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Manipulating Majorana fermions in quantum nanowires with broken inversion symmetry
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We study a Majorana-carrying quantum wire, driven into a trivial phase by breaking the spatial inversion
symmetry with a tilted magnetic field. Interestingly, we predict that a supercurrent applied in the proximate
superconductor is able to restore the topological phase and therefore the Majorana end states. Using Abelian
bosonization, we further confirm this result in the presence of electron-electron interactions and show a profound
connection of this phenomenon to the commensurate-incommensurate transition in one-dimensional doped
Mott insulators. These results have important applications in, e.g., realizing a supercurrent-assisted braiding of
Majorana fermions, which proves highly useful in topological quantum computation with realistic Majorana
networks.

DOI: 10.1103/PhysRevB.87.060504 PACS number(s): 71.10.Pm, 74.45.+c, 74.78.Na, 03.67.Lx

The study of topological superconductors (SCs) which
host Majorana zero bound states (MZBSs) has developed
into a rapidly growing branch of condensed matter physics,
driven by both the pursuit of exotic fundamental physics
and the applications in fault-tolerant topological quantum
computation (TQC).1–3 The MZBS exists in the vortex core
of a two-dimensional (2D) (p + ip)-wave SC,4 and at the
ends of a 1D p-wave SC.5,6 However, intrinsic p-wave
superconductivity is not necessary to observe the MZBS:
Recent proposals have shown the equivalence of topological
insulator/s-wave SC heterostructures7–9 and spin-orbit (SO)
coupled semiconductor/s-wave SC heterostructures with Zee-
man splitting10–16 to p-wave SCs. In such devices, the SO
interaction drives the original s-wave SC into an effective
p-wave SC, leading to MZBSs in the case of odd number
of subbands crossing the Fermi level. It has been predicted
that an isolated MZBS can induce a zero-bias peak (ZBP)
of height 2e2/h (at zero temperature) in the differential
tunneling conductance dI/dV at the interface with a normal
contact.17–21 Recent experiments in semiconducting nanowires
(NWs)/s-wave SC heterostructures have shown a suggestive
ZBP in the dI/dV spectra,22–25 which disappears when the
external magnetic field is tilted from the direction of the NW
and eventually aligned in the quantization axis of the SO
coupling.22,24

Motivated by these recent findings, in this Rapid Com-
munication we investigate a Majorana quantum NW driven
into the trivial phase by a tilted magnetic field which breaks
1D spatial inversion symmetry (SIS),20 as observed in the
experiments.22,24 Quite interestingly, we show that a supercur-
rent applied in the SC can compensate for the detrimental ef-
fects of the tilted magnetic field, therefore restoring the MZBS.
Using Abelian bosonization we show the robustness of these
results in the presence of electron-electron (e-e) interaction,
and find a profound connection to the physics of doped 1D Mott
insulators and the commensurate-incommensurate transition
(CICT).26 We finally propose a supercurrent-assisted braiding
(SAB) of MZBSs, which may have important applications in
TQC with realistic Majorana networks.

We start from the model of a 1D SO-coupled NW in
proximity to an s-wave SC, with a Zeeman field �V =
(Vx,Vy) = V0 (cos θ, sin θ ) given by an external magnetic field

tilted from the NW by an angle θ . For θ = 0, a phase
transition from a trivial to a topological SC occurs by tuning
V0 to be V0 > (μ2 + |�s |2)1/2,10,11,27 where μ and �s are the
chemical potential and induced s-wave SC order parameter
in the NW, respectively. The Hamiltonian of the system reads
H = H0 + Hs , where

H0 =
∫

dxc†(x)

[
∂2
x

2m∗ − μ + iλRσ y∂x + �V · �σ
]

c(x),

(1)
Hs =

∫
dx[�sc↑(x)c↓(x) + H.c.],

with c(x) = [c↑ (x) ,c↓ (x)] the electron annihilation field
operator, m∗ the effective mass of electrons in the NW, λR

the Rashba SO coupling coefficient, and �σ = (σ x,σ y,σ z) the
vector of Pauli matrices. The term Vyσy , occurring due to a
finite tilt angle θ , breaks SIS of the NW.20 This can be seen
directly in H0 under the 1D space-inversion transformation
x → −x, (y,z) → (y,z), which leads to (k,σy) → (−k,−σy)
and σx → σx , with k the momentum in NW. The broken
SIS leads to an asymmetric dispersion relation ε

(±)
k �= ε

(±)
−k for

H0.28 Accordingly, the Bogoliubov quasiparticle spectra with
a uniform �s are also asymmetric E (k) �= E (−k) [Fig. 1(a)].
In particular, when θ exceeds a critical value θc(V0,�s,μ),
the broken SIS closes the bulk gap and a finite Fermi surface
is obtained [red dashed curves in Fig. 1(a)]. This drives the
system into a trivial SC for θ > θc.

