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Transport in multiterminal superconductor/ferromagnet junctions having spin-dependent interfaces
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We study electronic transport in junctions consisting of a superconductor electrode and two ferromagnet
(F) leads in which crossed Andreev reflections (CAR) and elastic cotunnelings are accommodated. We model
the system using an extended Blonder-Tinkham-Klapwijk treatment with a key modification that accounts for
spin-dependent interfacial barriers (SDIB). We compute current-voltage relations as a function of parameters
characterizing the SDIB, magnetization in the F leads, geometry of the junction, and temperature. Our results
reveal a rich range of significantly altered physics due to a combination of interfering spin-dependent scattering
processes and population imbalance in the ferromagnets, such as a significant enhancement in CAR current and a
sign change in the relative difference between resistance of two cases having a antiparallel or parallel alignment
of the magnetization in the F leads, respectively. Our model accounts for the surprising experimental findings of
positive relative resistance by M. Colci et al. [Phys. Rev. B 85, 180512(R) (2012)] as well as previously measured
negative relative resistance results, both within sufficiently large parameter regions.
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I. INTRODUCTION

Over the past decades, extensive theoretical and ex-
perimental research has focused on electronic transport in
superconductor–normal metal (S-N) heterostructures, wherein
conducting electrons propagate through bulk materials and
scatter at interfaces.1–4 More recently, attention has turned to
systems comprising an S electrode in contact with multi-N
terminals, in which a unique scattering process known as the
crossed Andreev reflection (CAR) can occur.5–15 The CAR
process involves an electron in an N terminal impinging
the S accompanied by a hole of opposite spin reflecting
in another N terminal separated within the superconducting
coherence length, and generating a Cooper pair in S. The
nonlocal and coherent nature of CAR makes such a device
a platform for exploring quantum entanglement, providing
potential application to quantum computing.16

Another avenue of S-N junction studies which has recently
gained prominence is the presence of ferromagnetic order in
the normal system. Transport physics can be significantly
altered when the normal system is a ferromagnet (F). For
instance, the F bulk can be created by spin imbalance, changing
the populations involved in the transport processes as well
as spin-dependent interfaces that modify both the proximity
effect17–20 and electron scattering.21–24 In S-F junctions, the
interplay between ferromagnetic and superconducting orders
around the interface strongly affects Andreev reflections25–29

(the direct process of an incoming electron reflecting as a
hole of opposite spin within the same terminal30), while in
S-F-S systems it can lead to Josephson π junctions sustaining
negative critical currents.31–34

Recent experiments35–38 have been performed on S-FF-S
devices in which two F bridges are both laid across two S
electrodes, with the separation between the two F bridges
being smaller than the superconducting coherence length (thus
capable of accommodating CAR). The results show that the
system can exhibit both positive37,38 and negative35,36 relative
resistances between two different cases characterized by an
antiparallel (AP) or parallel (P) alignment of magnetization

in the F leads, respectively. [The relative resistance, denoted
by δR, is defined as the normalized value of the difference
RAP − RP, where RAP(P) is the resistance across the junction
with AP (P) configuration. See Eq. (29) for details.] Since
coherent transport between the two S electrodes is not
revealed in the experimental data, the S-FF-S device can be
considered as a series connection of two independent S-FF
junctions (each of which, as illustrated in Fig. 1, carries
coherent transport between the two F leads). Therefore, one
can study the transport properties of the S-FF-S system by
investigating the S-FF junction. In such cases, the negative
δR (RP > RAP) can be understood by an intuitive picture
that the suppression of CAR due to spin imbalance raises
the resistance of the P case, or can be explicitly explained
by a Blonder-Tinkham-Klapwijk (BTK) treatment1 with spin-
independent interfacial barriers.39 However, such a BTK
model cannot explain the counterintuitive data of positive
δR, which suggests that a competitive effect should be
incorporated.

Motivated by these experiments, we provide one of the first
comprehensive theoretical studies of S-FF junctions having
spin-dependent interfacial barriers (SDIB). The presence of
SDIB at the junction between a superconductor and a single
ferromagnet has been shown to considerably alter transport
properties.21–29 For our situation, the SDIB plays a prominent
role in affecting coherence and cross correlations between
excitations in the two ferromagnets. We explore the large
parameter space of the system and show that SDIB can give
rise to a rich range of physics depending on the choice of
parameters. We provide a consistent scenario explaining both
competing experimental results described above. In fact, a
small subsection of the studies investigated here has been
directly employed to explain the counterintuitive experimental
results presented in Ref. 38. We propose a microscopic picture
describing the SDIB within an extended BTK model and
compute transport properties of the system as a function of
the derived SDIB parameters. We carefully discuss the various
scattering processes responsible for the difference in behavior
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FIG. 1. (Color online) Cartoon representation of an SFF junction.
The system has two ferromagnetic leads F1 (F2), illustrated as the
shaded regions in the second (third) quadrant having width W1(2)

