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Theory and simulation of the diffusion of kinks on dislocations in bcc metals
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Isolated kinks on thermally fluctuating 1/2〈111〉 screw, 〈100〉 edge, and 1/2〈111〉 edge dislocations in bcc iron
are simulated under zero stress conditions using molecular dynamics (MD). Kinks are seen to perform stochastic
motion in a potential landscape that depends on the dislocation character and geometry, and their motion
provides fresh insight into the coupling of dislocations to a heat bath. The kink formation energy, migration
barrier, and friction parameter are deduced from the simulations. A discrete Frenkel-Kontorova-Langevin model
is able to reproduce the coarse-grained data from MD at ∼10−7 of the computational cost, without assuming
an a priori temperature dependence beyond the fluctuation-dissipation theorem. Analytical results reveal that
discreteness effects play an essential role in thermally activated dislocation glide, revealing the existence of a
crucial intermediate length scale between molecular and dislocation dynamics. The model is used to investigate
dislocation motion under the vanishingly small stress levels found in the evolution of dislocation microstructures
in irradiated materials.
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Dislocation motion is limited by two general processes: the
formation and migration of kinks and pinning by impurities
and other defects.1 In this paper, we investigate the motion
of kink-limited screw and edge dislocations in bcc Fe,
where the kink formation energy is much larger than the
thermal energy. To obtain dislocation motion on the time
scales accessible to molecular dynamics (MD) simulations,
some researchers have resorted to inducing kink formation
by applying stresses some six orders of magnitude greater
than those pertaining experimentally.2,3 But, dislocation core
structures and Peierls barriers are known to be highly stress
dependent,4 making it difficult to relate simulation to the
vanishingly low stress conditions found in thermally activated
evolution of dislocation microstructures.

To avoid the problem of nucleating kinks in MD simu-
lations, we use periodic boundary conditions which enforce
the existence of an isolated kink on each dislocation line in
the supercell. This allows us to study the detailed dynamics
of kink migration in isolation, a crucial and previously
unexplored aspect of kink-limited dislocation motion, as
separate from the kink nucleation process. Under no applied
stress, kinks are seen to undergo stochastic motion in a
potential landscape that varies with the dislocation character
and Burgers vector. A coarse-graining procedure is introduced
that facilitates statistical analysis yielding many properties
of the kink motion, and which provides physical insight into
the coupling of dislocations to the heat bath. In particular,
the friction parameter for a dislocation is found to be
temperature independent, contradicting decades of theoretical
work since Liebfried.5 But, this temperature independence is
seen in many other investigations of dislocations2,3,6 with a
large lattice resistance and in the stochastic motion of point
defects,8,9 although to the best of our knowledge it has not
been highlighted before.

Our main result is that a stochastic, discrete line repre-
sentation of the dislocation, the discrete Frenkel-Kontorova-
Langevin (FKL) model,10 is able to reproduce quantitatively
the coarse-grained data obtained from MD simulations of

thermally activated dislocation glide at ∼10−7 of the compu-
tational cost, with no a priori assumption of any temperature
dependence beyond the fluctuation-dissipation theorem. The
computational efficiencies of the model are exploited to
investigate dislocation motion under experimental stress levels
inaccessible to MD.

We find that the discreteness of the model, which is
determined by the underlying crystallography, is essential to
produce the thermally activated dynamics of dislocations seen
in atomistic simulation. This shows that in order to model the
kinetics of thermally activated dislocation motion beyond the
limitations of atomistic simulation, a coarse-grained model has
to be sensitive to length scales smaller than those considered
in traditional dislocation dynamics simulations.

The paper is structured as follows. In Sec. I, we briefly
review dislocation glide in bcc metals and the kink mechanism.
We present results from large-scale MD simulations of isolated
kinks on 1/2〈111〉 screw, 1/2〈111〉 edge, and 〈100〉 edge dis-
location dipoles in bcc Fe. Kinks are given a crystallographic
label, the kink vector, which enables a systematic enumeration
of the kinks a dislocation line may support. The observed
asymmetry between left and right kinks on screw dislocations
is rationalized in terms of the kink vector, with the kink “core”
being essentially symmetric. At finite temperature, under zero
applied stress, kinks are seen in the simulations to perform
stochastic motion in a potential landscape that varies with the
dislocation character and geometry. We then introduce our
coarse-graining procedure.

In Sec. II, we review the FKL model, using analytical
expressions for kink properties to determine the parameters
of the FKL model from MD simulations. The FKL model is
known to lack any interaction between kinks;11 we show that
this deficiency has a very small effect on the kink formation
energy and may be neglected in the investigation of very
well-separated kinks, allowing us to deduce parameters of the
FKL model for the host dislocation. Numerical integration
of the stochastic equations of motion of the FKL model
produces data which may be processed identically to that from
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atomistic simulation, allowing us to compare the statistical
results obtained from both methods. We find the transport
properties of kinks in the MD simulations and their FKL
counterparts to be in excellent agreement over a wide range of
temperature for different dislocations. The parametrized FKL
models are used to investigate screw and edge dislocation
mobilities at applied stresses too low to induce dislocation
motion in MD.

I. MOLECULAR DYNAMICS SIMULATION OF
THERMALLY FLUCTUATING DISLOCATION LINES

The periodic potential in the slip plane of a crystal leads to
stable positions for a straight dislocation line separated by
maxima in the potential energy known as Peierls barriers.
When the Peierls barrier is large compared to the available
thermal energy, the mobility of dislocations is limited by the
discreteness of the crystal structure. In that case, dislocation
glide takes place by the thermally activated nucleation and
propagation of kinks,12 which are localized regions connecting
dislocation segments lying in adjacent valleys of the potential
in the slip plane. The existence of kinks is clearly exhib-
ited in MD simulations reported here and in many other
investigations,3,13,14 and their movement effects the glide of
the dislocations on which they lie. To understand the kink
mechanism, it is necessary to investigate both kink propagation
and nucleation of pairs of kinks.

When the formation energy of kink pairs is large compared
to the thermal energy, it becomes impossible to obtain
statistically significant data on kink nucleation within MD
time scales without resorting to unrealistic applied stresses,
typically six orders of magnitude larger than those encountered
in experiments.2 But, dislocation core structures and Peierls
barriers are known to change with applied stress,4 making
it difficult to relate such simulations to experimental reality.
As a result, while the kink mechanism is well established
in dislocation theory, there is a sparsity of MD data on
the parameters controlling kink motion, without which it is
impossible to predict the velocity-stress relationship of the
host dislocation for realistic stresses.