We proceed to show that the topological phase can be
restored at θ > θc by a supercurrent Js applied in the proximate
SC. A uniform Js induces a position-dependent phase in �s as
�s (x) = |�s |eiφ(x), related to the supercurrent through Js =
2nseh̄α[1 − (αξ )2]/me,31 with α = ∇φ (x) a uniform phase
gradient, and me, ns , and ξ the electron mass, superconducting
carrier density, and coherence length in the bulk SC, respec-
tively. The applied Js should be less than the superconducting
critical current Jc = 4nseh̄/(3

√
3meξ ).31 The physics of the

problem can be seen more transparently by projecting H

onto the lower subband of the NW, H ≈ H (−) = ∑
k[ε(−)

k −
μ]c†k,−ck,− + 1

2

∑
k[�se

iχk ck,−c−k−α,− + H.c.], where χk =
tan−1[(Vy − λRk)/Vx] and ε

(−)
k > ε

(−)
−k for k > 0 and 0 < θ <

π . For Js = 0, electron states with opposite momenta ±k are
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FIG. 1. (Color online) (a) Vanishing of the bulk gap by in-
creasing tilt angle θ . (b) Restoring of the bulk gap at θ = 0.2π

by applying supercurrents. (c) Phase boundary between topological
superconducting (T.S.) and trivial phases with a supercurrent.
(d) Superconducting bulk gap vs optimal supercurrent. Parameters
are taken according to Ref. 22: V0 = 1.0 meV, �s = 0.5 meV, μ = 0,
and SO energy Eso = m∗λ2

R = 0.1 meV (a)–(d), resulting in a critical
angle θc ≈ 0.168π (cf. also Ref. 30).

off resonant and the formation of Cooper pairs with zero
center-of-mass momentum is weakened. For a supercurrent
applied along the +x direction (i.e., α > 0), the Hamiltonian
pairs up states with momenta k and −k − α which are closer
in energy, favoring the formation of a Cooper pair with
center-of-mass momentum α. A supercurrent therefore allows
to compensate for the band asymmetry induced by the tilted
magnetic field, strengthening the bulk gap in the NW.

In Fig. 1(b) we show that the bulk gap, which vanishes
for θ = 0.2π at Js = 0, reopens in the presence of Js in the
+x direction, and attains its maximum at the optimal value
Js = J

op
s (green solid line). Further increasing Js suppresses

again the bulk gap due to an over compensation of the band
asymmetry and induces again an off-resonant situation (black
dotted line). Our results are summarized in Fig. 1(c), which
shows the phase diagram of the NW as a function of Js and θ ,
with ξ � 10 nm the typical coherence length in NbTi SCs.32

The blue curve represents the optimal supercurrent J
op
s (θ ),

and the red curves give boundaries of the topological and
trivial phases. For Js = 0, the phase becomes trivial when θc �
|θ | < π/2, while applying a supercurrent along +x (or −x,
depending on the sign of θ ) can restore the topological phase
[Fig. 1(c)]. In contrast, for θ = 0 the optimal supercurrent is
J

op
s = 0, and applying a Js breaks the SIS and destabilizes the

topological phase.33 Figure 1(c) therefore provides a useful
guide to explore systematically the topological phase diagram
in ongoing experiments.22–24 The bulk gap Eg(J op

s ) versus
J

op
s is given in Fig. 1(d), from which one finds a vanishing

Eg(J op
s ) only at θ = π/2,3π/2, indicating that MZBSs can

always be restored by a supercurrent unless the magnetic field
is perpendicular to NW.