and separation L between them, and a superconducting electrode S

illustrated as the shaded region in the x > 0 plane with width WS . The
F1(2)-S interfaces (twilled regions) are described by spin-dependent
interface parameters Z1 and Z2, respectively. Black dashed arrows
indicate six scattering processes experienced by an electron in F1
incident on the interface (Inc., white dashed arrow): local normal
reflection (LNR), local Andreev reflection (LAR), crossed normal
reflection (CNR, also referred to as elastic cotunneling), crossed
Andreev reflection (CAR), quasiparticle transmission (QPT), and
quasihole transmission (QHT).

between the P and AP cases and show that interference
between these processes can play a significant role. We
analyze transport properties as a function of magnetization,
the geometry of the system, and temperature. We show that
they reveal several interesting features, such as the sought-
after differing behavior for the P and AP cases, oscillations
as a function of geometry, and, under certain conditions,
enhancement of crossed Andreev reflection, which would be
indicative of long-range entanglement.

Our studies thus not only reconcile the apparently con-
flicting results of the various experiments; they also provide
several other aspects to explore within the same experimental
settings. Our extended BTK model also applies to several other
possible experimental geometries, including other multitermi-
nal superconducting hybrids that possess a two-dimensional
nature characterizing the elongation and separation of the
terminals, such as multilayer40–42 or multiwire43,44 devices in
the presence of the spin-dependent interfacial scattering.

The paper is outlined as follows. In Sec. II we model
the geometry of the system and present the corresponding
Hamiltonian describing six scattering processes. We also
discuss a possible microscopic mechanism resulting in an
SDIB. In Sec. III, by applying the BTK treatment we derive
the current-voltage (I -V ) relation as a function of exchange
energy, SDIB parameters, the geometry of the junction and
temperature. In Sec. IV, we illustrate data showing the
dependence of transport properties on several groups of
variables associated with ferromagnetism, geometry of the
system, and temperature, respectively. We discuss the effects
of SDIB compared to the spin-independent case and other
effects competing or cooperating with SDIB. In Sec. V we
summarize our results and comment on the scope of our
work.

II. THE MODEL

To model our basic setup shown in Fig. 1, we consider
a two-dimensional junction consisting of an S electrode in
contact with two F leads. The S electrode of width WS is
located in the x > 0 half plane, while the two F leads (F1
and F2), of widths W1 and W2, respectively, are located in
the x < 0 half plane and separated by L in the ŷ direction.
This system is described by a Bogoliubov–de Gennes (BdG)
Hamiltonian(

H0 − σεex(r) + V I
σ (r) �(r)

�(r) −[H0 − σ̄ εex(r) + V I
σ̄ (r)

]) . (1)

Here H0 = − h̄2

2m
∇2 − εF is the free Hamiltonian with Fermi

energy εF , r = (x,y) denotes the coordinates, σ = ± denotes
up (down) spin states, respectively, and σ̄ ≡ −σ . The super-
conducting gap �, exchange energy εex, and interface potential
VI are given by

�(r) = �θ (x)θS(y), (2)

εex(r) = θ (−x)
∑
j=1,2

εex
j θj (y), (3)

V I
σ (r) = δ(x)

∑
j=1,2

Zjσ θj (y), (4)

where εex
j=1,2 are exchange energies in F1(2), respectively,

indicating the Zeeman splitting between up and down spins
induced by ferromagnetism. The parameter Zjσ describes the
corresponding S-F interfacial barrier, θ is the step function,
and

θj (y) ≡ θ

(
Wj

2
−
∣∣∣∣y ∓ L

2

∣∣∣∣
)

, (5)

θS(y) ≡ θ

(
WS

2
− |y|

)
. (6)

Here the δ function and the step function are applied to confine
the physical quantities in the corresponding regions.

The SDIB parameters Zσ can be decomposed as

Zσ = Z0 ± Zs, (7)

where the spin-independent component Z0 represents effects
of an oxide layer or the local disorder at the interface,1 while
the spin-dependent one Zs can be induced by ferromagnetism.
The sign depends on whether a particular spin component σ

is the majority (+) or minority (−) carrier. As one of the
prevalent causes for an SDIB, we propose a semiclassical
picture to derive Zs as a function of the average deviation
of exchange energy compared with a no-barrier case, 〈δεex〉,
over a microscopic length, ξ , associated with the interfacial
properties:

Zs = tan

( 〈δεex〉ξ
h̄vF

)
. (8)

This form can be derived by considering the phase accumu-
lation of an electron in a microscopic model passing through
a finite layer having spin-dependent potentials and relating it
to the phase shift in an effective model described by the BTK
δ function barrier45 (see Appendix A). Equations (7) and (8)
show that for a purely magnetic interface (Z0 = 0) one has
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Z↓ = −Z↑ with the magnitude sensitive to the microscopic
configuration.

