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Tomáš Bučko,1,2,* S. Lebègue,3,† Jürgen Hafner,4 and J. G. Ángyán3
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The method proposed by Tkatchenko and Scheffler [Phys. Rev. Lett. 102, 073005 (2009)] to correct density
functional calculations for the missing van der Waals interactions is implemented in the Vienna ab initio simulation
package (VASP) code and tested on a wide range of solids, including noble-gas crystals, molecular crystals (α-N2,
sulfur dioxide, benzene, naphthalene, cytosine), layered solids (graphite, hexagonal boron nitride, vanadium
pentoxide, MoS2, NbSe2), chain-like structures (selenium, tellurium, cellulose I), ionic crystals (NaCl, KI), and
metals (nickel, zinc, cadmium). In addition to the original formulation expressing the van der Waals (vdW)
corrections as pairwise potentials whose strength is derived from the rescaled polarizabilities of the neutral free
atoms, the self-consistently screened (TS + SCS) [Phys. Rev. Lett. 108, 236402 (2012)] variant of the method
involving electrodynamic response effects has been examined. Analytical expressions for the forces acting on the
atoms and for the components of the stress tensor needed for the relaxation of the volume and shape of the unit
cell using the TS + SCS method are derived. While the calculated structures are reasonably close to experiment,
the van der Waals corrections to the binding energies are often found to be overestimated in comparison with
experimental data. The TS + SCS approach leads to significantly better results in some problematic cases, such
as the binding energy of graphite. However, there is room for further improvements, in particular for strongly
ionic systems.
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I. INTRODUCTION

With its unique combination of low computational cost
and reasonable accuracy, density functional theory (DFT)
has become the most popular method for calculating total
energies, atomic, and electronic structures of molecules and
solids in quantum chemistry and condensed matter physics.
However, common local and semilocal approximations of
the exchange-correlation (xc) energy functional notoriously
fail to describe weak intermolecular or van der Waals (vdW)
forces. In particular, it is easy to see that such functionals are
basically unadapted to grasp long-range correlations between
fluctuating electron densities which are responsible for London
dispersion forces. Although these forces are much weaker than
covalent or ionic interactions, they are crucial for the cohesion
of layered materials, of biological macromolecules, molecular
crystals, and in many other examples of soft matter. Higher-
order methods, such as the random phase approximation
(RPA),1–3 quantum Monte Carlo (QMC) calculations,4 or
many-body perturbation theory (MBPT)5 have been success-
ful in describing these weak interactions quite accurately.
However, the high computational effort necessary for the
application of these techniques makes them inappropriate for
large-scale calculations, in particular for solids where periodic
boundary conditions have to be applied. There have been some
promising attempts to develop strongly nonlocal “van der
Waals functionals” by Langreth, Lundqvist, and coworkers,6–8

by Dobson et al.,9–11 and more recently by Vydrov and van
Voorhis,12,13 but so far none of these methods have reached
chemical accuracy.14

As a reasonable compromise between precision, simplicity,
and computational cost, a posteriori empirical, semi-empirical
or even nonempirical correction schemes have been suggested
and applied to correct the DFT energy for the missing
dispersion effects. Some of the popular methods are based on
parameterized interatomic pair potentials of a damped C6/R

6

form, with C6 parameters, van der Waals radii, and damping
function fit to the results of high-level quantum-chemical
calculations for a set of test molecules.15–17 More sophisticated
approaches were proposed by Becke and Johnson18,19 and by
Sato.20,21 Recently, Tkatchenko and Scheffler22 (TS) suggested
a method based on the idea that accurate interatomic C6

(dipole-dipole) dispersion coefficients can be calculated using
a London-type formula from rescaled atomic dispersion
coefficients and polarizabilities.

The scaling factor is determined by the effective volume
occupied by the atom in a molecular or solid environment,
obtained by the Hirshfeld partitioning of the electron density
in the molecule or in the solid.23 These pairwise interatomic
potentials between “atoms in molecules”(see Sec. II) are used
to correct standard DFT energies computed, for instance, at the
level of the generalized gradient approximation (GGA) and to
perform refined optimizations of the molecular or crystalline
geometries. The TS method has attracted considerable interest
from the scientific community and has been applied to various
physical and biophysical problems.24–27 A first systematic test,
performed on some of the emblematic solid state systems
having structural and energetic features that are strongly
influenced by London dispersion forces, has been reported by
Al-Saidi et al.28 Other applications of the method to extended
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systems include, e.g., the adsorption of organic molecules at
surfaces,29 the structural relaxation of kaolinites,30 and the
adsorption of saturated hydrocarbons in acidic zeolites.31

Very recently, Tkatchenko et al.32 introduced improved
versions of the TS method in which electrodynamic response
effects are included via solving the self-consistent screening
equation of electrodynamics (TS + SCS) and many-body
effects (TS + MBD) are taken into account. To date we are
aware of only a few reports on applications of the TS + SCS
and TS + MBD methods.32,33 In this publication we report
on our implementation of the TS and TS + SCS methods
in the Vienna ab initio simulation package (VASP) code34–38

and test the performance of TS and TS + SCS methods for
a wide range of solids. Formulas for dispersion corrections
to total-energy gradients and the components of the stress
tensor have been derived, in particular for the self-consistent
screening (TS + SCS) calculations. They are provided in the
Supplemental Material.47

II. COMPUTATIONAL DETAILS

In analogy to the PBE-D2 method of Grimme,16 the
dispersion energy corrections of the TS method are computed
using pairwise potentials defined as

Edisp = −1

2

N∑
A=1

N∑
B=1

∑
L

′ C6AB

(rAB,L)6
fdamp(rAB,L), (1)

where rAB,L = |rA,0 − rB,L |, the summations are over all
atoms N and all translations of the unit cell L = (l1,l2,l3), and
the prime indicates that A �= B for L = 0. The novel feature
of the TS method is the application of the atoms-in-molecules
concept to the calculations of the static polarizabilities αTS

A and
the dispersion coefficients CTS

6AA. In particular, αTS
A and CTS

6AA

are computed by rescaling of the corresponding quantities
calculated for free atoms based on the proportionality between
atomic volumes and polarizabilities, i.e.,

αTS
A = V eff

A

V free
A

αfree
A , (2)

where V eff
A

V free
A

is the ratio between the effective volume occupied

by the atom in a molecular or solid environment (V eff) and the
volume of free noninteracting atom (V free). An analogous pro-
portionality holds between the effective dispersion coefficients
of the free atoms and the atoms in molecules:

CTS
6AA =

(
V eff

A

V free
A

)2

Cfree
6AA, (3)

which can be rationalized on the basis of the well-known
London dispersion formula.

The atomic volumes are estimated using the Hirshfeld
partitioning of the all-electron density:

V eff
A

V free
A

=
∫

r3wA(r)n(r)d3r∫
r3nfree

A (r)d3r
, (4)

where nfree
A (r) is the spherically averaged electron density of

the neutral free atomic species A. The Hirshfeld weight wA(r)

is defined with respect to these free atomic densities

wA(r) = nfree
A (r)∑

B nfree
B (r)

; (5)

the summation is over all atoms present in the system.
We remark that the effective volume formula, including an
r3 radial weighting, suggested originally by Johnson and
Becke to rescale polarizabilities,39 was recently rationalized40

within the framework of the statistical theory of atoms. The
combination rule to define the strength of the dipole-dipole
dispersion interaction between unlike species is

C6AB = 2C6AC6B[
αB

αA
C6A + αA

αB
C6B

] . (6)

As in the D2 method of Grimme,16 a Fermi-type damping
function is used to eliminate spurious interactions at too short
distances (note that dispersion interactions are defined only
between nonoverlapping electron densities):

fdamp(rAB,L) = 1

1 + exp
[ − d

(
rAB,L

sRReff
AB

− 1
)] . (7)

The parameter d is fixed at 20, while the scaling coefficient
sR is specific for the choice of the exchange-correlation
functional used in the DFT calculations. In this study we use
the value of sR = 0.94 that has been found to be optimal41

for calculations based on the PBE functional.42 The parameter
Reff

AB corresponds to the sum of the atom-in-molecule vdW
radii:

