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ϕ-state and inverted Fraunhofer pattern in nonaligned Josephson junctions
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A generic nonaligned Josephson junction in the presence of an external magnetic field is theoretically
considered and an unusual flux-dependent current-phase relation (CPR) is revealed. We explain the origin
of the anomalous CPR via the current density flow induced by the external field within a two-dimensional
quasiclassical Keldysh-Usadel framework. In particular, it is demonstrated that nonaligned Josephson junctions
can be utilized to obtain a ground state other than 0 and π , corresponding to a so-called ϕ junction, which is
tunable via the external magnetic flux. Furthermore, we show that the standard Fraunhofer central peak of the
critical supercurrent may be inverted into a local minimum solely due to geometrical factors in planar junctions.
This yields good consistency with a recent experimental measurement displaying such type of puzzling feature
[Keizer et al., Nature (London) 439, 825 (2006)].
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A sinusoidal current-phase relation (CPR) and Fraunhofer
response of the critical supercurrent through an s-wave
Josephson contact exposed to an external magnetic field
are often considered to be standard characteristics of such
junctions.1–4 Nevertheless, several theoretical studies have
been dedicated to the aim of achieving an experimentally
accessible situation where the CPR is nonsinusoidal.5–7 In
this case, the Josephson ground state may be characterized by
an arbitrary superconducting phase difference ϕ,5–9 rather than
the so-called 0 and π states.10 The first experimental realization
of such a ϕ junction was very recently reported in Ref. 11.

Recent studies have also pointed to the fact that the conven-
tional Fraunhofer pattern in Josephson junctions may be mod-
ified by the junction geometry or interfacial pair breaking.4,8,12

The suppression of the central peak in the interference pattern
can also occur in systems consisting of a superposition
of multiple 0-π junctions.7,8,12 However, there still exists
experimentally observed magnetic interference profiles that
remain unsettled in terms of a theoretical explanation of the
physical origin.13,14 In particular, Keizer et al.13 observed an
anomalous interference pattern with a local minimum at zero
flux in addition to slowly damped oscillations of the critical
supercurrent compared to the standard Fraunhofer pattern. The
setup in Ref. 13 consisted of a planar Josephson junction
where superconducting leads were deposited on a same side
of a half-metallic ferromagnetic strip which was fully spin
polarized. Figure 1(a) depicts diagrammatically the mentioned
experimental setup. To study the system theoretically, Ref. 15
utilized the Eilenberger formalism in a ballistic planar junction,
similar to the setup of Ref. 13, while neglecting the orbital
motion16 of the quasiparticles. Consequently, an effective
spatially dependent superconducting phase difference was
obtained via Ginzburg-Landau theory and substituted into
the Eilenberger equation. An almost �0-periodic pattern with
nonzero minima of the critical current with respect to external
magnetic flux was found due to the appearance of second
harmonic (sin 2ϕ; see also Ref. 5). However, the inverted
interference pattern with a local minimum at zero flux was
not reproduced.

In this Rapid Communication, we consider a generic class
of Josephson junctions in the presence of an external magnetic
field where the position of the superconducting leads relative to

each other is not necessarily aligned (see Fig. 1). The obtained
results are derived without recourse to any ansatz—we have in-
stead utilized a quasiclassical Keldysh-Usadel technique with
the numerical approach in Ref. 12 and solved exactly the resul-
tant linearized equations of motion for the Green’s function. As
our first main result, we unveil that the origin of the unexpected
interference pattern in the experiment of Ref. 13 lies within the
geometry of the setup. In this way, the absence of the standard
Fraunhofer pattern, which has not been clearly understood, is
resolved. In addition to this, we demonstrate as our second
main result that the CPR in nonaligned junctions takes on a
very unusual feature: it becomes shifted by a term proportional
to the external flux �, namely, I (ϕ,�) = I0(�) sin[ϕ +
�(�)], where ϕ is the superconducting phase difference and
� is a geometry-dependent function. Our investigations reveal
that the well-known sinusoidal supercurrent and consequently
the Fraunhofer pattern manifest only in specific situations.
This result is explained in terms of the current density flow
stemming from the orbital effect induced by the magnetic field.
An interesting consequence of the external magnetic flux-
shifted superconducting phase difference is that the ground
state of the system may be tuned via the external field so that
the equilibrium phase difference differs from the conventional
0 or π solutions making a so-called ϕ junction. This might
constitute a simpler alternative to realizing a ϕ state compared
to the array of superconductor/ferromagnet/superconductor
(S/F/S) junctions considered in Ref. 11.