Now we turn to six different scattering processes through
the interface, which describe the transport physics in the
system. As illustrated in Fig. 1, given an electron of energy
lower than the superconducting gap injected from F1, there
are two local scattering processes at the F1-S interface, (1) the
direct backscattering, or local normal reflection (LNR), and
(2) local Andreev reflection (LAR), as well as two crossed
scattering processes mediated by the superconducting order at
the F2-S interface, (3) electron backscattering called elastic
cotunneling, and (4) crossed Andreev reflection (CAR). For
convenience in comparison, we refer to the elastic cotunneling
as crossed normal reflection (CNR) in what follows. If the
energy is higher than the superconducting gap, we have two
more processes: (5) quasiparticle transmissions (QPT) and (6)
quasihole transmissions (QHT) into the S region. In Sec. III
we apply the BTK treatment to compute scattering amplitudes
subject to the incoming state as well as the SDIB and
hence obtain a net charge current carried by these scattering
processes.

III. BTK TREATMENT

The BTK treatment is to consider charge transport as a
net effect of reflections and transmissions of electrons or
holes at the N-S (F-S) interface. The scattering amplitudes
of reflections and transmissions are obtained by solving the
BdG equation with the interface potential. In the presence
of voltage drop across the interface, an induced current is
computed by summing the probability current contributed by
each scattering process, weighted by the Fermi distribution.
The calculations are aimed at a current-voltage relation as a
function of physical variables of interests, such as the interface
parameters, exchange energy, geometry of the system, and
temperature.

We start with the Hamiltonian of Eq. (1) for considering
incoming and outgoing waves incorporating the six scattering
processes (discussed in Sec. II). As prescribed by the BTK
treatment, we solve for the forms of the incoming and outgoing
waves by boundary condition matching. Our theoretical setup
requires careful accounting of the spin species, the multiple
channels, and the SDIB; we thus provide a detailed outline of
the procedure below.

We consider an incoming wave of energy E from the F side
(x < 0). The wave function is of the form of a plane wave in
the x̂ direction multiplied by a bound wave in the ŷ direction.
We use indexes τ,σ indicating a particle (τ = +) with spin σ

or a hole (τ = −) with spin σ̄ , the channel number n labeling
the bound states in the ŷ direction, and an index j denoting the
wave in Fj (j = 1,2) regions (see Fig. 1). The incoming wave
is written as


 in
τσjn =

[(
δτ+
0

)
eixp

+,j
σ,n +

(
0

δτ−

)
e−ixp

−,j
σ̄ ,n

]
�j

n(y),

(9)

where δ is the δ function. The wave vectors p and the y-
component wave function � are given below in Eqs. (12) and
(14), respectively. The sign in front of of the wave vector is
chosen to match the direction of the group velocity.

The outgoing wave is represented as a linear combination of
degenerate scattering modes with energies and group velocities
corresponding to the incoming wave. The wave functions

j/S(r) in Fj /S regions are separately given as


out
j =

M
j
a∑

l=1

a
j

l

(
0
1

)
eixp

−,j

σ̄ ,l �
j

l (y)

+
M

j

b∑
l=1

b
j

l

(
1
0

)
e−ixp

+,j

σ,l �
j

l (y), (10)


out
S =

MS∑
l=1

[
cl

(
u

v

)
eixk+

l + dl

(
v

u

)
e−ixk−

l

]
�S

l (y).

(11)

Here a
j

l are the amplitudes for LAR (CAR) of channel l if j is
the same as (different from) the incoming wave, and similarly
b

j

l represent the LNR (CNR) processes. The amplitudes cl

(dl) correspond to quasiparticle (quasihole) transmissions in
channel l. These amplitudes of the outgoing waves are also
functions of the indices {τ,σ,j,n} of the incoming wave, which
have been dropped here for convenience. The quasiparticle
basis u and v satisfies u2 = 1 − v2 = 1

2 (1 +
√

1 − �2/E2).
The wave vectors of the x component of the wave functions in
channel l are given by

p
τ,j

σ,l =
√

1 + τE + σεex
j − (lπ/Wj )2, (12)

kτ
l =

√
1 + τ

√
E2 − �2 − (lπ/WS)2. (13)