To circumvent the problem of kink nucleation in MD, we
use boundary conditions on the simulation supercell which
enforce the existence of an isolated kink on the dislocation
line. We use the MD code LAMMPS (Ref. 15) with a recently
developed potential by Gordon et al.,16 which gives the best
available representation of the screw dislocation core structure
and bulk phonon dispersion. To avoid free surfaces, periodic
boundary conditions must be imposed. The dislocation super-
cell must contain defects with no net Burgers vector to avoid
a divergent elastic energy, and in this work we use dislocation
dipoles. Thus, the supercell contains two dislocations with
equal and opposite Burgers vectors, and each dislocation has
one kink in the supercell.

Dislocation dipoles were introduced by removing an appro-
priate number of atoms for an edge dislocation dipole or shear-
ing the simulation supercell for a screw dislocation dipole,17

and then applying the anisotropic elastic displacement field for
the dipole. The system was relaxed by a conjugate gradients
algorithm, followed by an annealing process which heated the
system to 200 K then back to zero temperature over 100 ps

(100 000 time steps) to ensure that the system was in the ground
state. To heat the system, atomic velocities were gradually
rescaled according to a Maxwell-Boltzmann distribution of
increasing temperature. Once the desired temperature was
achieved, the system was evolved microcanonically and data
were taken. This has a firmer statistical basis than using
a thermostat because it relies on the real atomistic heat
bath of a large system rather than any particular thermostat
algorithm. However, unrealistic results can be obtained if there
is significant heat generation or absorption as this may affect
the probability of other activated processes.2 This is likely to be
the case, for example, when a high-energy kink pair annihilates
or is created during the simulation. However, due to their
large activation energies, such processes did not occur during
the simulations with the zero stress conditions investigated
here, and the system temperature was observed to be constant
throughout the simulation runs.

A kink connects two straight dislocation segments both
parallel to a lattice vector t lying in the same slip plane.
For the segments to be crystallographically equivalent, they
must be separated by a lattice vector, which may be uniquely
identified, modulo t, with a lattice vector k which we call the
“kink vector.” Some dislocations may exist with a variety of
core structures and there is a corresponding variety of atomic
structures of kinks.18,19 Nevertheless, the kink vector uniquely
identifies any kink on a dislocation line in a given slip plane
with a given Burgers vector and the same core structure on
either side of the kink. We note in passing that a similar
classification may also be applied to jogs, the sessile equivalent
of a kink,12 where the “jog vector” will be a lattice vector with
a component normal to the slip plane. While the term kink
vector has already appeared in the literature,19,20 there has
been no attempt to relate it to the host crystal lattice. To see the
utility of our definition, consider a relaxed straight dislocation
dipole, parallel to a lattice vector t, in a supercell formed from
lattice vectors Nxm, Nyt, and Nzn, where the Ni=x,y,z are
all integers. To impose the boundary conditions required for a
kink on each dislocation, we create a new supercell from Nxm,
Nyt + k, and Nzn, as shown in Fig. 1. In principle, k may be
any lattice vector modulo t lying in the slip plane, but for
high-index lattice vectors, the relaxed structure will possess
multiple kinks as one might expect if k spans many minima
of the potential in the slip plane. The set of low-index lattice
vectors lying in the slip plane quickly provides an enumeration
of the possible kinks a straight dislocation line may support,
generalizing the approach taken in previous work20 to produce

FIG. 1. Cartoon plan of the simulation supercell for an edge
dislocation dipole, formed from lattice vectors Nxb, Nyt + k, and
Nzn. The broken line in the left figure highlights one of the two slip
planes, which are separated by half the supercell height 1

2 Nz|n|.
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FIG. 2. (Color online) Top: An atomic plane normal to a screw
dislocation dipole is exposed with the higher-energy atoms colored
progressively red. The dislocation cores are clearly identified.
Bottom: Plotting only the highest-energy atoms in successive atomic
planes (red) along the supercell reveals a kinked dislocation line.

isolated kinks on dislocation lines. We have used this procedure
to generate the simulation supercell geometries employed
here. Each supercell contained approximately 700 000 atoms,
with the dislocation line either initially sharply kinked as in
Fig. 1 or parallel to the Nyt + k supercell vector. The relaxed
configurations were independent of this initial preparation.

A. Coarse-graining procedure for atomistic simulation

Having obtained a relaxed configuration, the atoms were
grouped into atomic planes normal to the unkinked dislocation
line direction t. The potential energy in each plane has clearly
defined peaks, the centers of gravity of which identify the
positions of the dislocation core, as illustrated in Fig. 2. The
coarse-grained representation of the dislocation comprises a
line threading nodes at each of these core positions. There is
one node for each atomic plane normal to the dislocation line.
The coarse-grained representation is well defined, independent
of dislocation character, and it yields the position of the dislo-
cation with atomic resolution. The unique mapping between
the atomistic and coarse-grained representations enables the
energy of the coarse-grained representation to be determined
at each time step of the simulation. The position of each node
on the dislocation line moves in one dimension, normal to t
and the slip plane normal n. The kink position and width were
determined from the center and width of the maximum in the
core energy along the dislocation line, with the trajectories
of the two kinks in each supercell each forming a time series
{xn�t },n = 0,1, . . . ,N . The kink position is readily located
graphically as shown in Fig. 3, where the dislocation segments
on either side of the kink are straight lines at absolute zero.
The dynamics of the kink positions are simulated with MD in
the following section, and we aim to reproduce the dynamics
with a coarse-grained, many-body stochastic model.

The effectiveness of the coarse graining relies on the
uniformity of the potential energy of atoms in the bulk;
however, at finite temperature, it is expected and observed
that random fluctuations in atomic positions and energies due
to thermal vibrations obscure the dislocation position. To filter
out this noise, it is necessary to average atomic positions and

FIG. 3. (Color online) Illustration of the coarse-grained data from
atomistic simulation of a kink on a 1/2[111](12̄1) edge dislocation
line at 0 K (bottom) and 90 K (top). The kink is clearly localized as
measured by the position of the core (red) and the core energy (green).
Note the narrow kink width in contrast to the screw dislocation kinks
in Fig. 9.

energies over a period of a few thermal oscillations. The
atomic coordinates and energies can then be processed in
an identical fashion to the relaxed zero-temperature system,
again yielding localized dislocation core positions. Kinks
appear as localized geometric and energetic regions along the
coarse-grained dislocation line, allowing the determination of
the kink position, width, and formation energy by calculating
the total deviation from the core energy of a straight dislocation
line.