In the presence of impurity scattering, i.e., the diffu-
sive regime of transport, the quasiparticles’ momentum is
integrated over all directions in the space which leads to
the Usadel equation. Solving the Usadel equation in the
presence of a magnetic field allows one to compute the current
density flow profile in the junction which is different from the
individual trajectories taken by each quasiparticle. Grazing
trajectories are not well defined in this regime although they
need to be considered carefully in the clean regime (where the
Eilenberger equation is valid).16

The starting point for the analysis is the equation of motion
for the Green’s function in the diffusive regime provided by
the Usadel equation:17

D[∂̂,Ǧ(x,y,z)[∂̂,Ǧ(x,y,z)]] + i[ερ̂3,Ǧ(x,y,z)] = 0, (1)
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FIG. 1. (Color online) Diagram of considered setups in this paper.
An external magnetic field H (not shown) is applied to the junction in
the z direction. The junction lengths and widths are d and W , respec-
tively. (a) The planar Josephson junction that has experimentally been
studied in, e.g., Ref. 13. The widths of the superconducting leads are
assumed to be W1L and W − (W1L + W2L). (b) The usual stacked
geometry of a Josephson junction with displaced superconducting
leads. The superconducting leads’ sizes are W1L and W2R at the top
and bottom of the junction, respectively. (c) Qualitative view of the
current density flow inside the normal strip subject to an external
magnetic field, which is used to describe the origin of the addressed
unusual CPR.

where ρ̂3 is the 4 × 4 Pauli matrix. Here, ε is the particles’
energy measured from the Fermi level and D is medium
diffusive constant. The commutator is denoted by [. . . , . . .].
In the presence of an external magnetic field H and its vector
potential A, ∂̂ ≡ �∇1̂ − ieA(x,y,z)ρ̂3 provided that18

[∂̂,Ĝ(x,y,z)] = �∇Ĝ(x,y,z) − ie[A(x,y,z)ρ̂3,Ĝ(x,y,z)]. (2)

The vector potential is an arbitrary quantity except for the
restriction �∇ × A = H. We use the Coulomb gauge �∇ · A = 0
throughout our calculations and assume that the external
magnetic field is oriented in the z direction, i.e., H = Hẑ

(see Fig. 1). Thus, we may use A = −yHx̂. In general,
the Usadel equation should be simultaneously solved along
with the Maxwell equation �∇ × H = μ0j in a self-consistent
manner to take into account the influence of screening currents.
The experimentally relevant scenario is considered where
the width of the junction W is smaller than the Josephson
penetration length λJ , allowing us to ignore the screening of
the magnetic field.4,12,19 The Usadel motion equation yields
a system of nonlinear coupled complex partial differential
equations that should be supported by suitable boundary
conditions for studying junctions. In our Josephson system,
we employ the Kupriyanov-Lukichev boundary conditions at
normal metal/superconductor (N/S) interfaces20 and control
the leakage of superconductive correlations into the normal
strip using an interface parameter ζ :

ζ {Ĝ(x,y,z)∂̂Ĝ(x,y,z)} · n̂ = [ĜBCS(ϕ),Ĝ(x,y,z)], (3)

in which n̂ is a unit vector denoting the perpendicular direction
to an interface and ϕ is the bulk superconducting macroscopic
phase. We define ζ = RB/RF as the ratio between the
resistance of the barrier region and the resistance in the
normal sandwiched strip. The bulk solution for the retarded
Green’s function in an s-wave superconductor is given by18

gR
BCS = cosh ϑ(ε) and f R

BCS = eiϕ sinh ϑ(ε) in which ϑ(ε) =
arctanh(|�|/ε). For a weak proximity effect (ζ � 1), the
normal and anomalous Green’s functions can be approximated

by gR � 1 and |f R| � 1, respectively. The current density
vector is expressed via the Keldysh block as

J( �R,ϕ) = J0

∫
dε Tr(ρ3{Ĝ(x,y,z)[∂̂,Ĝ(x,y,z)]}K ). (4)

Here, J0 is a normalization constant proportional to the density
of states N0 at the Fermi level. The total supercurrent I is ob-
tained by integrating the current density over the interface area
of the superconducting banks. The flux penetrating the junction
is given by � = dWH . We also investigate the spatial varia-
tion of pair potential inside the normal region calculated via

U = U0Tr

{
(ρ̂1 − iρ̂2)

∫
dε τ̂3Ǧ

K (x,y,z)

}
, (5)

where U0 = −N0λ/16.18 In the presence of an external mag-
netic field, the resultant differential equations and boundary
conditions have a more complicated coordinate dependence
which renders an analytical solution virtually impossible.
Without any orbital effect, such a solution may be obtained.9 To
study the considered Josephson junction we use a collocation
finite element numerical method the same as Ref. 12. The
components of approximate solution are assumed to be linear
combinations of bicubic Hermite basis functions satisfying the
boundary conditions. Ultimately, the resultant nonsymmetric
linear algebraic equations are solved via a Jacobi conjugate-
gradient method. For more details, see Ref. 21. All lengths
and energies are normalized by the superconducting coherent
length ξS and superconducting gap at absolute zero �0. The
barrier resistance ζ is fixed at 7 ensuring the validity of weak
proximity regime. Temperature and junction width are T =
0.05Tc and W = 10ξS . We use units such that h̄ = kB = 1.