From here on, we take the Fermi energy and inverse of the
Fermi wave vector as energy and length units (εF = k−1

F = 1),
respectively. In Eq. (10), the upper bounds of the summations,
M

j

a/b, are given by the highest current-carrying mode, above
which a mode has a purely imaginary wave vector and hence
carries no current. In Eq. (11), the wave vector can never
be purely imaginary if E < �. In such case, we choose
MS large enough to guarantee the convergence in numerical
calculations.39 The y components of the wave functions in
Eqs. (12) and (13) are given by

�
j

l =
√

2

Wj

sin

[
lπ

(
y ∓ L/2

Wj

+ 1

2

)]
θj (y), (14)

�S
l =

√
2

WS

sin

[
lπ

(
y

WS

+ 1

2

)]
θS(y). (15)

To solve for the amplitudes, we match the incoming and
outgoing waves by imposing the boundary conditions at the
interface (x = 0):


 in
τσjn(0,y) +

2∑
i=1


out
i (0,y) = 
out

S (0,y), (16)

[
∂x +

(
Zjσ 0

0 Zjσ̄

)]

 in

τσnj (0,y)

+
2∑

i=1

[
∂x +

(
Ziσ 0
0 Ziσ̄

)]

out

j (0,y) = ∂x

out
S (0,y).

(17)
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Here Eq. (16) is the continuity equation, while Eq. (17)
is obtained from integrating the BdG equation through the

interface (
∫ 0+

0− dx). For Ziσ = Ziσ̄ , Eq. (17) reduces to the
boundary condition for the case of a spin-independent interface
discussed in Ref. 39. We substitute the wave functions in
Eqs. (9)–(11) into Eq. (16) and project it onto channel m in the
S region,

(
δτ+
δτ−

)

j

nm +
2∑

i=1

⎡
⎣(0

1

) Mi
a∑

l=1


i
lmai

l +
(

1
0

) Mi
b∑

l=1


i
lmbi

l

⎤
⎦

=
(

u

v

)
cm +

(
v

u

)
dm, (18)

where



j

lm =
∫

dy�
j

l (y)�S
m(y). (19)

Similarly, we substitute the wave functions into Eq. (17) and
project it onto the channel m in the Fi region,(

p
+,j
σ,n − iZjσ 0

0 −p
−,j
σ̄ ,n − iZjσ̄

)(
δτ+
δτ−

)
δij δmn

+
(−p+,i

σ,m − iZiσ 0
0 p

−,i
σ̄ ,m − iZiσ̄

)

×
[(

0
1

)
ai

m +
(

1
0

)
bi

m

]

=
MS∑
l=1


i
ml

[
k+
l

(
u

v

)
cl − k−

l

(
v

u

)
dl

]
. (20)

Using Eq. (18) to replace cl and dl in Eq. (20), we rewrite the
right-hand side of Eq. (20) as

�ij
mn

(
δτ+
δτ−

)
+

2∑
k=1

⎡
⎣ Mk

a∑
l=1

�ik
ml

(
0
1

)
ak

l +
Mk

b∑
l=1

�ik
ml

(
1
0

)
bk

l

⎤
⎦,

(21)

where �
ij
mn is a 2 × 2 matrix defined as

�ij
mn ≡

(
u v

v u

)[ MS∑
l=1


i
ml


j

nl

(
k+
l 0
0 −k−

l

)](
u v

v u

)−1

.

(22)

Combining Eqs. (20)–(22) and letting i run from 1 to 2 as well
as m run through all current-carrying channels, we get a set of
linear equations for obtaining the amplitudes ai

m and bi
m.

Next we turn to compute the probability currents, which in
turn yield the current-voltage relation. The probability currents
for wave functions of a Nambu form, (ψ1ψ2)T, are defined as

J = h̄

m
Im(ψ∗

1 ∇ψ1 − ψ∗
2 ∇ψ2), (23)

where the ψ1 term represents the contribution from electrons
and the ψ2 term does that of holes. The wave functions in
Eqs. (9)–(11) carry no current in the ŷ direction. The outgoing
probability currents in the x̂ direction at the interface (x = 0) in
the ferromagnet and superconductor regions [J̃ (E) and J̃ S(E),

respectively] are given by

J̃
τ ′σ ′j ′n′
τσjn = h̄

m

[
δτ ′−

∣∣aj ′
n′
∣∣2Re

(
p

−,j ′
σ ′,n′
)

− δτ ′+
∣∣bj ′

n′
∣∣2Re

(
p

+,j ′
σ ′,n′
)]/

J in
τσjn, (24)

J̃
S;τ ′n′
τσjn = h̄

m
[δτ ′+|cn′ |2Re(k+

n′ ) + δτ ′−|dn′ |2Re(k−
n′ )]

×(|u|2 − |v|2)/J in
τσjn, (25)

normalized by the incoming current,

J in
τσjn = h̄

m

(
δτ+p+,j

σ,n + δτ−p
−,j
σ̄ ,n

)
. (26)

Here the subscripts (superscripts) denote the corresponding
incoming (outgoing) state. In Eq. (24), {τ ′,σ ′} = ±{τ,σ }
represents normal or Andreev reflections, respectively, while
j ′ = j or j̄ (the counterpart of j ) denotes local or crossed
processes, respectively.

