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We study the energy and the static spin structure factor of the ground state of the spin-1/2 quantum Heisenberg
antiferromagnetic model on the kagome lattice. By the iterative application of a few Lanczos steps on accurate
projected fermionic wave functions and the Green’s function Monte Carlo technique, we find that a gapless
(algebraic) U (1) Dirac spin liquid is competitive with previously proposed gapped (topological) Z2 spin
liquids. By performing a finite-size extrapolation of the ground-state energy, we obtain an energy per site
E/J = −0.4365(2), which is equal, within three error bars, to the estimates given by the density-matrix
renormalization group (DMRG). Our estimate is obtained for a translationally invariant system, and, therefore,
does not suffer from boundary effects, like in DMRG. Moreover, on finite toric clusters at the pure variational
level, our energies are lower compared to those from DMRG calculations.
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Introduction. The spin-1/2 quantum Heisenberg antiferro-
magnet (QHAF) on the kagome lattice provides a conducive
environment to stabilize a quantum paramagnetic phase of
matter down to zero temperature,1–3 a fact that has been
convincingly established theoretically from several studies,
including exact diagonalization,4–8 series expansion,9,10 quan-
tum Monte Carlo,11 and analytical techniques.12 The question
of the precise nature of the spin-liquid state of the kagome
spin-1/2 QHAF has been intensely debated on the theoretical
front, albeit without any definitive conclusions. Different
approximate numerical techniques have claimed a variety of
ground states. On the one hand, density-matrix renormaliza-
tion group (DMRG) calculations have been claimed for a
fully gapped (nonchiral) Z2 topological spin-liquid ground
state that does not break any point group symmetry.13,14 On
the other hand, an algebraic and fully symmetric U (1) Dirac
spin liquid has been proposed as the ground state, by using
projected fermionic wave functions and the variational Monte
Carlo (VMC) approach.15–20 In addition, valence bond crystals
have been suggested from many other techniques. In particular,
a 36-site unit cell valence-bond crystal21–23 was proposed
using quantum dimer models,24–28 series expansion,29,30 and
multiscale entanglement renormalization ansatz (MERA)31

techniques. Finally, a recent coupled cluster method (CCM)
suggested a q = 0 (uniform) state.32

On general theoretical grounds, the Z2 spin liquids in two
spatial dimensions are known to be stable phases,33–35 as
compared to algebraic U (1) spin liquids, which are known
to be only marginally stable.36 However, explicit numerical
calculations using projected wave functions have shown the
U (1) Dirac spin liquid to be stable (locally and globally) with
respect to dimerizing into all known valence-bond crystal
phases.15,17,18,20 Furthermore, it was shown that, within this
class of Gutzwiller projected wave functions, all the fully
symmetric, gapped Z2 spin liquids have a higher energy
compared to the U (1) Dirac spin liquid.19,37

On the experimental front, the kagome spin-1/2 QHAF
model is well reproduced in herbertsmithite [ZnCu3(OH)6Cl2],
a compound with perfect kagome lattice geometry.38–47

All experimental probes on herbertsmithite point towards a
spin-liquid behavior down to 20 mK (i.e., four orders of
magnitude smaller than the superexchange coupling), which
was established on the magnesium version of herbertsmithite
[MgCu3(OH)6Cl2].48–50 Raman spectroscopic studies give
further hints towards a gapless (algebraic) spin liquid.51

In this Rapid Communication, we systematically improve
the projected fermionic wave functions of the U (1) Dirac
and other competing spin liquids by applying a few Lanczos
steps on large clusters, implemented stochastically within a
variational Monte Carlo method.52 We perform a zero-variance
extrapolation of the energy and the static spin structure
factor, which enables us to extract their exact values in
the ground state on large cluster sizes and obtain an accurate
estimate of the thermodynamic limit. In addition, we use the
Green’s function Monte Carlo method, with the fixed-node
(FN) approximation,53 to extract the physical properties of
the true ground state. Our main result is to show that the U (1)
gapless spin liquid has an energy quite close to recent DMRG
estimates,13,14 thus representing a very competitive state for the
spin-1/2 QHAF on the kagome lattice (if not the true ground
state).