Other techniques to determine the dislocation position
are to calculate the deviation of the atomic displacements
from the anisotropic elastic field20 or the bonding disregistry
across the slip plane.21 However, we found that the procedure
employed here gave better localization at finite temperature
and is applicable to many different dislocation geometries.

B. Stochastic motion of isolated kinks on edge dislocations

Table I shows kink formation energies calculated for
edge dislocations in bcc Fe. These values were obtained by
calculating the excess energy in a cylindrical slice coaxial
with the average dislocation line direction, relative to the
energy of a slice containing the same number of atoms for

TABLE I. Kink vectors and fully relaxed kink formation energies
(to 2 s.f.) on edge dislocations at absolute zero, calculated using the
potential developed by Gordon et al. (Ref. 16) for bcc Fe. The tangent
vector t is the primitive lattice vector along the unkinked dislocation
line.

Burgers Glide Tangent Kink Formation
vector (b) plane vector (t) vector (k) energy

1
2 [111] (12̄1) [101̄] 1

2 [111] 0.15 eV

(1̄01) [12̄1] 1
2 [11̄1] 0.03 eV
1
2 [13̄1] 0.02 eV

[100] (001) [010] [100] 0.51 eV

(011) [011̄] 1
2 [111̄] 0.25 eV
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a straight dislocation. The slices contain one atomic plane
normal to the dislocation lines. The radius of the cylinder was
enlarged, using the periodic boundary conditions if necessary
to generate atomic coordinates outside the supercell, until the
excess energy of the dislocation core in the slice reached a
constant asymptotic value. This excess core energy is plotted
in green in Fig. 3. The kink formation energy is the sum of these
excess core energies along the dislocation line. Convergence
in the core energy per atomic plane was typically achieved
for a supercell length of 30 Burgers vectors for kinks on
edge dislocations. This implies that the interaction energy
between a kink and its periodic images along the line is not
detectable at separations of more than 30 Burgers vectors. The
kink formation energies are in broad agreement with other
studies.3,22,23

As [100](011) edge dislocations have not been directly
observed in experiment, they are of little interest and we do
not consider them further here.

The very low formation energy of 0.03 eV for kinks on
1/2〈111〉{11̄0} edge dislocations indicates that the mobility of
these dislocations is not limited by kinks except possibly at the
very lowest temperatures. Therefore, we investigate isolated
kinks on 1/2[111](12̄1) and [100](010) edge dislocations, the
motion of which is known to be kink limited, at temperatures
up to which kinks remain isolated on MD time scales.

The kink formation energy for 1/2[111](12̄1) dislocations
is 0.15 eV. At temperatures below 300 K, it is possible to
observe and analyze the stochastic motion of an isolated kink
for MD runs of several nanoseconds. Similarly, for [100](010)
edge dislocations, no additional kinks are expected to be
nucleated in MD runs of several nanoseconds at temperatures
up to 700 K owing to their large formation energy of 0.61 eV.
This large formation energy is due to the nonplanar core,
shown in Fig. 4. An isolated kink is localized geometrically
and energetically, as shown in Fig. 3.

Figure 5 shows the trajectories of the two kinks in a sim-
ulation supercell on a 1/2〈111〉(11̄0) edge dislocation dipole.
The two kinks appear to be moving independently, but we
can not be sure that there is no significant interaction between
them. Any correlation arising from their interaction may be
eliminated by analyzing the center of mass x̄, defined here to be
the mean of the two kink positions x̄ = (x(1) + x(2))/2. It may
be shown24,25 that such a quantity is independent of any inter-
action, and it yields a diffusion constant one half that of a free
kink Dkink/2. Thus, we construct from the two kink positions
a single time series {x̄n�t }, n = 0,1, . . . ,N , for the center of
mass to ensure such correlation effects do not affect our results.
We look for diffusive behavior in the mean-squared displace-
ment (MSD) 〈�x̄2〉 over a range of intervals τ , defined as

〈�x̄2〉(τ ) =
N−τ/�t∑

n=0

(x̄n�t+τ − x̄n�t )2

N − τ/�t

−
(

N−τ/�t∑
n=0

(x̄n�t+τ − xn�t )

N − τ/�t

)2

, (1)

which is the variance of the displacement. It is well known25

that for diffusive motion with a diffusion constant Dkink/2,

〈�x̄2〉(τ ) = Dkinkτ. (2)

FIG. 4. (Color online) Top: A [100](010) edge dislocation in the
bulk. Bottom: A kink on this dislocation with the bulk atoms removed.
The nonplanar core gives a large kink formation energy of 0.61 eV.

Examples of the MSD are shown for the system of kinks
on edge dislocations considered above in Fig. 6. The MSD
clearly shows the linear time dependence characteristic of
diffusive behavior, with the diffusion constant as defined in
Eq. (2) shown in Fig. 7 for kinks on 1/2[111](12̄1) edge dislo-
cations. Kinks on [100](010) edge dislocations exhibit similar
behavior. The diffusivity rises exponentially with temperature
in both cases, indicating that the kink motion is thermally
activated across the kink migration barrier.12 We therefore
conclude that the kink performs one-dimensional stochastic
motion in a periodic migration potential V (x + a) = V (x)
whose amplitude Emig = VMAX − VMIN is large compared to
the thermal energy. While the traditional analysis for such
data is to fit an Arrhenius form D0 exp(−Emig/kBT ) for the
diffusion constant, in one dimension there exists an exact

FIG. 5. (Color online) The trajectories of the two kinks on a
1/2[111](12̄1) edge dislocation dipole at T = 90 K.
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FIG. 6. (Color online) The mean-square displacement as defined
in Eq. (1) for the kink center of mass on a 1/2[111](12̄1) edge
dislocation dipole. The linear relationship with time is in agreement
with diffusive behavior [Eq. (2)].

solution, given by the Lifson-Jackson formula26

Dkink = kBT a2

γkink

( ∫ a

0
e−V (x)/kBT dx

∫ a

0
eV (x)/kBT dx

)−1

, (3)

where kB is Boltzmann’s constant and γkink is the friction,
or dissipation, parameter,27 which measures the rate of
momentum transfer from the diffusing object (here a kink) to
the heat bath. γkink plays a key role in the stochastic equations
of motion introduced in Sec. II, defining the frictional force
−γkinkv and it is the inverse of the kink mobility. To gain
insight into Eq. (3), we investigate limiting cases. When the
amplitude of the migration potential Emig=VMAX − VMIN is
much greater than thermal energy kBT , as for the case of
kinks on edge dislocations here, we may evaluate the integrals
in (3) by the method of steepest descents. Denoting V ′′ for the
second derivative, (3) becomes