Reff
AB = Reff

A + Reff
B , (8)

which are computed by rescaling the free-atom vdW radii
Rfree:

Reff
A =

(
αTS

A

αfree
A

) 1
3

Rfree
A . (9)

While the values of Rfree are quite well defined for the
rare-gas atoms as one half of the separation between the atoms
in a relaxed dimer (the atoms in the rare-gas dimers interact
exclusively via dispersion and repulsive interactions), for other
elements the choice of this parameter is a bit more problematic.
The solution proposed by Tkatchenko and Scheffler22 for any
other element consists in taking the value of Rfree

A as the radius
for which the electron density of the free atom is equal to
the density at half of the equilibrium distance in a dimer of
the noble-gas atom from the same row of the periodic table
as the element under consideration. For our calculations, the
free-atom parameters kindly provided by the authors of Ref. 22
have been used.43

Recently, Tkatchenko et al.32 proposed a computationally
efficient way to account for electrodynamic response effects,
in particular the interaction of atoms with the dynamic electric
field due to the surrounding polarizable atoms. In this method,
termed TS + SCS, the frequency-dependent screened polar-
izability [αSCS

A (iω)] is obtained by solving the self-consistent
screening equation:

αSCS
A (iω) = αTS

A (iω) − αTS
A (iω)

∑
A �=B

τA,BαSCS
B (iω), (10)
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where τA,B is the dipole interaction tensor [see Eq. (6) in the
Supplemental Material] and αTS

A (iω) is the effective frequency-
dependent polarizability, approximated by

αTS
A (iω) = αTS

A

1 + (ω/ωA)2 . (11)

The characteristic mean excitation frequency ωA is com-
puted by the relationship

ωA = 4

3

CTS
6AA(

αTS
A

)2 (12)

from the static polarizability αTS
A and the dispersion interaction

coefficient CTS
6AA defined in Eqs. (2) and (3), respectively. The

dispersion energy is computed from the same equation as in the
original TS method [Eq. (1)] but with parameters C6AA, αA, and
RA calculated using the frequency-dependent polarizability
αSCS

A (iω). The dispersion coefficients are computed from the
Casimir-Polder integral:44

C6AA = 3

π

∫ ∞

0
αSCS

A (iω)αSCS
A (iω)dω, (13)

and the van der Waals radii are obtained by rescaling the TS
radii as

RSCS
A =

(
αSCS

A

αTS
A

)1/3

RTS
A . (14)

As in the TS method, the value of the scaling parameter sR

[see Eq. (7)] has been optimized using the S22 training set
of molecules.45 In this work, the scaling parameter sR = 0.97
optimized for the PBE functional43 has been used.

For the optimizations of the unit cell volume and shape
as well as of the atomic positions, we have computed the
contributions of the dispersion interactions to the energy
gradients and to the stress tensor. Because the C6 parameter

and the damping function depend on the volume ratio V eff
A

V free
A

, and

hence implicitly on the charge density n(r) of the interacting
system, the exact expression for energy gradient should involve
the indirect derivative of the dispersion contribution, ∂Edisp

∂n(r)
∂n(r)
∂x

.

In our numerical tests we found that the quantity V eff
A

V free
A

and

therefore also Edisp changes only very slowly under a variation
of the charge density. Hence the contribution of this term to
energy gradients and stress tensor elements can be neglected.
In the TS + SCS method, the explicit dependence of the
polarizability matrix on the atomic coordinates gives rise to
rather complex expressions for gradients and stress tensor.
In our preliminary tests we found that this contribution is
significant and cannot be neglected in structural optimizations.
The importance of this correction can be illustrated by a simple
numerical example. Let us consider a halide crystal (e.g.,
NaCl) with a simple cubic lattice. Due to symmetry, the cell
volume is the only parameter to be optimized. The internal
pressure pint (defined as one third of the trace of the stress
tensor) can be considered as a generalized force that should
vanish in equilibrium. In Fig. 1, the energy versus volume
and internal pressure versus volume curves are displayed
for calculations performed with and without correction. The
volume corresponding to the energy minimum is V0 = 168 Å

3
.
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FIG. 1. (Color online) Energy versus volume (above) and internal
pressure versus volume (below) curves computed for NaCl using the
TS + SCS method with and without gradient corrections. The vertical
dashed line marks the minimum in the total energy which must
coincide with the volume for which the internal pressure vanishes.

As can be seen, if the uncorrected stress tensor is used in
the structural optimization; the predicted volume, i.e., the
value for which the uncorrected pint is zero, is V0 = 147 Å

3
.

The error due to the neglect of the structure dependence of
the polarizability matrix in the evaluation of the stresses is
as large as 20 Å3 for the equilibrium volume. In calculations
with the correct stress tensor, the volume for which the internal
pressure pint vanishes coincides with V0, the position of the
energy minimum. Hence the dependence of the polarizability
matrix on atomic positions must be taken into account to
achieve reliable structural predictions using the TS + SCS
method. Based on earlier work of Ángyán et al.46 we derived
analytical formulas for energy gradients and stress tensor,
which we report together with details of their derivation in
the Supplemental Material.47

All calculations presented in this work have been performed
using the VASP code34–38 performing a variational solution
of the Kohn-Sham equations of DFT in a plane-wave basis.
The exchange-correlation energy was determined using the
Perdew-Burke-Ernzerhof (PBE) functional.42 Atomic coor-
dinates and the shape of the unit cell at fixed volume have
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TABLE I. Summary of simulation parameters used in this study.

System k-point mesh Plane-wave cutoff (eV)

Rare gas solids 8 × 8 × 8 1000
α-N2 8 × 8 × 8 1000
α-N2 8 × 8 × 8 1000
SO2 5 × 5 × 5 600
Benzene 2 × 2 × 2 800
Naphthalene 2 × 2 × 2 1000
Cytosine 1 × 1 × 3 800
Graphite 16 × 16 × 8 1000
h-BN 16 × 16 × 8 1500
V2O5 4 × 8 × 8 1500
MoS2, NbSe2 8 × 8 × 8 1500
Se, Te 6 × 6 × 6 800
Cellulose I-β 2 × 1 × 1 800
NaCl, KI 16 × 16 × 16 500
Ni 19 × 19 × 19 600
Zn, Cd 25 × 25 × 14 1500

been optimized simultaneously using an automated relaxation
procedure, while equilibrium volumes and bulk moduli have
been found by fitting the energies at different volumes to a
Murnaghan equation of state.48 Important simulation details
such as the number of k-points and the plane-wave cutoff
that have been used in our calculations are summarized in
Table I. As a test of our implementation of the TS and
TS + SCS methods, calculations of isotropic C6 coefficients
for a set of 1225 atomic and molecular dimers (for details see
Ref. 22) have been performed. The computed values for the
mean absolute relative error with respect to the reference data
are 5.3% for TS and 6.2% for TS + SCS. These results are very
close to the values of 5.5% and 6.3% reported by Tkatchenko
et al.32 with TS and TS + SCS, respectively.

III. RESULTS AND DISCUSSIONS

A. Noble-gas solids

Noble-gas solids are prototypical van der Waals com-
pounds, therefore they are the most obvious candidates
for testing and benchmarking any correction scheme for
dispersion forces. These systems represent an interesting test
of the TS method because the charge distribution of an
atom in a noble-gas crystal is almost identical to that of

the noninteracting free atom and the volume ratio V eff
A

V free
A

is

therefore close to unity. Consequently, the C6 coefficients,
polarizabilities, and van der Waals radii used in the TS method
are basically identical to the free-atomic values.

Our computational results are summarized in Table II and
compared with some previous calculations and the available
experimental data. In the case of neon, our computed equilib-
rium lattice parameter is found to be in reasonable agreement
with experiment (4.44 Å versus 4.46 Å) and the corresponding
cohesive energy of 42 meV/atom is better than the PBE-D2
result (58 meV/atom). Nevertheless, this value is still too large
in comparison with experiment (20 meV/atom). Obviously,
this is a consequence of the fact that already DFT calculations
with the PBE functional predict an attractive interaction
between the Ne atoms, with a cohesive energy similar to

TABLE II. Computed equilibrium lattice constants, bulk moduli,
and cohesive energies for face-centered cubic noble-gas crystals
compared with results from previous theoretical studies and with
available experimental data.