To determine if the above results are robust against
e-e interactions in the NW, we introduce here the Abelian

bosonization framework. At low energies, linearizing the
dispersion relation ε

(−)
k around the Fermi energy EF generates

asymmetric left (right) Fermi momenta kL(R) and Fermi
velocities vL(R) due to the broken SIS. We next introduce the
standard bosonic representation of left/right-moving fermions
cL/R ∼ 1√

2πa
ei(∓ϕ−ϑ), with bosonic fields ϕ,ϑ obeying the

canonical commutation relation [ϕ (x) ,ϑ(x ′)] = iπ sgn(x ′ −
x)/2 and a ∼ k−1

F the short-distance cutoff of the continuum
theory.26 Physically, the field ϕ (x) represents slowly varying
fluctuations in the electronic density δρ (x) = −∂xϕ (x) /π ,
and ϑ (x) is related to the phase of the SC order parameter
through cR (x) cL (x) ∝ ei2ϑ(x). With a short-range interac-
tion Hint = πU

∫
dx c

†
R (x) cR (x) c

†
L (x) cL (x) the low-energy

Hamiltonian is given in bosonic representation by34

H =
∫

dx

{
vK

2π
(∂xϑ)2 + v

2πK
(∂xϕ)2 + ηv

π
∂xϕ∂xϑ

+ |�p|
πa

sin [2ϑ (x) + (α − δkF ) x]

}
, (2)

where e-e interactions are encoded in the Luttinger parame-
ter K = √

(1 − 2U/v)/(1 + 2U/v), v = (|vL| + |vR|)/2, and
�p = �s sin(

χkL
−χ−kR−α

2 ) is the effective p-wave SC order
parameter. The variables η = (|vL| − |vR|)/(|vL| + |vR|) and
δkF = kL − kR quantify the band asymmetry. When �p = 0,
the above model describes a Luttinger liquid (LL) fixed point
with asymmetric dispersion relation, i.e., right- and left-going
1D plasmon excitations traveling at different velocities.35–37

As shown in Ref. 37, the asymmetric LL is a stable fixed point
with a well-defined Luttinger parameter if η2 + (2U/v)2 < 1.
In general, the SIS-breaking term ∼η∂xϕ∂xϑ tends to enhance
the detrimental effects of the oscillatory factor (α − δkF )x
(see the Supplemental Material34 for details). However, for
typical parameters used in Fig. 1, one can verify that η < 1%
with any θ , and then η∂xϕ∂xϑ is negligible in the following
analysis. We also note that for semiconductor NW, the system
is far away from the half-filling condition and the NW length
L � Lc ≡ |4(kR + kL)/2 − 2π/a|−1. Thus the umklapp term
cos[4φ − 2(kR + kL)x] strongly oscillates at length scales
larger than Lc and averages out to zero.38

For a small �p, the low-energy physics is captured
by the perturbative renormalization-group (PRG) approach
around the LL fixed point.38–41 Implementing a standard
PRG procedure that leaves invariant the LL Gaussian fixed
point under the change in the short-distance cutoff a(�) =
a0e

� → a(� + d�) (cf., e.g., Refs. 26 and 42) allows to obtain
the RG-flow equations dK/d� = y2J0(δpa (�) ), dy/d� =
(2 − K−1)y and dv/d� = −y2vKJ2(δpa (�) ), with δp ≡ α −
δkF .34 Here Jn (z) is the nth order Bessel function of the
first kind and y ≡ �pa0/v is a dimensionless perturbative
parameter which becomes relevant (in the RG sense) for
K > 1/2 and α = δkF .38–41 Interestingly, our RG equations
are analogous to those describing the CICT in doped 1D
Mott-insulating systems after the rescaling K̃ = 4K,ϑ̃ =
ϑ/2,ϕ̃ = 2ϕ, and the subsequent duality transformation ϑ̃ ↔
ϕ̃,K̃ ↔ 1/K̃ .43–45 The crucial term δpx in Eq. (2) plays the
role of the particle doping (relative to half-filling case) in
the CICT, which has the effect of closing the Mott-insulating
gap. Analogously, in our case a finite δp may close the
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SC gap. The condition α = δkF (i.e., δp = 0) determines
the optimal supercurrent J

op
s

Jc
= 3

√
3

2 [1 − (ξδkF )2]ξδkF in the
bosonization approach, for which the topological phase is
maximally restored. This result is independent of interactions,
and relies on the linearization of ε

(−)
k around EF (nonlinearities

may slightly correct J
op
s ).