Dkink � a2

√
V ′′

MINV ′′
MAX

2πγkink
e−(VMAX−VMIN)/kBT , (4)

which is precisely the Arrhenius form given by Kramers28

for thermally activated diffusive motion. We note that the
traditional temperature independence of the prefactor in (4)
requires that γkink be independent of temperature. In the other

FIG. 7. (Color online) Arrhenius plot of the diffusion constant
D̄ for the kink center of mass on a 1/2[111](12̄1) edge dislocation
dipole. A two-parameter fit of Eq. (6) gives a migration barrier of
74 meV, a large fraction of the 150-meV kink formation energy. The
linear gradient implies the dissipation parameter γkink is independent
of temperature (see text).

FIG. 8. (Color online) Diffusivity in a one-dimensional periodic
potential. Equation (6) (blue), the appropriate Arrhenius form (green),
and numerical data (red) are compared across a wide temperature
range. At low temperatures, all three agree but at intermediate to high
temperatures, a linear temperature dependence emerges in simulation
and Eq. (6).

limit, when the thermal energy kBT is much larger than Emig,
the integrals (3) are constant, giving a diffusivity

Dkink � kBT

γkink
(5)

as first described by Einstein29 for a freely diffusing particle.
We note that a linear temperature dependence in the diffusivity
(5) implies γkink is again independent of temperature. We will
see that kinks on screw dislocations exhibit the diffusive be-
havior of (5) due to their negligible migration barrier and thus
the relation (3) is able to capture the wide range of diffusive
behavior exhibited by kinks on dislocation lines. A numerical
illustration of (3) is shown in Fig. 8, where we indeed see the
failure of the Arrhenius law when kBT � Emig. In Sec. II, we
show that to an excellent approximation the migration barrier
for a kink is sinusoidal, V (x) = Emig sin2(πx/a), allowing an
exact expression of (3):

Dkink = kBT

γkink

1

I 2
0 (Emig/2kBT )

, (6)

where I0(x) is the zeroth-order modified Bessel function.30 We
thus perform a two-parameter fit of (6) to the kink diffusion
constant with temperature to determine γkink and Emig for the
kink systems investigated here, the results of which are shown
in Table II.

There are two points of note in the MD results for kinks on
edge dislocations in Table II. First, we find that the migration
barrier is comparable to the formation energy, implying that the
nature of the kink mechanism on edge dislocations is complex,
with double kink nucleation and kink migration occurring
on similar timescales. This agrees with previous simulations
on edge dislocations3 where the mobility was found to be
independent of the dislocation segment length. Second, the
linear gradient of the Arrhenius plot in Fig. 7 also implies,
by Eq. (4), that the dissipation parameter for the kink γkink is
temperature independent.

We show in Sec. II that the dissipation parameter for a
kink is proportional to the dissipation parameter for the host
dislocation line, which should therefore also be temperature
independent. This is in agreement with several other studies
of dislocations with a large lattice resistance,6 self-interstitial
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TABLE II. Formation energies, migration energies, and dissipa-
tion parameters obtained from MD and FKL simulations for kinks
on the dislocations investigated here. The values were obtained by
identical processing for each simulation technique. The MD data for
kinks on screw dislocations are the average between left and right
kinks as detailed in the text. Very good agreement between the MD
and FKL parameters is seen.

Dislocation Simulation Ekink Emig γkink

system method (eV) (eV) (mu ps−1)

1
2 [111](12̄1) edge MD 0.150 0.074 1.79

FKL 0.148 0.072 1.74
[100](010) edge MD 0.510 0.222 2.61

FKL 0.505 0.218 2.58
1
2 [111](11̄0) screw MD 0.367 1.83
(Average) FKL 0.367 1.82

defects,8 and prismatic loops9 in bcc iron. However, decades of
theoretical work5,12,32 conclude that the dissipation parameter
for a dislocation should increase linearly with temperature due
to the increasing phonon population, as has been found by
simulation for dislocations with a negligible lattice resistance,
such as 1/2[111](12̄1) edge dislocations2 in bcc iron and many
dislocations in fcc metals.31 We return to this important issue
concerning the coupling of dislocations to the heat bath in the
following section on screw dislocations, as the diffusive form
(5) they exhibit allows an even more direct investigation of
γkink.

C. Stochastic motion of isolated kinks on screw dislocation lines

While edge dislocations may be thought of as an inserted
half plane of atoms12 producing a bonding disregistry perpen-
dicular to the dislocation line direction, screw dislocations cre-
ate a bonding disregistry along the dislocation line direction,
which does not require the addition or removal of material.
Screw dislocations possess a nonplanar core structure in bcc
metals, which gives a large Peierls barrier.33,34 The complex
core structure is heavily influenced by the choice of interatomic
potential used in classical atomistic simulations. The vast
majority of existing potentials predict that a screw dislocation
has multiple core structures,35,36 leading many authors to
suggest that a screw dislocation may pass through a metastable
core structure during the kink nucleation process.34 Under an
applied stress, this can produce a new kink formation pathway
leading to a discontinuity in the flow stress.1,6,16 However, this
discontinuity is not shown in experiment, and recent ab initio
calculations37,38 rule out any metastable core structure, with
the nucleation pathway seen to occur almost entirely in the
{11̄0} slip planes. A recently developed potential by Gordon
et al.16 produces both a unique ground state core structure
and minimises the effect of any metastable core structure on
the nucleation pathway. Using this potential, we introduce
kinks with the core structure predicted from first-principles
calculations, thereby minimizing unphysical effects due to the
interatomic potential.

A screw dislocation dipole requires a triclinic simulation
cell to avoid spurious image stresses; we refer the reader
elsewhere for details of the simulation methods,13,39,40 which

are well established. As before, the kink vector was added to
the supercell vectors to give the boundary conditions required
for isolated kinks to form on each dislocation under relaxation.
As there is no mirror symmetry along 〈111〉 directions in the
bcc lattice, the so-called right and left kinks forming a kink
pair on a screw dislocation will have different kink vectors and
thus are expected to be asymmetric. Previous zero-temperature
calculations of isolated kinks on screw dislocations in bcc
iron20 with the Mendelev et al. potential36 found a noticeable
difference between the formation energies of right and left
kinks, which correspond to kink vectors kR = 1/2[11̄1] and
kL = [010]. They also found the kink formation energy
converged to a constant value when the supercell length was
greater than the widths of two kinks. The supercell length
measures the separation between a kink and its periodic
images. These findings are inconsistent with the elasticity
theory of kink interactions,11 according to which the far-field
interaction between kinks should decrease with the inverse of
the kink separation.