�Ecoh

Element Method a (Å) B0 (GPa) (meV/atom) Refs.

Ne Expt. 4.464 1.17 20 96,97
RPA 4.5 n.a. 17 2
PBE 4.56 1 20 63
D2 4.23 4 58 63
TS 4.42 2.9 43 28
TS 4.44 2.8 42

TS + SCS 4.49 2.6 40

Ar Expt. 5.300 2.7 80 98,99
RPA 5.3 n.a. 83 2
PBE 5.92 <1 22 63
D2 5.38 3 88 63
TS 5.51 2.7 83 28
TS 5.52 3.1 85

TS + SCS 5.60 2.8 80

Kr Expt. 5.646 3.6 116 99–101
RPA 5.7 n.a. 112 2
PBE 6.49 <1 25 63
D2 5.64 4 145 63
TS 5.90 2.6 97 28
TS 5.92 3.1 106

TS + SCS 6.01 2.9 99

Xe Expt. 6.132 3.6 164 99,102,103
PBE 7.01 <1 28 63
D2 6.06 6 218 63
TS 6.37 2.4 117 28
TS 6.38 3.2 140

TS + SCS 6.48 3.0 132

the experimental value. Hence the extra contribution from TS
dispersion correction necessarily leads to an overestimation of
the computed cohesive energy. For the other three noble-gas
elements, the TS method overestimates equilibrium lattice
parameters, but the bulk moduli and cohesive energies are
reproduced reasonably well (see Table II). A more detailed
analysis of the performance of TS method for noble-gas solids,
including a discussion of the role of the zero-point energy, has
been presented recently by Al-Saidi et al..28 We note that the
small differences in the numerical results reported here and
those of Al-Saidi et al.28 (see Table II) are most likely due to
the use of slightly different reference data for the free atoms.

As expected, the screening effect included in the TS +
SCS method is small for the noble-gas solids. The values of
the C6 coefficients are almost identical to those determined
with the TS approach. The only reason why the TS + SCS
results (reported in Table II) differ from the TS values is the
different value of the scaling parameter sR (see Sec. II), fit to
the interaction energies computed for the S22 reference set45

using high-level quantum-chemical techniques.
Although the approximate dispersion-correction schemes

discussed in this study provide a better description of the
structure and energetics of noble-gas solids than standard
PBE calculations, these methods do not reach an accuracy
comparable to that of the random phase approximation (RPA),
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TABLE III. Computed and experimental lattice parameter (a),
length of bond between nitrogen atoms in the N2 molecule (rN−N),
bulk modulus (B0), and cohesive energy (�Ecoh) for α-N2.

Method a (Å) rN−N (Å) B0 (GPa) �Ecoh (kJ/mol) Refs.

Expt. 5.649 1.066 n.a. 7.6 49,50
PBE 6.19 1.112 <1 2.6 63
D2 5.65 1.112 2.4 8.5 63
TS 5.65 1.112 3.0 9.4 28
TS 5.66 1.112 3.3 9.5
TS + SCS 5.72 1.112 2.8 8.4

which reproduces both equilibrium lattice parameters and
binding energies2 very well, but obviously at a much higher
computational effort.

B. Molecular solids

Molecular solids represent a class of materials whose
calculated cohesive and structural properties depend very
critically on a correct description of dispersion interactions.
The structural details of these systems are determined by a
delicate balance between repulsive and dispersive interactions,
as well as electrostatic and induction forces. One should
keep in mind that even in case of apolar molecular subunits
(like N2 or benzene) electrostatic forces (in these examples
quadrupole-quadrupole interactions) compete with dispersion
forces. Therefore the accurate description of the charge
distribution by the underlying DFT method (in our case PBE)
is an important aspect in an analysis of the results.

In this section, calculations are described for α-N2 as an
example of crystal built by nonpolar molecules and crystalline
SO2 as a prototype of a molecular crystal consisting of
polar molecules. In addition, we performed calculations for
crystalline benzene and naphthalene, i.e., for crystals built by
molecules with no permanent dipole but significant quadrupole
moments. Finally, the performance of the TS and TS + SCS
methods is examined on crystalline cytosine as an example of
a crystal formed by complex organic molecules. We note that
DFT calculations with the PBE functional fail badly in the
description of all these structures. The computational results
are compiled in Tables III to VII; for the sake of brevity, the
PBE results will not be discussed in the text.

1. α-N2

The α phase of N2 crystallizes in a simple cubic structure
with a lattice parameter of 5.694 Å.49 The N2 molecules are
held together by rather weak interactions; the measured heat

of sublimation (7.6 kJ/mol50) can serve as an estimate of the
cohesive energy. In Table III the results obtained using different
methods are compared with experimental data. The TS method
performs rather well: the computed lattice parameter a differs
by less than 1% from the experimental value and the cohesive
energy is only 1.8 kJ/mol larger than the experimentally
measured heat of sublimation. The length of the N–N bond
is determined by the exchange-correlation functional used in
the DFT calculations and is independent of the dispersion
corrections. In our best knowledge, the experimental bulk
modulus is not available but the value computed using the
TS method (B0 = 3.3 GPa) is larger than the PBE-D2 value
(B0 = 2.4 GPa). The screening effects play only a minor role
for crystalline α-N2. The lattice parameter computed using
TS + SCS is larger only by 0.03 Å, the cohesive energy
is lower by 1 kJ/mol, and the bulk modulus is reduced by
0.5 GPa compared to the TS method.

2. Sulfur dioxide

Crystalline sulfur dioxide is an example of a simple crystal
built of polar molecules, with a dipole moment of 1.63 D per
isolated SO2 molecule.51 Sulfur dioxide crystallizes in space
group Aba, the unit cell is orthorhombic and contains four
SO2 molecules (Z = 4).52 Experimental and theoretical data
are collected in Table IV. Our results show that the dispersion-
correction schemes significantly improve the predictions of
lattice geometries and cohesive energies compared to the
DFT results. The intramolecular parameters (S–O bond length
and O–S–O bond angle), on the other hand, are controlled
mainly by the exchange-correlation functional and change only
slightly if different dispersion corrections are added. Direct
comparison of the TS and D2 correction schemes shows that
the semi-empirical D2 method performs better in this case:
the deviation of the lattice parameters from experiment is
only about half the error with the TS method. The TS + SCS
results differ from the TS values only moderately: the lattice
parameters b and c computed using TS + SCS are larger by
0.01 Å and 0.03 Å, respectively, while a is smaller than the
value obtained with the TS method by 0.03 Å. The bulk
modulus and the cohesive energy are almost unaffected by
screening effects.

3. Benzene and naphthalene

The most stable low-temperature–low-pressure phase I of
benzene is orthorhombic and belongs to the space group
Pbca. The molecules are held together mainly by electrostatic
quadrupole-quadrupole interactions and dispersive forces.

TABLE IV. Experimental and theoretical equilibrium volume, lattice constants, intramolecular S–O distance, bulk modulus, and cohesive
energy for crystalline sulfur dioxide.

Method V (Å3) a (Å) b (Å) c (Å) rS−O (Å) αO−S−O (deg.) B0 (GPa) �Ecoh (kJ/mol) Refs.

Expt. 221.4 6.07 5.94 6.14 1.45 119 n.a. 29 52,104
PBE 268.9 6.41 6.20 6.77 1.451 117.6 2.8 17
D2 228.3 6.12 5.99 6.23 1.452 117.0 7.5 33
TS 238.0 6.21 6.02 6.36 1.451 117.1 5.8 35
TS + SCS 238.4 6.18 6.03 6.39 1.451 118.6 6.0 35

064110-5
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TABLE V. Calculated and experimental equilibrium volume, lattice parameters, bulk modulus, and cohesive energy for crystalline benzene.

Method V (Å3) a (Å) b (Å) c (Å) B0 (GPa) �Ecoh (kJ/mol) Refs.