We now estimate the critical value δpc for the topological
phase transition. If δpa (�) � 1, the sin function in Eq. (2)
is weakly oscillating and the term δpx can be dropped,
rendering the RG equations similar to the those of the
(undoped) sine-Gordon model.38–41 In that case and for
K > 1/2, we reach the strong-coupling regime y(�∗) ∼ 1 at
the scale �∗ = (2 − K−1)−1 ln(ξnw/a0) with ξnw = v/|�p|. In
this regime, the SC term �p sin 2ϑ dominates in Eq. (2),
and the value of ϑ (x) is pinned to the classical minima
ϑ (x) = {−π/4,3π/4}, reflecting the underlyingZ2 symmetry
of the Majorana chain in the limit L → ∞.6,40,41 As δp

increases, the regime δpa (�) > 1 is eventually reached and
the sin function becomes strongly oscillating and averages to
zero. At that point the above RG equations are no longer valid
and the renormalization of y (�) must be stopped.26 The critical
value δpc can be estimated from the condition δpca(�∗) = 1,
which implies that

δpc ∼ 1

a0

(
a0

ξnw

)ν

, ν = 1

2 − K−1
. (3)

This is an important result in our work. In particular, the
noninteracting case U = 0 (or K = 1) results in δpc ∝ ξ−1

nw ∝
�p, which has been confirmed by direct numerical calculation
in the noninteracting model. In the case K �= 1, and for
fixed y0 = y (� = 0), we observe that repulsive (attractive)
e-e interaction destabilizes (stabilizes) the topological phase,
inducing a smaller (larger) δpc. Importantly, for K > 1/2
and tilt angle |θ | < π/2, Eq. (3) implies that the topological
phase can always be restored with a supercurrent such that
|α − δkF | < δpc.

Our results can be measured in the tunneling transport
spectroscopy.17–20 We consider a single normal metallic lead
with a bias voltage eVb, weakly coupled to the left end of the
NW via the tunneling Hamiltonian HT = ∑′

p,q Tp,qd
†
pĉq +∑

p,j Tp,j d
†
pγj + H.c., where Tμν , dp, and γj are the tunneling

coefficients, the electron annihilation operator in metallic lead,
and the Majorana operators at the left (j = L) and right
(j = R) NW ends, respectively. The sum

∑′ runs over the
1D-bulk states in the NW, and |Tp,L| � |Tp,R| due to the
localization of Majorana modes. In the topological phase,
both the MZBS and 1D-bulk continuum modes in the NW
contribute to the tunneling current I = −eṄ = ie

h̄
[N,HT ],

where N = ∑
p d

†
pdp. Using the Keldysh formalism and

following Refs. 18 and 20 we obtain

I = e2

h

∫
dω Tr[�eGR (ω) �hGA (ω)] [1 − f (ω − eVb)]

+ e2

h

∫
dω� (ω) N (ω) [1 − f (ω − eVb)] , (4)

where f (ω) is Fermi distribution function and the trace is
taken in the subspace spanned by γj modes. The retarded and
advanced Majorana Green’s functions GR(ω) = [GA(ω)]† and

FIG. 2. (Color online) dI/dV for (a) θ = 0 and (b) θ = 0.2π

with Js = 0. (c), (d) Restoring the ZBP at θ = 0.2π by supercurrents.
The blue, red, black, and green curves correspond to the temperature
T = 0, 60, 180, and 360 mK, respectively. Other parameters are
V0 = 1.0 meV, Eso = 0.1 meV, �s = 0.5 meV, and the tunneling
energies |�e,h

LL| ∼ |�| = 0.005 meV.

[GR(ω)]−1 = ω/2 + i[�e(ω) + �h(ω)]/2, where �e
ij (ω) =

�h∗
ij (−ω) = 2π

∑
p Tp,iT

∗
p,j δ(ω − εp) are the self-energies,

and εp the single-electron dispersion relation in the metallic
lead. The second term in the right hand side of Eq. (4)
represents the contribution from 1D-bulk states, where �(ω) =
2π

∑
p |Tp,q |2δ(ω − εp), and N (ω) is the 1D-bulk density of

states in the NW.
Numerical results of dI/dV are plotted in Figs. 2(a)–2(d)

at different temperatures. For Js = 0, a ZBP is obtained when
θ < θc ≈ 0.168π [Fig. 2(a)], and disappears when θ > θc