To investigate these discrepancies, we performed similar
calculations with the improved potential by Gordon et al.,
extending the supercell length to 240 Burgers vectors, more
than double that used in Ref. 20. In agreement with elasticity
theory, we found that when the supercell length was greater
than two kink widths, the kink formation energy decreased
with the inverse of the supercell length, by 0.011 eV for both
right and left kinks over a distance of 200 Burgers vectors. The
formation energy for the right and left kinks was 0.604 and
0.13 eV, respectively, giving a double kink formation energy
of 0.734 eV, in good agreement with the previous study.

We conclude that the long-range kink interaction, while
decaying inversely with separation as predicted by elasticity
theory,11 is a small perturbation to the kink formation energy
in the atomistic simulations performed here and in Ref. 20.
However, the difference in formation energies of left and
right kinks is still unexplained. To gain insight into the kink
structure, Fig. 9 shows the excess potential energy, relative to
a straight dislocation, per atomic plane normal to the line of
a screw dislocation with a right or left kink, obtained by the
coarse-graining procedure described above. The kinks appear
as well-defined peaks of approximately the same height but
also with long-range tails which differ markedly between
the two kinks. These long-range tails are the source of the
difference in the formation energies, with the “core” of each
kink very similar in size and energy.

The nature of these tails can be understood by noting that
the kinks may be regarded as two short segments of dislocation
with edge character. However, the edge segments are of equal
and opposite sign because their line senses are reversed. For
the right kink, we see a projection of the kink vector along the
dislocation line of |b|/3, which implies the insertion of two
atomic planes and is often thought of as an interstitial kink,20

whose compressive far field locally raises the core energy of
the host dislocation. For the left kink, we see a projection of the
kink vector along the dislocation line of 2|b|/3, which is most
appropriately thought of as the removal of 6 × (1 − 2/3) = 2
planes due to the stacking sequence of the dislocation core, and
is often referred to as a vacancy kink.20 The tensile far field
then lowers the core energy locally due to a slight relaxation
towards the bulk crystal structure. This picture also implies
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FIG. 9. (Color online) Excess energy per ABC stacking sequence
(see text) for right (blue) and left (red) kinks on a 1/2[111](11̄0)
screw dislocation. The kinks appear as peaks of similar height with
asymmetric tails. The tails are removed under averaging (black) as
described in the text. Note the large kink width as compared to the
edge dislocation kinks in Fig. 3.

that the kink fields should cancel at long range. To test this, we
average the energy per unit length for the left- and right-kinked
screw dislocation lines, shown in Fig. 9, where we indeed see
a localized peak with a width of around 20|b|, much wider
than the sharp kinks of width 3|b| seen on edge dislocations.
It is this core energy and width which we take to define kinks
on screw dislocations.

At finite temperature, the kink trajectories were analyzed in
a similar manner to that detailed above for edge dislocations.
However, the temperature dependence of the kink diffusivities,
shown in Fig. 10, is markedly different. They exhibit a linear
temperature dependence, which by Eqs. (3) and (5) implies a
negligible migration barrier, as found in static calculations.20 It
also implies that the dissipation parameter γkink is independent
of temperature.

FIG. 10. (Color online) Diffusion constant for left and right kinks.
A linear temperature dependence is exhibited, which implies the
dissipation parameter does not depend on temperature.

The temperature independence is significant as all theories
of dislocation damping since Liebfried5,32 have concluded
that the dissipation parameter for a dislocation must increase
linearly with temperature due to the increased phonon pop-
ulation. We emphasize that the temperature independence
of the dissipation parameter is exhibited in both thermally
activated diffusion, where the prefactor of the Arrhenius
law is independent of temperature, and in essentially free
diffusion, where the gradient of the diffusion constant with
temperature is independent of temperature. The prediction of
a linear temperature dependence in the dissipation parameter
essentially arises due to the vanishingly small phase space
predicted for one-phonon scattering, meaning the leading
contribution to the thermal force is a two-phonon scattering
term.7 A consequence of the fluctuation-dissipation theorem
is that the variance of the thermal phonon force acting on
a body is equal to the system temperature multiplied by
the dissipation parameter for that body. It may be shown
that the thermal force produced by one-phonon scattering
has a variance which increases linearly with temperature,
meaning the dissipation parameter is temperature independent
as seen here, while the thermal force produced by two-phonon
scattering has a variance which increases quadratically with
temperature, giving a dissipation parameter which increases
linearly with temperature, as predicted by the standard theory
and as observed in the drift motion of dislocations with a
low lattice resistance. We suggest that the presence of a
strong lattice coupling leads to a strong enhancement of
the one-body phonon scattering term, giving a temperature-
independent dissipation of momentum, although it is clear
that this discrepancy between theory and simulation remains
unexplained and is an important topic for future investigation.

In this section, we have reported the results from large-scale
molecular dynamics simulations of isolated kinks on edge and
screw dislocation lines in bcc iron. The large simulation cells
required significant computational power to obtain statistically
significant results; however, the total real time simulated was
still of the order of nanoseconds. We now introduce a model
which aims to reproduce the coarse-grained data from the full
atomistic simulation at a fraction of the computational cost,
allowing access to experimentally relevant time and length
scales.

II. A STOCHASTIC MODEL FOR A DISLOCATION LINE

There are two principal methods for simulating dislocation
motion that avoid an explicit treatment of atomic dynamics:
dislocation dynamics and kinetic Monte Carlo methods. In
conventional dislocation dynamics codes, the motion of dis-
locations is entirely deterministic;13 the stochastic dislocation
dynamics observed in MD simulations and experimentally can
not be simulated with such codes. The traditional technique
to model thermally dominated motion is a master equation
approach.41–43 This assigns probabilities from the canonical
ensemble to transitions between different system states, which
are then implemented in a kinetic Monte Carlo simulation.
However, the large state space available to even an isolated
flexible dislocation quickly renders the technique extremely
cumbersome. The assignment of a canonical distribution is
hard or impossible to justify in nonequilibrium environments
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and while the logarithmic time scale employed improves
efficiency, it obscures comparison to the real-time trajectories
given by experiment and atomistic simulation.