Figure 2 illustrates the response of the critical Josephson
current in a planar junction to an external magnetic field as
shown schematically in Fig. 1(a). Various parameter values
have been considered in order to make our analysis as general

FIG. 2. (Color online) Critical supercurrent as a function of
external magnetic flux � through the normal part of the junction.
The corresponding pair potential spatial map is given with ϕ = 0.
Throughout the paper we have assumed that the junction width is
fixed at W = 10ξS . The first and second columns show the critical
current Ic/I0 vs normalized external magnetic flux �/�0 and the
corresponding pair potential spatial maps with thicknesses d = ξS

and 4ξS , respectively. Each row indicates different values of W1L and
W2L, namely, the first superconducting lead size and the separation
of the superconducting leads, respectively (see Fig. 1).
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as possible. To do so, we have considered three scenarios
where the superconducting leads have different sizes (first
row) and where they have equal sizes with a large (second row)
and small (third row) separation distance. Specifically, the third
row is relevant with regard to the experiment in Ref. 13 where
the size of the electrodes far exceeds the separation distance.
As seen, in this case the interference pattern exhibits a local
minimum at � = 0 rather than a maximum as in the Fraunhofer
case, which is fully consistent with the experimental results in
Ref. 13. Whereas it was speculated that this minimum might
be attributed to a shift in the entire interference curve due
to a finite sample magnetization in Ref. 13, it is obvious
that this is not the case here since the sandwiched strip
is not ferromagnetic. Moreover, such a shift would make
the current vs flux curve manifestly asymmetric (see, e.g.,
Ref. 22), in contrast to the experimental results of Ref. 13
where the central minimum is flanked by two large peaks,
similar to our results. Based on this, it seems reasonable to
explain the deviation from the standard Fraunhofer pattern as
a result originating from the combination of a planar geometry
with the size and separation distance of the superconducting
electrodes. The latter fact is seen by considering the second
row of Fig. 2 where the separation distance is large compared
to the superconductors: A Fraunhofer-like pattern emerges,
although the decay becomes more monotonic as the thickness
d of the normal strip increases. Even columns in both Figs. 2
and 3 show the pair potential where the superconducting phase
difference is zero, ϕ = 0, and external magnetic flux is set to
� = 4 �0. As seen, the predicted proximity vortices in Refs. 4
and 12 vanish for the planar junction geometry. However, as
will be discussed further below, they reappear in the specific
case of a stacked geometry [Fig. 1(b)].

It is instructive to contrast these results with the geometry of
Fig. 1(b) where the two superconducting leads are connected
to the normal strip at opposite edges. This is resemblant to
the experimentally often used stacked geometry. The order of
frames (critical current and corresponding pair potential spatial
map) are identical to those in Fig. 3 and various lead sizes and
locations are investigated. It is seen that the location and size
of both terminals are vital in terms of determining how the
critical current responds to the external flux. For instance, our
results reveal that only in the specific case where the widths
of the leads are sufficiently large and connected to opposite
edges precisely in front of each other does one recover a

FIG. 4. (Color online) (a) W1L = 3ξS , W2L = 4ξS , W1R = 3ξS ,
and W2R = 4ξS ; (b) W1L = 6ξS , W2L = 4ξS , W1R = 0, and
W2R = 4ξS ; and finally, (c) W1L = 2ξS and W2L = 6ξS . The top
panels represent the CPRs for various values of �/�0 = 0, 3.92, and
6.28. The current density spatial maps in the bottom row show the
results for ϕ = 0 and � = 4�0. The superconducting leads’ sizes
are set equal at 4ξS for all cases as schematically depicted on top of
each column.

proximity-induced vortex pattern along with the Fraunhofer
curve, i.e., I (ϕ,�) ∝ �−1 sin � sin ϕ, which is a special case
corresponding to the scenario of Ref. 4. The results for the
other scenarios in Fig. 3 also show good consistency with
previous experimental observations.23

It is worth examining the characteristic length scales and
thus the radius of the current circulation in Fig. 4. To illustrate
this, we consider for concreteness the simplest case of a wide
S/N/S junction subject to a perpendicular magnetic field (to
see more details, see Ref. 4). In this particular case, the
current density is given by Jx( �R,ϕ) = J0x sin(ϕ − 2 π�

�0W
y).