Model, wave functions, and numerical techniques. The
Hamiltonian for the spin-1/2 quantum Heisenberg antiferro-
magnetic model is

Ĥ = J
∑
〈ij〉

Ŝi · Ŝj , (1)

where J > 0 and 〈ij 〉 denotes the sum over nearest-neighbor
pairs of sites. The Ŝi are spin-1/2 operators at each site i. All
energies will be given in units of J .

The physical variational wave functions are defined by
projecting noncorrelated fermionic states:

|�VMC(χij ,�ij ,μ,ζ )〉 = PG|�MF(χij ,�ij ,μ,ζ )〉, (2)

where PG = ∏
i(1 − ni,↑ni,↓) is the full Gutzwiller projec-

tor enforcing the one fermion per site constraint. Here,
|�MF(χij ,�ij ,μ,ζ )〉 is the ground state of a mean-field
Hamiltonian constructed out of Abrikosov fermions and
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TABLE I. Energies of the U (1) Dirac spin liquid with p = 0, 1, and 2 Lanczos steps on different cluster sizes obtained by variational and
FN Monte Carlo are given. In the penultimate column, we report the best variational DMRG energies (Ref. 60). The ground-state energy of
the spin-1/2 QHAF estimated by us using zero-variance extrapolation of VMC energy values on different cluster sizes is marked in bold.

Size 0-LS 1-LS 2-LS 0-LS + FN 1-LS + FN 2-LS + FN Var. DMRG Est. ground state

48 −0.4293510(4) −0.4352562(3) −0.436712(1) −0.432130(2) −0.435834(3) −0.436942(2) −0.4366 −0.437845(4)
108 −0.4287665(4) −0.4341032(5) −0.435787(3) −0.431507(1) −0.434823(2) −0.436072(1) −0.4316 −0.437178(9)
144 −0.4286959(5) −0.4337616(4) −0.435515(4) −0.4314455(8) −0.434544(2) −0.435839(9) −0.43698(2)
192 −0.4286749(4) −0.4334481(5) −0.435255(4) −0.431437(2) −0.434325(4) −0.435633(8) −0.43674(3)

containing hopping, chemical potential, and singlet pairing
terms:

ĤMF =
∑
i,j,α

(χij + μδij )ĉ†i,αĉj,α

+
∑
i,j

{(�ij + ζ δij )ĉ†i,↑ĉ
†
j,↓ + H.c.}, (3)

where α =↑ , ↓, χij = χ∗
ji , and �ij = �ji . Besides the

chemical potential μ, we also consider real and imaginary
components of on-site pairing, which are absorbed in ζ .
The spin-liquid phases are characterized by different patterns
of distribution of the underlying gauge fluxes through the
plaquettes which are implemented by a certain distribution
of the phases of χij and �ij on the lattice links; in addition
one also needs to specify the on-site terms μ and ζ .34,54

Here, we want to improve previous variational calculations,
and approach the true ground state in a systematic way. This
task can be achieved by the application of few Lanczos steps:52

|�p−LS〉 =
(

1 +
p∑

k=1

αkĤk

)
|�VMC〉, (4)

where the αk’s are additional variational parameters. The
convergence of |�p-LS〉 to the exact ground state |�ex〉 is guar-
anteed for large p provided the starting state is not orthogonal
to |�ex〉, i.e., for 〈�ex|�VMC〉 �= 0. However, on large cluster
sizes, only a few steps can be efficiently performed and here we
consider the case with p = 1 and p = 2 (p = 0 corresponds to
the original starting variational wave function). Subsequently,
an estimate of the exact ground-state energy may be achieved
by the method of variance extrapolation: For sufficiently accu-
rate states, we have that E ≈ Eex + constant × σ 2, where E =
〈Ĥ〉/N and σ 2 = (〈Ĥ2〉 − 〈Ĥ〉2)/N are the energy and vari-
ance per site, respectively, whence, the exact ground-state en-
ergy Eex can be extracted by fitting E vs σ 2 for p = 0, 1, and 2.