In this section, we introduce a model which aims to
reproduce the results from full atomistic simulation. The model
we employ is the well-known discrete Frenkel-Kontorova-
Langevin (FKL) model,10,44,45 which treats the dislocation
line as a discrete elastic string sitting in a periodic substrate
potential. The representation of a dislocation as an elastic line
was first used to model pinning by trapping sites,46 and due
to its simplicity equivalent systems appear in many areas.1 A
discrete Langevin equation approach has recently been used to
model the thermal motion of 1/2〈111〉 prismatic and vacancy
dislocation loops in bcc Fe by Derlet et al.14 However, the
absence of a substrate potential rendered the model unable
to capture any kink mechanisms and the discreteness had no
relation to the crystallography of the corresponding atomic
system. In contrast, the spacing of nodes of the elastic string
in our model is determined by the spacing of atomic planes
normal to the dislocation line. We find this is essential to
reproduce the structure and dynamics of kinks seen in atomistic
simulations. While these discreteness effects have previously
been investigated theoretically by Joós and Duesbery45 in
covalent materials, there has been no investigation, to our
knowledge, of the dynamical behavior they predict.

Many different shapes of the substrate potential used in
the FKL model have been investigated.11 However, the only
qualitative change occurs in the presence of deep metastable
minima, which imply the existence of a metastable core
structure. As discussed above, even for the complex case of
screw dislocations, recent ab initio calculations show the kink
formation process to take place in the slip plane, with no
metastable core structure. This allows us to take the substrate
potential in the FKL model as a simple sinusoid, and is
consistent with the approximation of taking a dislocation line
to be a string of constant internal structure moving only in the
slip plane.

The main criticism of the FKL model is its inability
to capture the long-range kink interaction predicted from
elasticity and the different formation energies of left and right
kinks seen in atomistic simulation. However, we have seen
that the long-range interaction is a minor perturbation on the
formation energy. Additionally, the asymmetric kink formation
energy was seen to result from the long-range fields of the
kinks. The simplest term which captures this behavior is linear
in the dislocation line gradient10 and consequently will not
affect the equations of motion as it may be integrated out of
the Lagrangian.47 Investigation of more complicated terms is
beyond the requirements of the current investigation as very
little difference was found in the diffusivities of left and right
kinks. In effect, our model treats the localized, symmetric kink
“cores” shown in the lower panel of Fig. 9.

First, we obtain analytical expressions for the kink for-
mation energy, width, and migration barrier in terms of the
parameters defining the FKL model. We then introduce the
stochastic equations of motion which govern the system
dynamics, obtaining an analytical expression identical in form
to Eq. (3) for the kink diffusivity. By equating these analytical
expressions to the values obtained for the kink formation
energy, width, migration barrier, and diffusivity from MD,

we may solve numerically for the FKL model parameters. The
system is then stochastically integrated and compared to the
output from full atomistic simulation.

A. Static properties

The FKL model treats a dislocation line as a discrete elastic
string sitting in a periodic substrate potential. The string is
constructed from a set of harmonically coupled nodes spaced
by a fixed distance a, which we set equal to the distance
between atomic planes normal to the dislocation line. The
string sits in a substrate potential of period LP , which we set
equal to the projection of the relevant kink vector normal to the
dislocation line, often known as the kink height. As a result,
the two length scales of the model, a and LP , are determined
by the crystallography of the corresponding atomistic system.

Taking a coordinate system (x,y), where x̂ lies along the
(unkinked) dislocation line direction and ŷ is normal to x̂ in
the slip plane, each dislocation is represented by a discrete line
of points {(na,un(t))}, where n = 0,1,2, . . . ,N and only the
{un(t)} vary with time. Each node is thus constrained to move
only in the ŷ direction. The potential energy is as follows:

V ({un}) =
N∑

n=0

aVP sin2

(
π

un

LP

)
+ a

κ

2

(
un+1 − un

a

)2

, (7)

where VP is the amplitude of the substrate potential and κ is
the harmonic coupling strength, both in units of energy per
unit length, with displaced periodic boundary conditions to
account for the presence of the kink

un+N (t) = un(t) + LP . (8)

To obtain an analytical expression for the shape of the static
kink we first take the continuum limit a → 0,N → ∞. In this
limit, the system energy (7) with boundary conditions (8) is
minimized by the soliton kink

ukink(x − X) = LP

π

[
tan−1 sinh

(
x − X

w0

)
+ π

2

]
,

w0 = LP

2π

√
2κ

VP

, (9)

where X is the kink position and 2w0 is the kink width, which
is proportional to

√
κ/VP . An illustration of (9) is shown as

the red curve in Fig. 12. The soliton kink (9) shape interpolates
the numerically minimized discrete structure of (7) well.
However, in the continuum limit, the system energy (7) is
independent of the kink position, while in the discrete system
the energy varies periodically with the kink position as the
continuous translation symmetry is broken, in direct analogy
to the Peierls barrier for a dislocation. This position-dependent
energy produces the kink migration barrier discussed above. It
may be shown11,44,45 that substituting (9) into (7) gives

V ({ukink(na − X)}) = 4w0VP +
∞∑

n=1

Ṽmig(n) cos

(
2nπ

a
X

)
,

Ṽmig(n) = VP

a

nπw2
0

sinh(nπw0/a)
. (10)
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FIG. 11. (Color online) The magnitude of the first three sum-
mands in the kink energy (10) as a function of the equilibrium kink
width w0. We see the leading term Ṽmig(1) dominates, but all three
terms decrease rapidly with increasing w0.

The first few Ṽmig(n) are shown as functions of the equilibrium
kink width 2w0 in Fig. 11. We see that for realistic kink widths
of more than 2a the leading term Ṽmig(1) dominates by a
factor of at least 10, allowing us to approximate the migration
potential as a sinusoid of period a. The kink energy (10) has
a minimum when the kink center of mass lies between two
nodes, X = na + a/2, as in this configuration no node lies at
the maximum of the substrate potential. This minimum kink
energy, which should be equated to the formation energy from
the relaxed atomistic simulation, is thus

Ekink = 4w0VP − Emig

2
, (11)

Emig = 2Ṽmig(1) = VP

a

2πw2
0

sinh(πw0/a)
. (12)

The form of the migration barrier Emig provides insight into
the observed behavior of kinks in atomistic simulation. As can
be seen in Fig. 11, Emig decreases rapidly with the equilibrium
kink width, in agreement with the observation that the narrow
kinks on edge dislocations have a significant migration barrier
as compared to the essentially free motion of the wide kinks on
screw dislocations. These significant effects would be entirely
lost in any continuum model, emphasizing the importance of
atomistic resolution in modeling dislocation dynamics.

