

β �= δ

QαβQαδλβδ + 1

2
(q − 1)2

∑
α �=β

(Qαβ)2.

After putting all these results together in Eq. (C21), we find that − 1
2βA2 is equal to

β4

8d
N (q − 1)

{[
−2(q − 1) + 1

2
(q − 2)2

]∑
α �=β

(λαβ)2 +
[
−2(q − 1)2 + 1

2
(q − 2)3

]∑
α �=β

(λαβ)3

+[−4(q − 1) + (q − 2)2]Tr(λ3) − 2(q − 1)Tr(Q2λ) − (q − 1)
∑
α �=β

(Qαβ)2

}

+ β3

2
J̃0N (q − 1)(q − 2)

[∑
α �=β

(λαβ)2 + (q − 2)
∑
α �=β

(λαβ)3 + 2 Tr(λ3)

]
+ 1

2
(βJ̃0)2dN(q − 1)

∑
α �=β

(Qαβ)2. (C68)
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The final piece of information that is needed is the relationship between λαβ and Qαβ . This results from the equation

∂A0

∂λαβ
= 0, (C69)

which gives

Qαβ = λαβ + 1

2
(q − 2)(λαβ)2 +

∑
η

λαηληβ, (C70)

λαβ = Qαβ − 1

2
(q − 2)(Qαβ)2 −

∑
η

QαηQηβ, (C71)

and

(λαβ)2 = (Qαβ)2 − (q − 2)(Qαβ)3 − 2Qαβ
∑

η

QαηQηβ.

(C72)

For the second-order term, we therefore have

−1

2
βA2 = N (q − 1)

⎧⎨⎩∑
α �=β

(Qαβ)2

[
β4

16d
(q2 − 10q + 10)

+
β3

2J̃0(q − 2) + 1

2
(βJ̃0)2d

]

−
∑
α �=β

(Qαβ)3 β4

4d
(q − 1) − Tr(Q3)

β4

4d
(q − 1)

⎫⎬⎭ , (C73)

while for the zeroth-order term, we obtain

−βA0 = N (p − 1)

⎡⎣−1

4

∑
α �=β

(Qαβ)2 + 1

12
(q − 2)

∑
α �=β

(Qαβ)3 + 1

6
Tr(Q3)

⎤⎦ , (C74)

and for the first-order term,

−βA1 = N (q − 1)
β2

4

∑
α �=β

(Qαβ)2. (C75)

After collecting all the pieces together, we finally find (formally setting υ = 1)

−βA � N (q − 1)

⎡⎣∑
α �=β

(Qαβ)2

(
β2

4
− 1

4
+ β4

16d
(q2 − 10q + 10) + β3

2
J̃0(q − 2) + 1

2
(βJ̃0)2d

)

+
∑
α �=β

(Qαβ)3

(
1

12
(q − 2) − β4

4d
(q − 1)

)
+ Tr(Q3)

(
1

6
− β4

4d
(q − 1)

)⎤⎦ . (C76)

APPENDIX D: MEAN-FIELD EQUATIONS FOR THE M- p SPINS MODEL

As in the main text, we focus on the M = 3 and p = 3 model. In this case, by following the standard procedure described
in Ref. 50, one obtains a mean-field solution in terms of the two overlaps Q(1) and Q(2) introduced in the text. Below, we only
reproduce the final result. Let us first introduce the notation

ν(β,Q(1),Q(2),{Sα}) = exp

⎡⎣∑
α

β
√

Q(2)zα
2 Sα +

∑
α

β

√
Q(1)

3
zα

1

∏
γ �=α

Sγ

⎤⎦ . (D1)

The self-consistent equations for the two overlaps read

Q(1) =
∫ ∏3

α=1
dzα

1√
2π

dzα
2√

2π

{∑{S} ν(β,Q(1),Q(2),{Sα})S1}2∑
{S} ν(β,Q(1),Q(2),{Sα})

8 exp
[
β2
(

Q(1)+3Q(2)

2

)] , (D2)

Q(2) =
∫ ∏3

α=1
dzα

1√
2π

dzα
2√

2π

{∑{S} ν(β,Q(1),Q(2),{Sα})S1S2}2∑
{S} ν(β,Q(1),Q(2),{Sα})

8 exp
[
β2
(

Q(1)+3Q(2)

2

)] . (D3)
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The free energy [divided by (m − 1)] is given by

F = 3

2
β2Q(1)Q(2) + 3

2
β2Q(2) + 1

2
β2Q(1) + ln(8) −

∫ ∏3
α=1

dzα
1√

2π

dzα
2√

2π
ν ln ν(β,Q(1),Q(2),{Sα})

8 exp
[
β2
(

Q(1)+3Q(2)

2

)] . (D4)

APPENDIX E: MEAN-FIELD EQUATIONS FOR THE F MODEL

We assume a 1-RSB ansatz for the matrix Qαβ and let Q denote the intrastate overlap. The corresponding mean-field equations
can be derived by usual methods and read

Q =
∫ +∞
−∞

∏3
a=1 dza

e−z2
a/2√
2π

[
∑

S μ′(S)S1 exp(β
√

Q
∑

a Saza)]2∑
S μ′(S) exp(β

√
Q
∑

a Saza)∑
S μ′(S) exp

[
β2 Q

2

∑
a(Sa)2

] , (E1)

where S is a short-hand notation for S1,S2,S3 and μ′(S) = μ(S) exp[β2(u − Q

2 )
∑

a(Sa)2]. The effective field u has to be
determined self-consistently from the equation

u = 1

2

∫ +∞

−∞

3∏
a=1

dza

e−z2
a/2

√
2π

∑
S μ′(S)(S1)2 exp(β

√
Q
∑

a Saza)∑
S μ′(S) exp

[
β2 Q

2

∑
a(Sa)2

]
= 1

2

∑
S μ(S)(S1)2 exp[β2u

∑
a(Sa)2]∑

S μ(S) exp[β2u
∑

a(Sa)2]
. (E2)

By solving numerically these equations, we have obtained the results described in the main text. In the high-temperature,
paramagnetic, region regime where Q = 0, on-site spin averages can be obtained by just using the measure μ′(S). In this way,
one can compute the correlation functions entering in the expansion of the Gibbs free energy.
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42G. Biroli and M. Mézard, Phys. Rev. Lett. 88, 025501 (2002).
43M. P. Ciamarra, M. Tarzia, A. de Candia, and A. Coniglio, Phys.

Rev. E 67, 057105 (2003); 68, 066111 (2003).
44R. K. Darst, D. R. Reichman, and G. Biroli, J. Chem. Phys. 132,

044510 (2010).
45S. Karmakar and G. Parisi, Proc. Nat. Acad. Sci. (2013) (to appear).
46D. Ruelle, Thermodynamic Formalism: The Mathematical Struc-

tures of Equilibrium Statistical Mechanics, 2nd ed. (Cambridge
University Press, 2004).

47R. L. Dobrushin, Theor. Prob. Appl. 13, 197 (1968).
48H. A. Bethe, Proc. R. Soc. London 150, 552 (1935); R. Peierls, ibid.

154, 207 (1936); L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936);
P. Ro. Weiss, Phys. Rev. 74, 1493 (1948).
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