We assume the bias voltage V to be the same across both F
leads and the S electrode, as set up in the experiment of Ref. 38.
We remark that our method can also be applied to the case of
different voltages on different leads. Such a scenario could
enable one to probe other physical properties, such as current
correlation46 and long-range entanglement, in the system.

Following the standard BTK formalism,1,39 we obtain the
charge current I carried by incoming particles or holes (τ = ±)
with σ spin in channel n in lead Fj (Appendix B),

Iτσjn(V )

= τe

∫ ∞

0
dE

⎧⎨
⎩
⎛
⎝1 −

∑
j ′

∑
n′

∣∣J̃ τσj ′n′
τσjn

∣∣
⎞
⎠ [f0(E − τeV )

− f0(E)] +
∑
j ′

∑
n′

∣∣J̃ τ̄ σ̄ j ′n′
τσjn

∣∣[f0(E) − f0(E + τeV )]

⎫⎬
⎭ ,

(27)

up to a constant associated with density of states, Fermi
velocity, and an effective cross-sectional area.39 Here f0(E) =
[exp(E/kBT ) + 1]−1 is the Fermi distribution function at
temperature T , and τ̄ = −τ . The total charge current is
obtained by summing over all contributions from the incoming
waves,

I (V ) =
∑
τ=±

∑
σ=±

∑
j=1,2

∑
n

Iτσjn. (28)

Notice that I is also a function of �, εex, T , Zjσ , and the
geometry of the system (characterized by L and W1/2/S here).
Equipped with this form for the current across the interface,
we are now in a position to explore it under various conditions.

IV. RESULTS

In this section we present major differences in transport
properties resulting from SDIB, compared to the previous BTK
studies.39 The key physical quantity showing such differences
is the normalized relative resistance δR, defined as resistance
difference between two cases of the device that have parallel
(P) or antiparallel (AP) magnetization alignment of the two F

054509-4



TRANSPORT IN MULTITERMINAL . . . PHYSICAL REVIEW B 87, 054509 (2013)

leads,

δR = RAP − RP

(RAP + RP)/2
= IP − IAP

(IP + IAP)/2
, (29)

where IP(AP) is the total current obtained from Eq. (28) for the
corresponding cases and RP(AP) = V/IP(AP). The P (AP) case
is characterized by the same (opposite) signs of the exchange
energies in the two F leads, which leads to their majority spin
species being the same (opposite). Previous calculations in
Ref. 39 show that δR is always nonpositive, no matter how the
barrier strength, exchange energy, geometry of the device, and
temperature vary. This result is as expected of singlet-paired
superconductors and in and of itself would indicate that the
AP case always carries more current than the P case given the
same bias voltage, in conflict with the experimental results in
Ref. 38. Here we show the exact manner in which the SDIB
would alter this expected trend.

In the following calculations, we take the majority spin
in F1 to be ↑, εex

2 = ±εex
1 for the P (AP) case, and eV =

10−2�(at 0T ) = 2 × 10−5εF (corresponding to a Pippard
superconducting coherence length47,48 ∼500k−1

F in our case),
all of which are typical values in experiments. We first consider
zero temperature where the system is in the subgap regime and
no quasiparticle transmission occurs. We analyze the effect of
two factors, ferromagnetism as well as geometry, on which δR

shows strong dependence and discuss how SDIB are relevant
to the results. Then we study the finite-temperature case
where � varies in temperature and quasiparticle transmission
contributes to the conductivity.

A. Effects of ferromagnetism

The effects of ferromagnetism on the charge transport
emerge in two ways. The first is that the presence of εex in
the F leads results in a density imbalance in spin species and
thus alters both the number of channels and the momentum of
particles [see Eq. (12)] responsible for carrying charge current.
The second is that εex in the interface region constitutes SDIB
parameters Z (as discussed in Sec. II), which lead to different
scattering phases between majority and minority spins, and in
turn to interference in the scattering wave function, as we will
see in subsequent discussions and results.