[Fig. 2(b)]. This result is consistent with the experimental
observation in Ref. 22. Figures 2(c) and 2(d) show that the
Majorana-carrying phase is restored by a finite supercurrent
along the +x direction at θ = 0.2π , and maximizes at Js =
J

op
s ≈ 0.039Jc with ξ ∼ 10 nm [Fig. 2(d)].32 The ZBP in the

dI/dV spectra is clearly restored, indicating the reemergence
of the MZBS after the bulk SC gap reopens. Further increasing
Js again reduces the bulk gap [refer to Fig. 1(b)]. We confirm
that the ZBP is 2e2/h at T = 0, when the tunneling coefficients
are small relative to the superconducting bulk gap, and is
strongly suppressed by thermal broadening. The disappearance
and restoration of the ZBP provide useful experimental tests
for topological superconductivity in the laboratory.

Finally we propose an important application of our findings
to braiding MZBSs, as needed in TQC. For a 1D system, the
braiding operation in a single NW is not well defined, and the
minimum requirement to exchange two MZBSs is to consider
a T or Y junction composed of several NW segments.46,47 A
realistic 2D/3D network of MZBSs applicable for TQC can
be constructed by putting together multiple NW junctions.48

However, in such a network some of the NW segments are
unavoidably misaligned with the external magnetic field B,
therefore breaking the SIS in those NWs. Thus, being able
to drive all NWs deep into topological phase then becomes
questionable, bringing an inevitable difficulty to braid MZBSs.
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FIG. 3. (Color online) Supercurrent-assisted braiding (SAB) of
two MZBS in a Y junction. (a) For θ > θc, the NW segment L2 is
initially in the trivial phase at Js = 0. (b) Move the MZBS γ1 to NW
L2 by applying a supercurrent Js = J op

s in L2. (c) Move γ2 to the
original position of γ1. (d) Move γ1 to the NW L1, and then turn off
the supercurrent.

To resolve this problem, we introduce the SAB scheme,
shown in Figs. 3(a)–3(d) for a Y junction. Here the spin
quantization axis of a Rashba SO coupling is perpendicular
to the NW and parallel to the SC plane (interface of the
SC/NW heterostructure).22 To minimize orbital effects, the
B field must lie in the SC plane,49 therefore breaking SIS for
at least one of the two NW segments. If B is applied along
the NW segment L1 (Fig. 3), the segment L2 is topologically
trivial at Js = 0 when θ > θc. On the other hand, to avoid
the existence of low-energy excitations at the intersection of
L1,2, the tilt angle θ must be as close to π/2 as possible.46

For the same parameters as in Fig. 1, the critical angle is
θc ≈ 0.168π (cf. also Ref. 30). Then for θ = 0.2π , the NW
L2 is already in the trivial phase at Js = 0 [Fig. 3(a)], and we
next exchange γ1,2 localized on the ends of L1. To perform
the braiding, we apply a Js = J

op
s ≈ 0.039Jc along L2 [with

ξ ∼ 10 nm for NbTi (Ref. 32)] and move adiabatically first
γ1 to NW L2 by gate control [Fig. 3(b)]. Then we move γ2

to the original position of γ1 [Fig. 3(c)]. Finally γ1 is shuttled
to L1, completing exchange with γ2, and the supercurrent is
turned off after braiding [Fig. 3(d)]. Note that supercurrent
is needed only in the intermediate process of the braiding
operation. Applying the SAB to generic 2D or 3D Majorana
networks can provide vast flexibility for the realistic TQC with
MZBS.

In summary, we have studied the disappearance and
reemergence of MZBSs in Majorana quantum wires with
broken SIS, under the simultaneous effects of a tilted magnetic
field and supercurrents. We have shown the robustness of these
findings against the presence of e-e interactions, providing
insights into the study of correlation effects in 1D topological
SCs with broken SIS. Finally, we introduced a supercurrent-
assisted braiding of MZBSs, which has crucial applications to
the realistic Majorana-fermion-based quantum computation.
Interestingly, our results could be relevant to the emergence
of a pseudo-Fermi surface resulted from the broken SIS
and time-reversal symmetry in Z2 spin liquids, explaining
the intriguing properties observed in the organic compound
EtMe3Sb[Pd(dmit)2]2.50
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