Expt. 465.6 7.355 9.371 6.699 8 43–47 53,54,105
EXX/RPA 7.5 47 55
PBE 615.3 8.05 10.15 7.53 1 9.7 63
D2 420.3 7.09 9.07 6.54 10 55.7 63
TS 461.7 7.38 9.20 6.80 10 65.1 28
TS 456.6 7.29 9.15 6.84 10 66.4
TS + SCS 464.0 7.33 9.26 6.83 10 61.4

Computational results for benzene are presented in Table V.
For the lattice parameters the TS method provides clearly better
results than D2. Even for the most problematic parameter b

the discrepancy from experiment if strongly reduced from
0.3 Å (D2) to 0.17 Å (TS). However, while TS strongly
overestimates the cohesive energy of benzene (the computed
value is 18 kJ/mol higher than the heat of sublimation of
47 kJ/mol measured experimentally53), D2 leads to a smaller
error of about 9 kJ/mol. The bulk moduli of 10 GPa computed
using both the D2 and TS methods are reasonably close
to the measured value of 8 GPa.54 Taking into account the
screening effects (TS + SCS) leads to an improved lattice
geometry. In particular, the lattice parameter b increases by
0.11 Å reducing the error with respect to the experiment
to ∼0.1 Å. The value of cohesive energy is also improved,
�Ecoh decreases to ∼61 kJ/mol, which is still ∼14 kJ/mol
too large compared to the experimental estimate. Tkatchenko
et al. have shown32 that the cohesive energy is reduced
further if many-body (MB) effects are taken into account. The
method that includes both the SCS and MB effects predicts
�Ecoh = 55 kJ/mol, similar to the PBE-D2 value. However,
the calculation has been performed for the frozen experimental
benzene geometry and it is not clear if this result would remain
valid if a structural optimization were performed. We note
that the treatment of many-body effects is a general problem
of the correction schemes considered in this work. Although
the energy expressions are based on pairwise interactions
in both cases, some many-body effects are included in the
self-consistent screening (SCS) procedure. The high-level
RPA calculations of Lu et al.55 predict a cohesive energy of
47 kJ/mol and a bulk modulus of 8 kJ/mol, both in excellent
agreement with experiment.

Naphthalene crystallizes in a monoclinic structure;56 the
experimentally measured lattice parameters are a = 8.03 Å,
b = 5.89 Å, c = 8.57 Å, and β = 123.6◦.

The computed and experimental data are collected in
Table VI. As already pointed out by Al-Saidi et al.,28 the
TS method improves greatly over the D2 method as far as
the structure is concerned, but the predicted cohesive energy
is significantly overestimated: ∼100 kJ/mol (TS) versus a
measured sublimation heat of 70.4 kJ/mol.57 As for benzene,
TS + SCS leads to a slight reduction of the cohesive energy,
but the computed Ecoh = 93 kJ/mol is still too large compared
to experiment. All correction schemes considered in this study
have a tendency to overestimate the bulk modulus of the
naphthalene crystal and the screening seems to have only a
very small effect on the computed value of this property.

4. Cytosine

Cytosine is one of the four DNA bases and crystallizes in
the space group P 212121 (orthorhombic) with the following
cell parameters:58 a = 13.041 Å, b = 9.494 Å, c = 3.815 Å.
The cohesive energy can be estimated from a measured
heat of sublimation of 155.0 kJ/mol.59 As for all other
molecular crystals studied in this work, the inclusion of any
of the dispersion-correction schemes leads to much more
accurate structural and cohesive properties than simple DFT
calculations. As obvious from the computed data presented in
Table VII, the TS scheme predicts very reasonable values for
the lattice parameters, but overestimates the cohesive energy.
Inclusion of screening further improves the lattice geometry
and decreases the cohesive energy by ∼5 kJ/mol and the bulk
modulus by 4 GPa to values comparable with the D2 results.
However, the calculated cohesive energy is still more than
10 kJ/mol larger than the experimental value.

C. Layered materials and chain-like structures

The layered materials examined in this section constitute
an excellent test of transferability for the parameters of

TABLE VI. Calculated and experimental equilibrium volume, lattice parameters, bulk modulus, and cohesive energy for crystalline
naphthalene.

Method V (Å3) a (Å) b (Å) c (Å) β (deg.) B0 (GPa) �Ecoh (kJ/mol) Refs.

Expt. 337.6 8.03 5.89 8.57 123.6 6.7 70.4 56,57
PBE n.a 9.15 6.41 9.04 n.a. 1.3 8.6 28,106
D2 n.a. 7.81 5.85 8.50 n.a. 12 74.8 28
TS n.a. 8.01 5.90 8.62 n.a. 12 95.5 28
TS 340.8 8.03 5.93 8.64 124.1 12 99.6
TS + SCS 343.3 8.00 5.99 8.68 124.4 12 93.1
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TABLE VII. Computed and experimental equilibrium volume, lattice parameters, bulk modulus, and cohesive energy for crystalline
cytosine.

Method V (Å3) a (Å) b (Å) c (Å) B0 (GPa) �Ecoh (kJ/mol) Refs.

Expt. 472.3 13.041 9.494 3.815 n.a. 155.0 58,59
PBE 606.2 12.00 9.50 5.32 4 105.9 63
D2 445.6 12.93 9.46 3.64 14 162.5 63
TS 456.8 12.98 9.46 3.72 18 171.2 28
TS 458.6 13.02 9.44 3.73 19 172.4
TS + SCS 469.7 13.02 9.47 3.81 14 167.7

dispersion-correction schemes. Like for molecular crystals,
the dispersion interactions play a crucial role in stabilizing the
crystal structure of layered materials. Note however, that these
materials are chemically very different from the relatively
small molecular complexes included in the S22 test set45 used
to optimize the empirical parameter sR . As we shall see, in
spite of their different chemical nature the parameters derived
from the S22 set prove to be reasonably well transferable.

1. Graphite

Graphite crystallizes in a hexagonal lattice with lattice
parameters a = 2.46 Å and c = 6.71 Å.60 Although no direct
measurement of the interlayer binding energy (Ebind) has
been performed so far, some information on Ebind is available
from desorption experiments of polyaromatic molecules from
a graphite surface,61 leading to an estimated value of the
interlayer binding energy of 52 meV/atom. The measured
bulk modulus is 34–42 GPa.60,62

Graphite represents a prototype system for testing the
performance of different computational methods capable of
treating dispersion interactions, hence a vast amount of
computational data is available in the literature. We have shown
in our previous study63 that the D2 method underestimates the
lattice parameter c but yields a reasonable interlayer binding
energy (55 meV/atom). The van der Waals density functional

vdW-DF28 predicts a reasonable Ebind but overestimates c. Fi-
nally, the high-level RPA method64 predicts structure, binding
energy, and bulk modulus that are in excellent agreement with
experiment.

In Table VIII, the computational results are compared with
experimental data. Evidently, the parameter a determining the
distance between carbon atoms within the same layer depends
only on the choice of the exchange-correlation functional and
is almost unaffected by the dispersion corrections. The TS
method yields very reasonable estimate of the lattice parameter
c, but the interlayer binding energy is overestimated almost by
a factor of two (Ebind = 82 meV/atom). A similar result has
recently been reported by Hanke65 (Ebind = 85 meV/atom).
The computed bulk modulus is by ∼13 GPa too large compared
to experiment.62 The role of screening effect on the cohesion
of graphene layers in graphite is massive: as shown in
Fig. 2, the C6 dispersion coefficient changes significantly with
the interlayer distance if screening is taken into account, from
∼25 a.u. for d = 3.35 Å (the value found in stable graphite)
to ∼120 a.u. for d = 30 Å. The TS method, on the other
hand, predicts only a very small variation of C6 with d.
The difference between CTS

6CC and CTS+SCS
6CC increases with in-

creasing interlayer separation. TS + SCS predicts an interlayer
binding energy reduced by ∼27 meV/atom compared to TS.
The resulting value of Ebind = 55 meV/atom is in reasonable

TABLE VIII. Computed and experimental equilibrium lattice parameters, bulk moduli, and interlayer binding energy for graphite and
hexagonal boron nitride.

Compound Method a (Å) c (Å) B0 (GPa) �Ebind (meV/atom) Refs.