Mathematically, this can be seen by noting in Eq. (24) that
the current is a product of particle momentum p associated
with the first effect, and scattering magnitudes |a| and |b|
altered mainly by the second effect. The number of channels
M

j

a/b (discussed in Sec. III) also reflects the imbalance effect
and plays a role when we add up the probability current in
Eqs. (27) and (28). Both effects contribute to a difference
in behavior between the P and AP cases solely due to the
presence of coherent crossed transport (CNR and CAR). This
can be seen by noting that in the absence of these processes, for
instance, for large separation between F leads, each lead can
be treated independently and thus the P and AP cases would
show the same results. On the other hand, the CNR and CAR
processes distinguish the fact that in the P case the majority
spin species are the same in both leads but are different in
the AP case. We expect that the first effect is obscured in the
low imbalance regime where the majority and minority species

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

0.5
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Z
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FIG. 2. (Color online) Relative resistance δR (defined as (RAP −
RP)/[(RAP + RP)/2]) vs interface parameters Z. The solid curve
is for a purely spin-dependent barrier (Z0 = 0, Zs = Z) while the
dashed curve is for a spin-independent one (Z0 = Z, Zs = 0). Data
presented are for the system parameters W1 = W2 = L = 10k−1

F ,
WS = 100k−1

F , εex = 0.01εF , � = 0.002εF , and T = 0.

are less distinguishable, while the second effect is suppressed
when the interface barrier is nearly spin independent (Zs ∼ 0).

In this subsection we choose the set of parameters W1 =
W2 = L = 10k−1

F , WS = 100k−1
F , and zero temperature (T =

0). Figure 2 shows δR as a function of a purely SDIB (Z0 = 0
and Zs varied, solid curve) and a spin-independent case (Zs =
0 and Z0 varied, dashed curve) at a small imbalance of εex =
0.01εF . We see that a purely SDIB causes an obvious variance
of δR in both positive and negative values at an intermediate
Zs . At large Zs the barrier is high enough such that most
incidence is directly reflected while at small Zs the phase shift
between majority and minority spins is close to zero, both of
which make the difference between P and AP cases negligible
and hence give δR ∼ 0. For the spin-independent barrier, there
is almost no difference between P and AP, so δR is always flat
and close to zero (still negative, reflecting the small imbalance
effect as discussed before). A complete dependence of δR on
both Z0 and Zs is shown in the contour plot in Fig. 3. We see
that δR is negative for most of the parameter space and only
becomes positive when Zs dominates.

Although the maximum magnitude in the positive region
is one order smaller than that in the negative one, there is a
wide enough parameter regime for 0.1% < δR < 1.5%, the
same order magnitude observed in the experiment of Ref. 38.
The most negative value is centered around the region of line
Z0 = Zs where either majority or minority spins are subject to
an almost transparent interface. This is because in the AP case
different spin species in the two F leads see the transparent
barrier, so the CAR is greatly enhanced and hence reduces the
resistance compared to the P case. Notice that there is a small
positive region at Zs < Z0 with 0 < δR < 10−4. However,
for Zs = 0, δR is always negative, indicating that the SDIB is
essential for positive δR. The contour plot of Fig. 3 remains
unchanged if Zs → −Zs .

We now analyze the effect of density imbalance. Figure 4
shows comparison of δR as a function of εex for two purely
SDIB conditions where δR is initially positive (Zs = 0.7, solid
curve) and negative (Zs = 0.4, dashed) at zero exchange, as
well as for a spin-independent condition (Z0 = 0.7, dotted).
First we see that at large imbalance all curves drop to the
highly negative region. This is due to a combination of
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FIG. 3. (Color online) Contour plot of δR in the plane of Z0 and
Zs . The positive (lighter green) and negative (darker blue) regions are
separated by a dashed contour indicating δR = 0. A weakly positive
δR region appears close to the line of Zs = 0, for which δR is always
negative.

number of channels and the momentum for the minor species
monotonically decreasing with the increase in εex, as shown in
Eq. (12). This decrease reduces current carried by all Andreev
processes involving one majority and one minority spin; CAR
in AP case is not reduced as it involves two majority spins
in the two F leads. At large imbalance in the P case most
incoming current directly reflects and leaves small net current
compared to AP case. Therefore δR drops and finally reaches
its maximum value of −2 [see Eq. (29)] at which IP = 0 (see
inset).

The imbalance has a monotonic influence on the transport,
explaining the curve for the case of spin-independent barrier.
For an SDIB, however, δR exhibits an overall decreasing trend
but a locally (e.g., in 0.5 < εex/εF < 0.7) nonmonotonic form
as a function of εex. We attribute this behavior to an interference
effect of scattering through the SDIB. Differing interference
effects between the P and AP cases can thus either enhance
or compete with the imbalance effect and dominate over it to
make δR largely negative or even positive at low imbalance.