As seen, the characteristic length scale Lc over which the
current density changes upon moving along the y axis is

FIG. 3. (Color online) Critical supercurrent against external magnetic flux and corresponding pair potential spatial maps of standard (stacked)
Josephson junctions with displaced superconducting leads including various lead sizes. For the pair potential maps, the superconducting phase
difference and external magnetic flux are fixed at ϕ = 0 and � = 4 �0, respectively. The junction thickness and width are set to d = 2ξS and
W = 10ξS , respectively.
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Lc ∼ �0W/�. Thus, for magnetic fields corresponding to
several flux quanta Lc can be smaller than the junction size.
With increasing external magnetic flux �, the current density
flow shown in Fig. 4 takes on smaller radii. Instead, when
decreasing the external flux � → 0, Lc → ∞, which means
there exists no current circulation in the system. In other words,
the current density spatial map of the system is uniform in the
absence of any external magnetic flux.

Having unveiled the origin of the anomalous inverted
Fraunhofer response, we now turn to the second main result
of this paper: the possibility to generate a ϕ junction in an
S/N/S system with an applied magnetic field. In Fig. 4, we
provide the CPR in addition to a spatial map of the current
flow in the normal strip for three represented geometries.
In (a) the leads are connected opposite to each other; in
(b) they are connected antisymmetrically, whereas in (c) they
are connected symmetrically in a planar geometry similar
to Ref. 13. It is clear that the CPR remains sinusoidal as a
function of the superconducting phase difference ϕ in both
(a) and (b) independent on the applied flux. However, case (c)
is qualitatively different. The generic form of the CPR is now
revealed as

I (ϕ,�) = I0(�) sin[ϕ + �(�)] (6)

in which I0(�) and �(�) are geometry-dependent functions
of external magnetic flux as seen in Fig. 4. In fact, Eq. (6)
holds for all situations considered in Fig. 2 where we have
demonstrated the CPR is never purely sinusoidal. The standard
sinusoidal CPR is recovered only for symmetric situations
relative to the induced orbital motion by the external magnetic
field [see Fig. 1(c)]. This observation has a highly interesting
consequence: The anomalous magnetic flux-coupled CPR
ensures that the ground state of the system may be tuned so that
the equilibrium phase difference differs from the conventional
0 or π solutions. Instead, a so-called ϕ junction may be
realized where the ground-state phase difference ϕ is tunable
via the external flux. We therefore arrive at a ground state with
Josephson energy EJ which can be controlled by adjusting the
applied external magnetic field. The idea of a ϕ junction via
a superconducting phase difference shift has been considered
previously6 in the context of a noncentrosymmetric normal
layer with a Rashba spin-orbit interaction. However, in our
setup the external flux is a well-controlled parameter which
allows for easy tuning of the ground state, as opposed to
controlling a spin-orbit interaction parameter. Moreover, our
finding is different from Ref. 7 where two magnetic junctions,
one in 0 state and the other in π state with different lengths,
are connected in parallel and consequently generate an extra
cosinusoidal term in addition to negative second harmonic.

What is then the physical origin of this anomalous CPR?
The answer to this question may be obtained by investigating
the current density flow under the influence of an external
magnetic field inside the normal strip, as seen in Fig. 4.
For zero phase difference ϕ = 0, the external magnetic field
induces a current flow where the orbital paths taken by the
quasiparticles move with the same flux in and out of the
superconducting regions—in effect no net current flow, only
in special geometrical configurations. For instance, both in
(a) and (b) the current flow between the superconductors in
any part of the normal region is seen to have an antisymmetric,
and thus canceling, contribution in a different part of the
normal strip at zero phase difference ϕ = 0. In contrast,
this is no longer the case in setup (c): There is a net
flow of current induced by the orbital response due to the
magnetic flux, even at ϕ = 0. To elucidate this clearly in the
current flow, one would have to consider the amplitude of
the local current as well, but the supercurrent-phase curves
nevertheless demonstrate that this interpretation is correct. In
essence, this is a geometry-dependent effect since it relies on
the positioning of the leads relative to the induced current
flow via the applied field. Thus, it gives rise to the unique
possibility to alter the standard CPR so that the ground
state of the system can be adjusted by tuning the external
flux.

To conclude, we have studied the Josephson critical current
and its response to an external magnetic flux in experimentally
feasible nonaligned junctions. Specifically, a planar geometry
similar to a recent experiment13 is considered and it is
demonstrated that the observed suppression at zero flux may
stem from the junction geometry rather than any intrinsic
magnetization. Moreover, it is shown that a highly unusual
supercurrent-phase difference shift occurs inevitably in a class
of nonaligned junctions due to an external magnetic flux.
Its precise form is sensitive to the size and location of the
superconducting leads. Consequently, this offers a route to
a tunable junction ground state. The physical origin of this
effect is traced back to the induced current density flow due
to the presence of an external field relative to the position
of the superconducting leads. As an interesting consequence,
this type of Josephson junction constitutes an attainable way
of realizing the so-called ϕ junction experimentally.
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