B. Dynamic properties

We now introduce the stochastic equations of motion which
govern the dynamics of the FKL model (7). We recall that
the atomistic data was time averaged. Applying the same
procedure to our model is formally equivalent to taking a strong
damping limit27,48 and thus permits a first-order equation of
motion for the node displacements. This approximation is
supported by the absence of any ballistic motion, even over
short-time intervals, in the simulation data. The output from the
stochastic model may thus be subjected to identical analysis as
the output from atomistic simulation, allowing us to determine
whether the data produced are statistically equivalent.

The thermal behavior of the system is investigated through
the stochastic integration of first-order Langevin equations,27

which balance a frictional force proportional to the velocity
−γlinev, the conservative force −∂V/∂u, and a “fluctuation
force” which will be detailed below. This simplified equation
of motion allows us to integrate the system on a much coarser

time scale. In addition, any notion of a dislocation mass is
contained in the dissipation parameter γline, which measures
the rate of momentum transfer from the dislocation to the
heat bath. In this way, we avoid the controversial concept of
dislocation inertia as inertial effects were not exhibited in the
atomistic simulations we wish to reproduce with this model.
The first-order equation of motion for our discrete system (7),
with boundary conditions (8), is

γline
dun(t)

dt
= − ∂

∂un

V ({um}) + ηn(t), (13)

where γline is the dissipation parameter for the dislocation line
and the {ηn(t)} are independent Gaussian random variables49

representing the stochastic force from the surrounding heat
bath. They are defined under an ensemble average 〈. . .〉 of all
heat baths at a temperature T , possessing only an average and
standard deviation by the central limit theorem. These read as

〈ηn(t)〉 = 0, 〈ηn(t)ηm(t ′)〉 = 2γlineT δnmδ(t ′ − t). (14)

The amplitude of the fluctuations
√

2γlineT is uniquely deter-
mined by the fluctuation-dissipation theorem, which requires
that the steady-state solution to the Fokker-Planck equation
associated with (13) is the canonical distribution.27 The
absence of any spatial correlation in the noise forces reflects
the chaotic atomic dynamics of the surrounding heat bath and
does not preclude any correlation in the dislocation motion;
however, the delta function δ(t ′ − t) is strictly the limiting case
of a vanishingly small correlation time in the atomic collisions
which constitute the heat bath.49 This limit may be taken only
when we operate on a sufficiently coarse time scale much
longer than an individual collision, which is indeed the case in
the first-order equations of motion investigated here.

We now have a completely specified system; we will inte-
grate the equations stochastically (13), using a pseudorandom
number algorithm50 to generate the stochastic forces (14).
However, in order to have expressions for all the quantities
extracted from atomistic simulation in terms of the model
parameters, we must also derive the kink diffusion constant.

To do this, we obtain first the kink equation of motion,
assuming that the kink position X(t) is slowly varying in time
in comparison to the fluctuations of the {un}, and that the kink
shape suffers only small perturbations due to these fluctuations
throughout its motion. It will be seen that these approximations
still give excellent agreement with the results from stochastic
integration, and allow us to equate the field center of mass to
the kink position X(t). To derive the kink equation of motion,
we evaluate the total velocity projected along the dislocation
line. We consider segments connecting neighboring nodes of
the dislocation line and take the projection of the nodal velocity
along the segment normal. We then take the projection of this
normal along the line direction x̂ to obtain the contribution to
the net projection from that segment. A very similar calculation
is used when calculating the driving force on a ship’s sail51 and
is formally equivalent to the derivation of the field momentum
of (7) in the continuum limit.44 It can be shown that this gives
a kink velocity

Ẋ(t) =
∑

n

dun(t)

dt

(
un+1(t) − un(t)

a

)
. (15)
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Using (13), (10), and (9), we obtain the kink equation of motion

γkinkẊ(t) = π

a
Emig sin

(
2πX(t)

a

)
+ η(t), (16)

where the kink dissipation parameter γkink is given by

γkink = LP

4πw0
γline, (17)

η(t) is a one-dimensional Gaussian random variable with an
average and standard deviation

〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = 2γkinkT δ(t ′ − t), (18)

and Emig is given in Eq. (11). We note that Eq. (17) shows the
dissipation parameter for the dislocation line γline to be directly
proportional to the dissipation parameter for the kink γkink, and
thus γline is also temperature independent. Equation (16) de-
scribes a point particle undergoing one-dimensional stochastic
motion in a sinusoidal potential. As discussed in Sec. I, under
an ensemble average the mean-squared displacement exhibits
diffusive behavior with a diffusion constant (6), where now
Emig and γkink are given explicitly in terms of the free model
parameters VP ,γline,κ and the crystallographically determined
LP ,a. By inverting the relations (9), (11), and (17), we
may determine the model parameters for the dislocations
considered here. With these parameters, the system (7) was first
relaxed by a conjugate gradient algorithm, with the boundary
conditions (8), to determine the formation energy and kink
width, then the equations of motion (13) were stochastically
integrated. The kink formed remains well defined at finite
temperature, as shown in Fig. 12. It can be seen that the data are
identical in form to that produced from atomistic simulation,
shown in Fig. 3, with the kink trajectories extracted and
analyzed in an identical manner. Table II shows the results from
these simulations as compared to the results from atomistic
simulation, displaying excellent agreement over a wide range
of temperature.

It is emphasized that the discreteness of the model is
essential to produce a kink migration barrier. We also note
that the discreteness, which is determined by the underlying
crystallography through a and LP , influences the kink forma-
tion energy as well as the migration barrier, as can be seen
in Eq. (11). As we simulate a line of only ∼500 nodes on a
coarse time step of 10 ps, as opposed to the entire atomistic

FIG. 12. (Color online) The relaxed kink profile at zero (red)
and finite temperatures (blue). The center of mass for the kink has
propagated but remains sharp.

system of 700 000 atoms on a very fine time step of 1 fs,
we may generate data sets equivalent to those produced from
atomistic simulation at around ∼10−7 of the computational
cost. Therefore, despite the atomistic resolution along the
line, the model affords enormous computational savings
as compared with a full MD simulation. This significant
efficiency gain allows us to simulate dislocation motion at
experimental strain rates, while retaining atomistic resolution
and a statistically rigorous temperature.