0.0 0.2 0.4 0.6 0.8 1.0
−0.20

−0.15

−0.10

−0.05

0.00

0.05

ex ( F)

R

0 0.5 1

0

−1

−2

∋∋

FIG. 4. (Color online) Relative resistance δR vs exchange energy
εex at the interface parameters {Z0,Zs} = {0,0.7} (solid curve),
{0,0.4} (dashed), and {0.7,0} (dotted). Inset: A zoom-out that shows
δR dropping to −2 at large imbalance.

We further investigate the imbalance effect by looking at
four different contributions to the total current: the currents
carried by (1) the incoming electrons and LNR, (2) CNR, (3)
LAR, and (4) CAR [ILN, ICN, ILA, and ICA, respectively,
defined in Eq. (B5) in Appendix B]. Figure 5 shows these
components and their combined effect as a function of εex for
P (top row) and AP (middle row) cases as well as the difference
between P and AP (bottom row) at various interface conditions
(corresponding to different columns). We first see that the
SDIB cases have more current (lower resistance) than the spin-
independent cases of the same barrier strength. For all cases the
two local currents are the dominant contributions to the total
current and are comparable in magnitude. Their monotonically
decreasing trends are consistent with an increase in imbalance,
except ILN in the low-imbalance regime (εex < 0.11εF ) in the
case of a purely SDIB of Zs = 0.4 (the rightmost column),
which reflects a stronger interference effect than the imbalance
effect. The two crossed currents have such small contributions
compared to the local current that they are almost indiscernible
from zero in the figure, except ICA in the high-imbalance
regime in the two SDIB cases, which indicates a great
enhancement in long-range entanglement. The difference in
current between P and AP cases, δI = IP − IAP [directly
related to δR via Eq. (29)], is one to two orders smaller than
either IP or IAP and is highly sensitive to the value of the
exchange field.

The two spin-independent cases have a similar behavior: At
low imbalance the compensation of dominant contributions of
δILN and δICN makes the total δI close to zero (still negative),
while at high imbalance δICA has a large negative contribution
and δILA is suppressed, as supported by the imbalance effect.

The purely SDIB cases have various dominant contributions
at low imbalance. At Zs = 0.7 (the second column from
left), the dominant contribution is positive δILN, making
the sum of the contributions positive, while at Zs = 0.4
(the rightmost column) the strong negative δICN makes the
sum negative. These results can only be attributed to the
interference of scattering through an SDIB. At high imbalance,
δICA dominates as in the spin-independent case but is much
larger, due to the greater enhancement of ICA in the AP case.
Notice that all the curves have kinks at the same positions—this
is due to the reduction in the number of scattering channels by
one at each kink.

In brief, we analyzed the effects of spin imbalance and
scattering through an SDIB, both induced by ferromagnetism.
The former monotonically lowers δR toward negative values
and dominates in the high-imbalance regime, while the latter
exhibits its influence in positive or negative directions, where
the trend is revealed in the scattering magnitudes. A system
with an SDIB can sustain a significant large CAR current in
the AP case, reminiscent of a great enhancement of long-range
entanglement.

B. Effects of geometry

The signature of interference due to scattering between
the two F leads implies a strong dependence of the transport
properties on their geometry. We examine δR as a function of
the widths, W1 and W2, and the separation, L, of the leads at
a low imbalance value of εex = 0.01εF where the scattering
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FIG. 5. (Color online) Local normal, local Andreev, crossed normal, cross Andreev currents, and their combined effect (blue long-dashed,
green dotted, red short-dashed, purple dot-dashed, and brown solid curves, respectively) vs exchange energy εex. From top to bottom rows
presents the current of the P case, IP, AP case, IAP, and the difference, δI = IP − IAP, respectively. The first and second columns correspond to
a spin-independent barrier and a purely SDIB of strength 0.7, respectively, while the third and fourth correspond to strength 0.4. Remarkably,
the dot-dashed curves (contributed by CAR) at εex > 0.6εF in panels of the bottom row show much larger values for SDIB (nonzero Zs) than
those for the spin-independent barrier (Zs = 0), indicating a strong enhancement of CAR in the P case. The coincidence of two curves in some
regions indicates the two local (crossed) currents almost equal to each other.

effects dominate. Here we fix WS = 100k−1
F . Figure 6 shows

δR vs L at three barrier conditions, {Z0,Zs} = {0,0.7}, {0,0.4},
and {0.7,0}, as presented in Fig. 4. For the two SDIB cases,
the curves modulate and exponentially decay to zero at large
L. The oscillation period is π (in units of k−1