Graphite Expt. 2.462 6.707 34–42 44 60–62,107
RPA 6.68 36 48 64
PBE 2.47 8.84 1 1 63
D2 2.46 6.45 38 55 63

vdW-DF2 6.96 53 108
TS 2.46 6.65 56 n.a. 28
TS 2.46 6.68 59 82

TS + SCS 2.46 6.75 43 55

h-BN Expt. 2.503 6.661 37 n.a. 68,69
RPA n.a. 6.60 n.a. 39 1,67
PBE No binding No binding No binding No binding 63
D2 2.51 6.17 56 77 63
TS n.a. 6.66 86 24
TS 2.51 6.71 37 n.a. 28
TS 2.50 6.64 36 87

TS + SCS 2.50 6.67 34 73
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FIG. 2. (Color online) Dispersion coefficient of carbon in graphite
computed using PBE-TS and PBE-TS + SCS as a function of
interlayer separation d .

agreement with experiment and almost identical to the D2
value. A similar tendency has been reported very recently in
the work of Dappe et al.,66 who used a local-orbital DFT com-
bined with second-order many-body perturbation theory and
found that additional inclusion of dynamical screening effects
reduced the dispersion interaction between graphene layers
by 27 meV/atom. In spite of this improvement, the cohesion
energy reported in Ref. 66 remained still too large. The bulk
modulus of 43 GPa computed using TS + SCS compares well
with the available experimental value. Altogether, long-range
screening effects have only a modest influence on the lattice
geometry of graphite, but they are very important to achieve
an interlayer binding energy and bulk modulus in agreement
with experiment.

2. Hexagonal boron nitride

Hexagonal boron nitride (h-BN) is a layered material
structurally similar to graphite, but its physical properties are
markedly different: while graphite is a semimetal, h-BN is a
large-band-gap insulator. The two materials differ also in the
stacking sequence of the hexagonal layer: graphite adopts an
AB stacking sequence with the atoms of the B layer located
above the center of the hexagonal rings of the A layer, while
for h-BN the layers are stacked exactly on top of each other,
with each boron atom binding to two nitrogen atoms in the
two neighboring layers, and vice versa (AA′ stacking). The
small number of atoms per cell has enabled calculations
in the random phase approximation (RPA): the calculated1

out-of-plane lattice parameter was found to be 6.60 Å; within
1% of the experimental value. The corresponding theoretical
interlayer binding energy (39 meV/atom) was published only
recently.67

Our computational results are presented in Table VIII
together with some previous theoretical data and the available
experimental values. As we noticed earlier63 the DFT calcu-
lations with the PBE functional do not even predict binding
between the layers. The D2 method gives a too small interlayer
distance (or c lattice parameter) and the binding energy
(77 meV/atom) is overestimated with respect to the RPA value.
The equilibrium geometries obtained with the TS or the TS +
SCS methods are in very good agreement with experiment:
a = 2.50 Å (TS and TS + SCS), c = 6.64 Å (TS), 6.67 Å
(TS + SCS), compared with experiment:68 a = 2.503 Å and
c = 6.661 Å. The calculated bulk moduli (36 GPa with TS
and 34 GPa with TS + SCS) are also in good agreement with
the experimental value of 37 GPa (Ref. 69). In comparison
to the RPA, both TS and TS + SCS strongly overestimate
the interlayer binding energy. Our computed TS values are in
good agreement with the results reported previously24,28 using
the same computational approach. The slight differences are
probably related to different computational setups and some
finer details of the implementation.

3. Vanadium pentoxide

Another layered material considered in our study is
vanadium pentoxide, V2O5, crystallizing in an orthorhombic
lattice with a = 11.51 Å, b = 3.56 Å, and c = 4.37 Å.70 The
experimental and computational results for V2O5 are compiled
in Table IX. In our previous PBE + D2 study63 we found
the a and c lattice parameters to be slightly overestimated
(see Table IX), while the b parameter was found to be too
short compared to experiment. The TS method predicts very
reasonable values for the parameters b and c (with errors of
less than ∼0.02 Å), while the value of a is still overestimated
by 0.16 Å. The self-consistent screening reduces the error
for a to 0.08 Å, while the error in the lattice parameter c is
increased to 0.14 Å. The inclusion of long-range screening also
leads to a reduction of the bulk modulus from 38 to 30 GPa,
which is much lower than the experimental value of 50 GPa.71

We note that the D2 method also predicts a much too low
bulk modulus (33 GPa).63 The V-O distances within the V2O5

layers are almost independent of the dispersion corrections (see
Table X), which lead to a strong reduction of the interlayer
spacing d. Screening leads to an enhanced value of d (com-
parable to the D2 result) in worse agreement with experiment
compared to the TS method.

TABLE IX. Calculated and experimental equilibrium volume, lattice parameters, and bulk modulus for V2O5.

Method V (Å3) a (Å) b (Å) b/a c (Å) c/a B0 (GPa) Refs.

Expt. 179.2 11.512 3.564 0.310 4.368 0.379 50 70,71
PBE 199.0 11.54 3.57 0.310 4.83 0.419 10
D2 183.7 11.64 3.53 0.303 4.47 0.384 33 63
TS n.a. 11.68 n.a. n.a. 4.35 0.372 38 28
TS 179.8 11.67 3.54 0.304 4.35 0.373 38
TS + SCS 186.2 11.59 3.56 0.307 4.51 0.389 30
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TABLE X. Interatomic distances between vanadium and oxygen
atoms and interlayer separation d in vanadium pentoxide. The
experimental values are from Ref. 70.

Expt. PBE D2 TS TS + SCS

V-O(1) (Å) 1.58 1.61 1.61 1.61 1.61
V-O(2) (Å) 1.78 1.78 1.79 1.78 1.79
V-O(3) (Å) 1.88, 2.02 1.88, 2.06 1.89, 2.04 1.87, 2.05 1.88,2.04
d (Å) 2.79 3.23 2.86 2.74 2.89

4. MoS2 and NbSe2

Molybdenum disulfide (MoS2) and niobium diselenide
(NbSe2) crystallize in layered structures with hexagonal
symmetry. The layers are bound to each other by dispersive
forces in such a way that cations (Mo or Nb) of a given layer
are above the anions (S or Se) of the nearest layers, and vice
versa. The band structure and density of states of isolated
layers of MoS2 and NbSe2 were presented recently,72 while
their binding was studied with several methods6,63,67 taking
into account van der Waals interactions. As experimental
reference for MoS2 we use measurements of Bronsema et al.73

(lattice parameters), Aksoy et al.74 (bulk modulus); while the
cohesive energy has been reported from the Handbook of
Chemistry and Physics (76th ed.) by Raybaud et al..75 For
NbSe2, only experimental structural data are available,76 while
experimental values for the bulk modulus and the cohesive
energy have not been reported. Our results are presented
in Table XI. As noticed earlier,63,67,77 the PBE functional
strongly overestimates the distance between the layers. The
PBE-D2 method cures part of the problem,63 albeit giving
still too large out-of-plane lattice parameters for both MoS2

and NbSe2. The opposite is true with the TS and TS + SCS
methods: the equilibrium cell parameters are found to be
smaller than the experimental values: for MoS2, the computed
values of c are 12.03 Å using the TS method and 12.01 Å
with the TS + SCS method (to compare with the experimental
value73 of 12.294 Å), and for NbSe2, c = 12.06 Å with the
TS method and c = 12.15 Å with the TS + SCS method (in
comparison with 12.482 Å from experiment76). For MoS2,
the values of bulk modulus obtained with TS (41 GPa) and
with the TS + SCS method (43 GPa) are found to be slightly

larger than the corresponding PBE-D2 value (39 GPa), leading
to a bit better agreement with experiment74 (53.4 GPa). For
NbSe2, the TS and TS + SCS values of bulk modulus (45 GPa
and 54 GPa, respectively) are again close to B0 obtained
with PBE-D2, although the difference is larger than that for
MoS2. All dispersion-corrected schemes examined in this
study tend to overestimate cohesive energies: the computed
values are 5.37 eV/atom (PBE-D2), 5.33 eV/atom (TS), and
5.31 eV/atom (TS + SCS), while the experimental value75 is
5.18 eV/atom. For NbSe2, both the TS and TS + SCS methods
predict a value of 5.29 eV/atom, which is very close to the
PBE-D2 value of 5.27 eV/atom. As to our knowledge, the ex-
perimental value of cohesive energy for NbSe2 is not available.