C. Dislocation motion under vanishing applied stress

The parameters obtained from the kink diffusion simu-
lations are now used to investigate the motion of straight
dislocations at experimental stress levels. This important
regime is not accessible to atomistic simulation for dislocations
which have a large kink formation energy. Therefore, this is
an ideal application of the FKL model. For a discrete dislo-
cation segment of N nodes, we supplement the equations of
motion (13) with a force per node f to induce drift of the
dislocation line

γline
dun(t)

dt
= − ∂

∂un

V ({um}) + f + ηn(t), (19)

with periodic boundary conditions

un(t) = un+N (t). (20)

We then extract the position of the center of mass ū =∑
n un/N at each time step, obtaining the ensemble average

center-of-mass velocity 〈v̄〉 in an identical manner to that
shown in Eq. (1):

〈v̄〉 =
N−τ/�t∑

n=0

(ūn�t+τ − ūn�t )

τ (N − τ/�t)
. (21)

To obtain the relationship between the force f and an applied
stress, we recall the Peach-Koehler formula12 for the force per
unit length fPK on a dislocation of Burgers vector b and line
direction t under an applied stress σ ,

fPK = (σ · b) ∧ t̂. (22)

The nodal force f is then the projection of (22) along
the displacement direction of the {un}, û, multiplied by the
segment separation a. We apply a shear stress across the slip
plane of magnitude |σ | in the direction of the dislocation
Burgers vector b, resulting in a force per node of

f = afPK · û = a|b||σ |. (23)

We apply experimental stresses of 40 MPa, which cor-
responds to a very small force per node of ∼10−3 eV/LP .
To demonstrate phenomena this discrete model can treat,
we investigate the effect of segment length on dislocation
velocity. Figures 13 and 14 show typical center-of-mass
trajectories of 1/2[111](11̄0) screw and [100](010) edge
dislocation segments. Extracting the center-of-mass velocity
through Eq. (21) over a wide range of segment lengths gave
a length-independent velocity for edge segments, whereas the
velocity increased linearly with segment length as 0.013(4)s−1

at 300 K for screw dislocations. This is in good agreement
with the linear relationship of velocity with length of around
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FIG. 13. (Color online) Center-of-mass positions for two
1/2[111](11̄0) screw dislocation segments, under an applied stress
of 40 MPa, at a temperature of 300 K. The highly stepped motion
reflects directly the nucleation of kinks, which then quickly propagate
along the entire line due to the negligible kink migration barrier. As a
result, longer lines, which have a greater number of nucleation sites,
have a velocity which increases linearly with segment length.

0.01s−1 at 300 K for screw dislocation segments that has
recently been observed experimentally.52 We note that this
gradient depends exponentially on temperature due to the
activated nature of the dislocation migration.

We can understand these differences in terms of the discrete
structure of the FKL dislocation lines. We have seen that the
wide kinks on screw dislocations have a negligible migration
barrier; as a result, once a double kink is formed it will move
quickly under the applied stress until it meets another kink. For
long segments, we therefore expect the dislocation velocity to
scale linearly with segment length due the increased number of
possible locations for kink nucleation, as observed. In contrast,
as the narrow kinks on edge dislocations have a large kink
migration barrier, comparable to the kink formation energy. As
a result, we expect the mobility always to be independent of the
segment length as kink migration and kink nucleation occur
on similar time scales. This behavior, which is found only in a
discrete line model, is expected to have consequences in many
aspects of dislocation behavior, for example, the difference in

FIG. 14. (Color online) Center-of-mass positions for two
[100](010) edge dislocation segments, under an applied stress of
40 MPa, at a temperature of 600 K. As the kink migration barrier
is comparable to the kink formation energy, double kink nucleation
occurs on the same time scale as kink migration and thus the line
propagates gradually. As a result, the segment velocity is almost
independent of the segment length, as distinct from screw dislocation
segments, a feature not captured by a continuum line model.

the effect of impurities on the mobilities of edge and screw
dislocations.12

III. CONCLUSIONS

In this paper, we have presented results from large-scale
MD simulations of edge and screw dislocation lines in bcc Fe.
Boundary conditions were exploited to produce isolated kinks,
which were seen to remain isolated on the time scale of the MD
simulations provided the thermal energy was significantly less
than the double kink formation energy. The dislocation lines
were coarse grained, while retaining atomistic resolution, by
assigning a dislocation core position in each atomic plane
normal to the line direction. Kinks were clearly identifiable,
with statistical analysis allowing extraction of a kink diffusion
constant.

Kinks on edge dislocations were seen to be narrow,
exhibiting thermally activated stochastic motion which was
described well by an Arrhenius law. In contrast, kinks on screw
dislocations were broad with a diffusivity that varied linearly
with temperature, implying a vanishingly small migration
barrier. The difference in the formation energies of left and
right kinks on screw dislocations was seen to be attributable
to the structure of the kinks outside their cores. The kink
interaction energy predicted by elasticity was observed to be
much smaller than the kink core energy.

An analytical result for one-dimensional stochastic motion
in a periodic potential, valid for all temperatures and barrier
heights, was seen to rationalize the wide range of diffusive
behavior, leading to the conclusion that the frictional force
on a kink, and hence the host dislocation, is temperature
independent. This result from direct atomistic simulation is
in agreement with other studies on dislocations with a large
lattice resistance, but directly opposes the textbook theory
which states that the frictional force should be proportional
to temperature. This significant disagreement is an important
topic for future investigation.

The discrete one-dimensional FKL model was seen to
be able to reproduce the observed motion of kinks on edge
and screw dislocations over a wide range of temperatures
and dislocation geometries, with all length scales fixed by
the crystallography. The discrepancy between kinks on edge
and screw dislocations was explained through an analytical
relationship between the kink width and migration barrier;
it was noted that the migration barrier depends sensitively
on the discrete structure, with the atomistic resolution of the
model being essential to reproduce the detailed behavior of
thermally activated dislocation glide. This discrete structure,
which is absent in conventional dislocation dynamics codes,
is expected to be significant in thermally activated dislocation
phenomena such as impurity interaction and cross slip.

The application of the FKL model to the motion of initially
straight dislocation segments under experimental applied
stresses found a noticeable length dependence for screw dislo-
cation segments, due to the negligible kink migration barrier,
whereas the large migration barrier for kinks on edge dislo-
cations suppressed a length dependence. The consequences of
this highly anisotropic mobility of discrete dislocation lines for
microstructural evolution will be investigated in future work.
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