The energy, its variance, and other physical properties
of the wave functions corresponding to p = 0, 1, and 2
Lanczos steps are obtained using the standard VMC method.
Moreover, the pure variational approach may be improved by
using the FN approach, in which the high-energy components
of the variational wave function are (partially) filtered out.53

In particular, in the FN Monte Carlo method, the ground
state of an auxiliary FN Hamiltonian is obtained and the
approximation consists in assigning the nodal surface a priori,
based upon a given guiding wave function, which is generally
the best variational state. The energies obtained in this way are
variational,53 and hence we have a controlled approximation
of the original problem. Here, the guiding wave function is
obtained by optimizing the mean-field state of Eq. (2) using
the method described in Refs. 55 and 56. Then, we find the

best Lanczos parameters αp and finally we perform the VMC
and FN Monte Carlo calculations for |�p-LS〉 with p = 0, 1,
and 2.

Results. We performed our variational calculations on toric
clusters with mixed periodic-antiperiodic boundary conditions
on the mean-field Hamiltonian of Eq. (3), which ensure
nondegenerate wave functions at half filling. We first consider
the 48-site cluster (i.e., 4 × 4 × 3). As our starting (p = 0)
variational wave functions, we take three different spin liquids,
namely, (i) the U (1) Dirac spin liquid, which has a Fermi
surface consisting of two points.15,16 The structure of the wave
function is such that 10% of the configurations |x〉 (in which
electrons reside on different sites of the lattice with given
spin along the z direction) have zero weight (i.e., 〈x|�VMC〉 =
0); (ii) the uniform RVB spin liquid, which consists of a
large circular spinon Fermi surface,17 and has 35% of the
configurations with zero weight; and (iii) the Z2[0,π ]β spin
liquid, which is fully gapped57 and has a negligible (0.001%)
number of configurations with zero weight. The zero-weight
configurations are not visited by the random walk in the
variational Monte Carlo method. The effect of two Lanczos
steps on these wave functions is shown in Fig. 1 [see also
Table I for the actual values of the energies of the U (1)
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FIG. 1. (Color online) Variational energies of the 48-site cluster
as a function of the variance of the energy, for zero, one, and two
Lanczos steps. The ground-state energy is estimated by extrapolating
the three variational results to the zero-variance limit by a quadratic
fit. Three different starting wave functions are used. The U (1) Dirac
spin liquid has also been studied using FN approximation.
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FIG. 2. (Color online) The same as in Fig. 1 for the 192-site
cluster. Here, only Z2[0,π ]β and U (1) Dirac states have been
considered.

Dirac state]. Our estimate of the ground-state energy on
the 48-site cluster is thus E/J = −0.437 845(4), which is
comparable with the DMRG estimate on a torus.14,58 Also
the best pure variational energies are comparable within the
two methods (see Table I). We want to stress the fact that
the extrapolated energy is the same (within error bars) upon
starting from all three wave functions. This is mainly due to the
fact that, on relatively small clusters, a few Lanczos steps are
enough to filter out the high-energy components of the initial
wave function and get a good estimation of the ground-state
energy.

On larger sizes, the extrapolations of U (1) and Z2[0,π ]β
states deviate, the former one giving a slightly lower extrapo-
lation (see Fig. 2 for the 192-site cluster). This fact suggests
that the actual ground state is better described by a gapless
algebraic U (1) Dirac state, rather than a gapped topological
Z2 spin liquid, as reported by DMRG calculations. In the
following, for obtaining the ground-state energies on larger
clusters we used only the U (1) Dirac wave function as the
starting variational state. In Table I, we report our best results
on different clusters (see the Supplemental Material59 for plots
of the variance extrapolations on 108- and 144-site clusters).
We would like to emphasize that our best variational energy
on a 108-site cluster is significantly lower compared to the
corresponding DMRG one (see Table I).