D. Materials with chain-like structures

In this section we describe the calculations performed on
systems consisting of covalently bonded chains of atoms or
molecules where dispersion interactions are important for
providing interchain cohesion. The γ phases of selenium
and tellurium consist of helical chains of atoms interacting
with each other via van der Waals forces. The β phase of
cellulose I is a more complex material: here the dispersion
interactions are important for the stacking of two-dimensional
sheets of hydrogen-bonded D-glucopyranosyl chains. Hence a
reasonably accurate description of three types of interactions:
covalent bonds, hydrogen bonds, and dispersion interactions, is
necessary for the correct prediction of structural and cohesive
properties.

1. Selenium and tellurium

The γ phases of selenium and tellurium crystallize in a
hexagonal lattice with space group P 3121. The helical chains
forming the crystal structure are characterized by the internal
parameter u related to the radius q of the helix via the
relation78 u = (q/a). In Tables XII and XIII, the properties
calculated with the TS and TS + SCS methods are presented
and compared with available experimental data78 and with
other calculations.63 PBE calculations underestimate both
lattice parameters and produce a much too low bulk modulus
for Se, but lead to quite good agreement with experiment
for Te. Dispersion corrections reduce the lattice parameter

TABLE XI. Computed and experimental structural parameters, bulk moduli, and cohesive energies for MoS2 and NbSe2 (space group
P 63/mmc).

Compound Method V (Å3) a (Å) c (Å) c/a z B0 (GPa) �Ecoh (eV/atom)

MoS2 Expt73 106.3 3.160 12.294 3.891 0.121 5374 5.1875

PBE63 128.8 3.18 14.68 4.616 0.143 2 5.12
PBE + D263 109.4 3.19 12.42 3.893 0.125 39 5.37

TS 103.9 3.16 12.03 3.81 0.120 41 5.33
TS + SCS 104.0 3.16 12.01 3.79 0.119 43 5.31

NbSe2 Expt76 127.9 3.440 12.482 3.628 0.116
PBE63 145.0 3.49 13.78 3.948 0.128 6 4.95

PBE + D263 132.6 3.46 12.76 3.688 0.118 42 5.27
TS 124.4 3.45 12.06 3.496 0.111 45 5.29

TS + SCS 125.4 3.45 12.15 3.518 0.111 54 5.29
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TABLE XII. Experimental and computed equilibrium volume, lattice constants, internal parameter u, and bulk modulus for selenium and
tellurium in the γ phase.

Element Method V (Å3) a (Å) c (Å) c/a u B0 (GPa) Refs.

Se Expt. 81.9 4.368 4.958 1.135 0.225 15 78
PBE 89.3 4.52 5.04 1.115 0.219 4 63
D2 80.5 4.27 5.10 1.194 0.232 8 63
TS 78.8 4.22 5.11 1.212 0.237 16

TS + SCS 79.6 4.24 5.11 1.206 0.235 14

Te Expt. 101.7 4.451 5.926 1.331 0.263 19 78
PBE 104.8 4.50 5.96 1.324 0.270 18 63
D2 98.1 4.33 6.04 1.395 0.277 23 63
TS 100.2 4.42 5.93 1.341 0.278 28

TS + SCS 100.7 4.42 5.95 1.345 0.277 26

a and increase c, improving the agreement of the calculated
atomic volume for both elements. The c/a ratio is strongly
increased by the dispersion corrections for Se, but less for
Te. A relevant structural parameter is the ratio between the
interchain and intrachain distances between the atoms, d2/d1

(see Table XIII). DFT calculations yield a lower d2/d1 ratio
than experiment, indicating that the strength of the dispersion
forces is overestimated. The difference is very significant
for Se, and smaller for Te. Dispersion corrections lead to a
further slight reduction of d2/d1. The TS method does not
perform significantly better than the D2 method: it predicts
better structural parameters for Te and a more accurate bulk
modulus for Se, but D2 does better for the crystal structure of
Se and the bulk modulus of Te. Long-range screening affects
the structural parameters only moderately, the difference with
respect to the experimental data is only slightly lower than
with the TS method. The effect of screening is most obvious
for the bulk modulus that is reduced by ∼2 GPa compared to
PBE-TS improving slightly the agreement with experiment,
which is very good for Se but rather modest for Te.

2. Cellulose I-β

Cellulose I-β crystallizes in the space group P1121;
the crystallographic unit cell is monoclinic (a = 7.64 Å,

TABLE XIII. Experimental and calculated values of intrachain
(d1) and interchain distances (d2) and bond angle (θ ) for selenium
and tellurium.

Element Method d1 (Å) d2 (Å) d2/d1 θ (deg.) Refs.

Se Expt. 2.37 3.44 1.45 103.2 78
PBE 2.40 3.57 1.386 103.5 63
D2 2.42 3.37 1.392 104.0 63
TS 2.43 3.32 1.366 103.8

TS + SCS 2.43 3.33 1.370 103.8

Te Expt. 2.83 3.49 1.23 103.3 78
PBE 2.89 3.50 1.211 101.9 63
D2 2.89 3.40 1.176 103.2 63
TS 2.90 3.42 1.179 101.2

TS + SCS 2.90 3.42 1.179 101.3

b = 8.18 Å, c = 10.37 Å, γ = 96.5◦), and it contains two
disaccharide units (Z = 2). Sheets formed by H-bonded D-
glucopyranosyl chains are stacked perpendicular to the bc

plane, the lattice vector a is therefore the most sensitive to the
description of dispersion interactions. Reliable descriptions of
interactions between D-glucopyranosyl chains in cellulose are
important not only for correct structural predictions but are
also prerequisite for understanding the thermal behavior and
for identification of possible transition mechanisms between
different phases of this complex material.79 In Table XIV,
available experimental and theoretical lattice parameters and
bulk moduli are compared. In comparison to uncorrected DFT,
which, due to the neglect of dispersion forces, leads to a strong
overestimation of the lattice parameter a and of the volume, the
D2 and TS methods lead to significantly improved structural
properties: both methods predict very similar lengths of lattice
vectors, while the TS method gives a slightly better value of
lattice angle γ (96.4◦) than the D2 method (96.8◦). Inclusion
of long-range screening in this case leads to a somewhat worse
agreement with experimental data than with the TS method.
The most significant difference is the increase of lattice angle γ

to 97.5◦, which is 1◦ larger that the corresponding experimental
value. All three dispersion-correction methods considered in
this study predict similar values for bulk modulus: 16 GPa
(D2), 19 GPa (TS), and 18 GPa (TS + SCS). The experimental
value for B0 is not available.

E. Ionic crystals

Although van der Waals forces are usually not considered
as important for the cohesive and structural properties of
ionic crystals, the results of a recent theoretical study of
Zhang et al.80 indicate the opposite: inclusion of dispersion
interactions in DFT calculations has been shown to lead to an
overall improvement of the cohesive properties of ionic (NaCl,
MgO) and semiconducting (Si, Ge, GaAs) solids. Long-range
screening has been identified as an important factor affecting
the polarizability of atoms in solids.80 As discussed in the
work of Ehrlich et al.,81 the dispersion coefficients of atoms in
solids depend strongly on the degree of covalency and on the
oxidation state.

In this section we discuss sodium chloride (NaCl) and
potassium iodide (KI) as examples for ionic materials. Both
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TABLE XIV. Experimental and computed equilibrium volumes, lattice parameters, and bulk modulus of crystalline cellulose I-β.

Method V (Å3) a (Å) b (Å) c (Å) γ (deg.) B0 (GPa) Refs.

Expt. 658.3 7.64 8.18 10.37 96.5 n.a. 109
PBE 744.9 8.70 8.23 10.46 95.5 6 63
D2 642.5 7.65 8.14 10.39 96.8 16 63
TS 642.8 7.63 8.14 10.41 96.4 19
TS + SCS 646.3 7.68 8.15 10.42 97.5 18

compounds crystallize in a simple cubic structure in which
the lattice sites are occupied alternatingly by cations (alkali
metals) and anions (halogen) along the three lattice directions.
The computed results are compared with experiment in
Table XV. DFT calculations lead to reasonably accurate values
for lattice constant, bulk modulus, and cohesive energy for both
ionic crystals, albeit the lattice constant for KI is somewhat too
large. Interestingly, including dispersion interactions using the
D2 method improves the lattice constant and cohesive energy:
the error for a is reduced from 0.07 Å (NaCl) and 0.12 Å
(KI) obtained using DFT to only 0.03 Å (NaCl) and −0.02 Å
(KI) and the error for computed cohesive energies decreases
from the DFT values of −0.14 eV/atom (NaCl and KI) to
0.05 eV/atom (NaCl) and 0.12 eV/atom (KI). On the other
hand, D2 overestimates bulk modulus by 8 GPa for NaCl
and by 4 GPa for KI. The TS method strongly overestimates
the strength of dispersion forces, leading to too high cohesive
energies (the error with respect to experimental data being 0.66
eV/atom for NaCl and 0.67 eV/atom for KI) and bulk moduli
(84 GPa for NaCl, 22 GPa for KI) and strongly underestimates
the lattice parameters (a = 5.34 Å for NaCl and 6.29 Å for
KI). Self-consistent screening has a dramatic influence for
ionic crystals: the overestimation of cohesive energy and bulk
modulus is significantly reduced and the lattice constants are
increased (see Table XV). This result is consistent with the
finding of Zhang et al.80 who showed in their theoretical
study that long-range electrostatic screening strongly affects
the polarizability of atoms in solids. The absolute value of the
errors for TS + SCS is comparable with that for DFT, but in
the opposite direction. In conclusion, for alkali-metal halides
the semi-empirical D2 method leads to better agreement with
experiment than the TS or the TS + SCS methods.

TABLE XV. Experimentally measured and computed lattice
parameters, bulk moduli, and cohesive energies for NaCl and KI.

Compound Method a (Å) B0 (GPa) Ecoh (eV/atom) Refs.

NaCl Expt. 5.63 24 3.31 91,110,111
PBE 5.70 24 3.17 63
D2 5.66 32 3.36 63
TS 5.34 84 3.97

TS + SCS 5.53 33 3.58

KI Expt. 7.07 12 2.72 91,112,113
PBE 7.19 11 2.58
D2 7.05 16 2.84
TS 6.29 22 3.39

TS + SCS 7.06 14 2.97

F. Metals

As has been shown earlier in model calculations, the high
mobility of electrons in metals leads to strong screening
effects, strongly reducing the interaction of fluctuating dipoles.
Nevertheless, several examples of non-negligible London
dispersion effects in metals have been reported. Tao et al.82

showed that for the heavier alkali metals, dispersion forces
may reduce the lattice parameter by as much as 0.1 Å. The role
of dispersion forces on the structural and cohesive properties
of the divalent post-transition (group 12) metals such as Zn,
Cd, and Hg has been discussed by several authors.83–85 We
note that a recent attempt to use dispersion-corrected DFT
(PBE-D2) failed to predict correctly the relative stability of the
polymorphs of mercury.86 Strictly speaking, the application of
any atoms-in-molecules–based concept to metallic systems is
very problematic due to the highly delocalized nature of the
electrons. Nevertheless, several computational studies have
been already published where the TS method was applied
to study the interactions of organic molecules with surfaces
of metals.29,87,88 Although we are aware of the conceptual
deficiency, we find it important to examine numerically the
performance of different variants of the TS method for this
class of materials, too.

1. Nickel

Nickel crystallizes in a face-centered cubic structure with
the lattice parameter a = 3.52 Å.89 The measured bulk mod-
ulus and cohesive energy are 190 GPa90 and 4.35 eV/atom,91

respectively. Experimental and computed properties of Ni are
compiled in Table XVI. The values of a and B0 predicted
by DFT calculations with the PBE functional are in very
good agreement with experiment, only the cohesive energy is
overestimated by 0.52 eV. All dispersion-corrected schemes
examined in this study underestimate the value of lattice
parameter and overestimate bulk modulus and cohesive energy,
the TS method showing the worst performance in this case.
Long-range screening improves results significantly compared
with the TS method; in particular, the error in a is reduced

TABLE XVI. Experimental and theoretical lattice constants, bulk
modulus, and cohesive energy for face-centered cubic nickel.

Method a (Å) B0 (GPa) Ecoh (eV/atom) Refs.

Expt. 3.52 190 4.35 89–91
PBE 3.52 191 4.87
D2 3.46 214 5.35
TS 3.44 267 5.77
TS + SCS 3.49 209 5.40
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TABLE XVII. Experimental and computed equilibrium volume, lattice constants, axial ratio, bulk modulus, and cohesive energy for zinc
and cadmium. CCI stands for coupled cluster calculations with the method of increments.

Element Method V (Å3) a (Å) c (Å) c/a B0 (GPa) Ecoh(eV/atom) Refs.

Zn Expt. 29.59 2.654 4.851 1.83 80 1.35 83,84,92
PBE 31.1 2.65 5.12 1.93 71 1.00 84
CCI 29.3 2.61 4.98 1.91 1.35 92
PBE 30.55 2.66 5.00 1.88 54 1.10
D2 31.25 2.59 5.37 2.07 60 1.45
TS 28.14 2.62 4.75 1.81 78 1.51

TS + SCS 29.51 2.63 4.91 1.86 60 1.38

Cd Expt. 43.22 2.98 5.62 1.89 62 1.19 84,85
PBE 45.0 3.02 5.69 1.88 53 0.69 85
CCI 41.4 2.92 5.61 1.92 1.19 85
PBE 46.02 3.04 5.76 1.89 37 0.73
D2 48.27 3.21 5.42 1.69 39 1.36
TS 42.15 2.97 5.51 1.85 50 1.13

TS + SCS 45.08 2.96 5.93 2.00 25 1.06

from 0.08 to 0.03 Å and the error in B0 is decreased from 76
to 18 GPa. However, the error is still significantly larger than
with plain DFT.

2. Zinc and cadmium

The crystal structures of zinc and cadmium have recently
excited a lot of interest. Both metals crystallize in a hexag-
onal closed-packed structure, but the axial ratio c/a differs
significantly from the ideal value of 1.63.83 Moreover, it
has been claimed that calculations at the GGA level84 fail
to reproduce accurately the experimental axial ratio values
and only methods accounting for electron correlations at the
level of coupled cluster theory85,92 are in reasonable agreement
with experiment. The importance of an accurate description of
correlation for the properties of metallic Zn and Cd was also
discussed in Ref. 93.

Our computed results are presented in Table XVII. As
reported before,84 PBE calculations tend to overestimate the
axial ratio of Zn and Cd. However, the discrepancy with
respect to experiment for Zn is not as large as reported before,
for Cd we even note very good agreement with experiment.
The calculated lattice parameters for Zn are a = 2.66 Å and
c = 5.00 Å (experiment: a = 2.654 Å, c = 4.851 Å). For Cd,
the values are a = 3.04 Å, c = 5.76 Å (PBE), and a = 2.98 Å,
c = 5.62 Å (experiment). PBE predicts too low values for the
bulk modulus: 54 GPa (Zn) and 37 GPa (Cd), to be compared
with the experimental results of 80 GPa (Zn) and 62 GPa
(Cd). The cohesive energies are significantly underestimated:
−1.1 eV (PBE) versus −1.35 eV (experiment) for Zn, and
−0.73 eV versus −1.19 eV for Cd.