By using the ground-state energy estimates on different
cluster sizes, we performed a finite-size extrapolation (see
Fig. 3). Our final estimate for the energy of the infinite two-
dimensional system is

E2D
∞

/
J = −0.4365(2). (5)

This estimate is slightly higher (see Fig. 3) compared to DMRG
extrapolations of Refs. 13 and 14. However, an energy estimate
which is slightly lower by only a few error bars does not
necessarily mean it is more accurate. We would like to stress
that the same value for the extrapolated energy is obtained
by using the FN approach (see the Supplemental Material59).
Moreover, it is worth mentioning that our energies are obtained

0 0.01 0.02 0.03
1/N

-0.4385

-0.438

-0.4375

-0.437

-0.4365

G
ro

un
d 

st
at

e 
en

er
gy

 p
er

 si
te

2d estimate from Lanczos+VMC (current work)
2d estimate from DMRG (Ref. [14])
2d estimate from DMRG (Ref. [13])

FIG. 3. (Color online) The thermodynamic estimate of the
ground-state energy obtained by a finite-size extrapolation of the
estimated ground-state energies (see Table I). The linear (solid line)
and quadratic (dashed line) fits give essentially the same estimate.
The energy on the 36-site cluster is from exact diagonalization.
Comparison is also made with recent DMRG estimates.13,14

with a state that has all the symmetries of the lattice, while
DMRG states are nonuniform (due to boundary effects).

Let us now move to the calculation of the spin-spin
correlations, which is defined by

S(q) = 1

N

∑
ij

∑
R

e−ıq·RSij (R), (6)

where N is the total number of sites, i,j = 1, 2, and 3 label
the three sites in the unit cell, R defines the Bravais lattice, and
Sij (R) is the real space spin-spin correlation function.

The U (1) Dirac spin liquid is characterized by a power-
law (∼1/r4) decay of real-space, long-distance spin-spin
correlations.16 Here, we study the evolution of its static spin
structure factor S(q) on the 192-site cluster under the action
of one and two Lanczos steps and zero-variance extrapolation.
Our estimate of the ground-state S(q) is obtained by a zero-
variance extrapolation (see the Supplemental Material59). The
corresponding intensity plot of the extrapolated S(q) is shown
in Fig. 4. One can clearly see that at large q, the spectral
weight is concentrated on the corners of the hexagon, not very
differently from what is found in a recent DMRG study.14

However, what really matters is the behavior of S(q) for small
q (namely, at long distance). Although the application of a few
Lanczos steps may not be sufficient to change the long-distance
properties (because the Hamiltonian is a local operator), our
calculations show that S(q) at small q remains practically
unchanged under the action of one or two Lanczos steps and the
subsequent zero-variance extrapolation (see the Supplemental
Material59).

Summary. In summary, our systematic numerical study
shows that competitive variational wave functions based upon
Abrikosov fermions may be obtained. Indeed, our estimation
for the energy of a gapless (algebraic) U (1) Dirac spin liquid
is very close to the recent DMRG results,13,14 which supported
a fully gapped Z2 topological spin-liquid ground state. In this
respect, our results lend support to the view that the exotic
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FIG. 4. (Color online) Intensity plot of the static spin structure
factor S(q) on the 192-site cluster.

algebraic spin liquid can in fact occur as a true ground state of
the spin-1/2 QHAF on the kagome lattice. Very recently, other

approximate approaches proposed alternative ground states
with or without broken symmetries.61–63

We would like to mention that a further improvement of
the variational wave function would require an introduction of
local monopole fluctuations over the static mean-field state
of Eq. (3). On small system sizes, such fluctuations were
shown to lower the energy of the system within the Schwinger
boson approach.64 However, on large clusters, it is extremely
difficult to construct workable wave functions with (even
static) topological defects. It is worth mentioning that the
possibility of another energetically competing state entering
the game remains open; this is a chiral Z2 topological spin
liquid65 which has been proposed as the ground state within a
Schwinger boson mean-field theory,66 but whose projected
wave-function study remains to be done on large clusters
such as 48 sites so as to enable a comparison with the U (1)
Dirac spin liquid. Finally, the projected wave functions can
also be constructed for chiral valence-bond crystal phases and
it would be interesting to study their energetics, especially
in light of the fact that they have been proposed as a
competing ground state using generalized quantum dimer
models.28
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