Dispersion corrections based on the semi-empirical D2
method do not clearly improve the results. The computed
equilibrium volumes are even larger than predicted by PBE;
the cohesive energies are now overestimated. The axial ratio
predicted with the D2 correction method is far too large
for Zn and far too small for Cd. The TS and TS + SCS
methods perform surprisingly well for the crystal structure.
For zinc, the TS method predicts an equilibrium volume of

28.14 Å3, a = 2.62 Å, c = 4.75 Å and c/a = 1.81, for Cd the
corresponding values are 42.15 Å3, a = 2.97Å, c = 5.51 Å
and c/a = 1.85, both in reasonable agreement with experiment.
The calculated bulk modulus for Zn is 78 GPa, in excellent
agreement with experiment (80 GPa), while the cohesive
energy is found to be too large compared with experiment
(1.51 eV versus 1.35 eV). For Cd the calculated values of both
bulk modulus and cohesive energy are lower than experiment
(50 GPa versus 62 GPa, and 1.13 eV versus 1.19 eV)

In the case of zinc, the inclusion of the self-consistent
screening leads to even better agreement with experimental
structural data (equilibrium volume 29.51 Å3, a = 2.63 Å and
c = 4.91Å, c/a = 1.86). The bulk modulus (B0 = 60 GPa) is
reduced in comparison with the TS method, but the cohesive
energy is improved, with a value very close to experiment
(Ecoh = −1.38 eV). For cadmium, screening leads to an
increase of the volume and lattice parameter c, leading to a
too high value of the axial ratio of c/a = 2.00, and a much too
low value of the bulk modulus.

These results indicate that the applicability of the TS + SCS
method to metals is questionable. We note that an alternative
scheme to include screening effects on the C6 coefficients for
metals in the TS method has recently been proposed by Ruiz
et al.94 and successfully used to study adsorption of large
organic molecules on surfaces of metals.94,95

IV. CONCLUSIONS

In this study, the application of the Tkatchenko-Scheffler
(TS) method22 for dispersion corrections to DFT energies
and forces to extended systems including noble-gas solids,
molecular crystals, layered and chain-like structures, ionic
crystals, and metals has been examined. The effect of long-
range screening as described by the TS + SCS method32 has
also been investigated. The TS dispersion corrections added to
DFT calculations using the gradient-corrected PBE functional
method lead to reasonably accurate predictions of the structural
and cohesive properties for various kinds of solids, where
dispersion forces are expected to be essential. However, a
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critical examination shows that the performance is not equally
good for all systems and there are some types of solids
where the approach definitely fails. For the light noble-gas
solids the predicted equilibrium volume is accurate, but the
cohesive energy is too large. This changes gradually to an
overestimation of the volume and an underestimation of the
cohesive energy for the heavier noble gases. For molecular
crystals the calculated volume is quite accurate (or slightly
too small as for sulfur dioxide and cytosine), the cohesive
energy is accurate for nitrogen, but overestimated to some
degree for the other systems. For layered crystals the calculated
volumes and interlayer distances are quite accurate, but the
interlayer binding energy is too large. For chain-like structures
the calculated equilibrium volumes and bulk moduli are quite
accurate, but for selenium and tellurium the ratio of interchain
and intrachain distances between the atoms is underestimated,
indicating an overestimation of the strength of the dispersion
forces promoting the interchain binding. For strongly ionic
systems such as the alkali halide crystals the TS method
definitely fails—the calculated lattice constants are far too
small, the cohesive energies are too large. For metals the
application of a method based on an atom-in-solid concept
is obviously questionable. For nickel the addition of TS
dispersion corrections destroys the perfect agreement of lattice
constant and bulk modulus with experiment achieved at the
DFT level and increases the overestimation of the cohesive
energy. For the highly anisotropic divalent post-transition
metals zinc and cadmium it has been claimed that a description
of electronic correlation beyond the DFT level is necessary to
achieve an accurate prediction of the axial ratio. For zinc where
DFT calculations produce a too large value of c/a and a too
low binding energy, the TS method corrects the structure, but
the cohesive energy is slightly too large. For cadmium were the
DFT result for c/a is quite accurate, the TS correction leads
to a too small value of c/a.

The original TS scheme accounts for the influence of
the local chemical environment by calibrating the dispersion
coefficients according to the atom-in-solid volumes, but it
neglects long-range dynamical screening and many-body
effects. We have shown that the screening effects are rather
small for systems consisting of weakly interacting neutral
atoms (noble-gas solids) and molecules. For these systems
screening leads to a small expansion of the lattice constants by
at most 1%. The cohesive energy is reduced by less than 1% for
the noble-gas crystals; for molecular crystals the reduction is
almost zero for crystalline SO2 and varies between −2.7%
for cytosine and −13% for α-N2. The screening effect is
most pronounced for layered and chain-like structures. For the
layered crystals the interlayer distance is expanded by 0.5% for
h-BN, 1% for graphite, and 4% for V2O5, the interlayer binding
energy is reduced by −50%, −16%, and −20%, respectively.
For graphite the screening effect leads to very good agreement
of the computed interlayer binding energy of 55 meV/atom
with the experimental estimate of 52 meV/atom61 and the
high-level RPA result of 48 meV/atom.64 For Se and Te screen-
ing expands the interchain distances at constant intrachain
spacings and reduces the cohesive energy by −12% and −7%,
respectively. For ionic crystals the expansion of the lattice
constants and the reduction of the cohesive energy goes into
the right direction, but the accuracy of TS + SCS calculations

does not reach the DFT level. For Zn and Cd the screening
effects emphasize the anisotropic character of the structure
and lead to reasonably accurate cohesive energies.

Further improvement of the Tkatchenko-Scheffler model
can be envisaged in various directions. In our opinion, one
should avoid the temptation of introducing further adjustable
ingredients, rather one should try to remove the still-persisting
arbitrariness in the model. One of the neuralgic points is the
calibration of the atomic volumes by the original Hirshfeld
partitioning, which is based on the neutral free atomic
densities. This is probably a questionable choice for strongly
polar or ionic systems: it is difficult to conceive that the
polarizability of fully charged ions can be simply scaled from
the neutral atomic polarizability. We are currently attempting
to remove this arbitrariness by using improved Hirshfeld
partitioning methods. Correct treatment of the forces and
stresses, taking into account the geometrical derivatives of
the many-body dynamical polarizability matrix is absolutely
crucial.
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APPENDIX: VASP KEYWORDS

The TS and TS + SCS methods are available in the VASP

package of version 5.3.3 and later. The TS method in VASP

requires the use of new set of POTCAR files, which were
released in 2012. The following keywords are used to control
this feature:

(1) IVDW = 2 activates the DFT-TS method.
(2) VDW RADIUS = cutoff radius in Å for the summation

in Eq. (1) (default is 30 Å).
(3) VDW SR = scaling parameter sR; see Eq. (7) (default

is 0.94).
(4) VDW D = parameter d in the damping function defined

in Eq. (7) (default is 20).
(5) The atomic reference data can be optionally defined via

flags VDW_alpha (atomic polarizabilities in Bohr3), VDW_C6
(atomic C6 coefficients in J nm6 mol−1), and VDW_R0 (van
der Waals radii of noninteracting atoms in Å). When any of
these flags are used, the user must provide values for each
species present in the system, whereby the order of species
must be consistent with that in the POTCAR file.

(6) LVDWSCS if set to .TRUE., C6, α, and R are corrected
for self-consistent screening effect by means of the TS + SCS
method.
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31F. Göltl, A. Grüneis, T. Bučko, and J. Hafner, J. Chem. Phys. 137,

114111 (2012).
32A. Tkatchenko, R. A. Di Stasio, R. Car, and M. Scheffler, Phys.

Rev. Lett. 108, 236402 (2012).
33R. A. DiStasio, Jr., O. A. von Lilienfeld, and A. Tkatchenko, Proc.

Natl. Acad. Sci. USA 109, 14791 (2012).
34G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
35G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

36G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
37G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
38G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
39E. R. Johnson and A. D. Becke, J. Chem. Phys. 124, 174104 (2006).
40F. O. Kannemann and A. D. Becke, J. Chem. Phys. 136, 034109

(2012).
41N. Marom, A. Tkatchenko, M. Rossi, V. V. Gobre, O. Hod,

M. Scheffler, and L. Kronik, J. Chem. Theory Comput. 7, 3944
(2011).

42J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

43A. Tkatchenko (private communication).
44H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
45P. Jurecka, J. Sponer, J. Cerny, and P. Hobza, Phys. Chem. Chem.

Phys. 8, 1985 (2006).
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