F ), which results
from a 2π modulation in the scattering amplitudes, which in
turn owe to the oscillatory behavior of matrix � in Eq. (22).
Since the quantity 
 in Eq. (19) is a sinusoidal function in
W1/2/S and L, summing the product of 
 in calculating �

10 15 20 25 30

0.5

0.0

0.5

1.0

1.5
0 2 π 4 π 6 π

L kF1

δR

FIG. 6. (Color online) Relative resistance, δR, vs the separation
between two F leads, L, with fixed W1(2) (W1 = W2 = 10k−1

F ) at
the interface parameters {Z0,Zs} = {0,0.7} (solid curve), {0,0.4}
(dashed), and {0.7,0} (dotted), same as presented in Fig. 4. Relative
distance from a reference is marked on top of graph, showing the
oscillatory period of π .

directly indicates a relation between the interference and the
geometry of the system. At large L, the scattering hardly shows
a difference between P and AP cases. The fast decay as a
function of L is governed by a power-law factor in L/k−1

F due
to the interference rather than an exponential factor associated
with the Pippard coherence length (∼ 500k−1

F ) (discussed in
Ref. 39). For the spin-independent barrier, the curve is flat and
close to zero as expected. Notice that the modulations in the
current for P and AP cases still exist (as discussed in Ref. 39).
However, they modulate in-phase and cancel out in the form
of δR.

Figure 7 shows contour plots of δR in the plane of W1 and
W2 at L = (W1 + W2)/2 for the pure SDIB cases of Zs = 0.7
[panel (a)] and 0.4 [panel (b)]. We see δR modulates with a
period of π in both W1 and W2 directions, for the same reason
as for variation in L. In (a), δR is always positive and becomes
close to zero at large W1 and W2. In (b), the value is mainly
positive with a slower decay as W1 and W2 go large. Both plots
show a wide parameter range for positive δR in contrast to the
small negative value expected in the case of spin-independent
barriers.

Finally we keep relative ratios between W1, W2, WS , and
L unchanged and enlarge the whole device (making it closer
to some of the realistic systems38). Figure 8 shows δR as a
function of a pure SDIB parameter Zs for three difference
scales of the device: the one of W1 = W2 = L = 10k−1

F and
WS = 100k−1

F (solid curve, same as presented in Fig. 2) as well
as 10 and 30 times the case of the solid curve (dashed and dotted
curves, respectively). When the system becomes an order of
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FIG. 7. (Color online) Contour plot of δR in the plane of W1

and W2. Data presented for a pure SDIB of Zs = 0.7 (a) and 0.4
(b). The lowest contour is zero, below which the value is negative
(corresponding to the black region). The magnitude difference
between the contours is 0.2%. Relative distance from a reference is
marked on top and right of graph, showing the oscillatory period of π .

magnitude larger, the positive δR region expands but its value
is more than one order smaller. Because larger sizes result in
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FIG. 8. (Color online) Relative resistance δR vs pure SDIB Zs .
The solid curve (axis on the left of the graph) presents a purely
SDIB system of W1 = W2 = L = 10k−1

F and WS = 100k−1
F (same as

presented in Fig. 2). The dashed and dotted curves (axis on the right
of the graph) are for devices with sizes 10 and 30 times that for the
solid curve, respectively.
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FIG. 9. (Color online) Charge current I vs the temperature T for
the P case at the interface parameters {Z0,Zs} = {0,0.7} (solid curve),
{0,0.4} (dashed), and {0.7,0} (dotted), as presented in Fig. 4. The star
signs indicate position of the maximum point of the corresponding
curves.

more conducting channels and hence more interference among
them, this trend can smear out the difference between P and AP
cases and leave a small δR. To improve the modeling for a real
system that can still have δR of a few percent, new ingredients
such as the dependence of Z parameters on spatial coordinate
or on channels would be needed.

C. Effects of temperature

Finally, we briefly study finite-temperature effects. Here,
two factors need to be incorporated: (1) quasiparticle (hole)
transmissions (QPT and QHT, respectively) that arise from
thermal fluctuations and participate in charge transport as
well as (2) the decrease in the superconducting gap as a
function of temperature, �(T ) = �(0)

√
1 − T/Tc. Here, we

focus on the effect of the SDIB and thus choose the case of low
polarization for which the effects of SDIB are most prominent.
We plot the current in the P case, IAP, vs temperature, T , for
different barrier conditions in Fig. 9. All cases show suppressed
conductance for a significant temperature regime close to Tc

due to the vanishing superconductivity. The spin-independent
interface shows local peaks which we attribute to thermal
population of new channels. Spin dependence of the barrier
suppresses these peaks. We also mention that in accordance
with BTK expectations,1 while the SDIB curves seem to
decrease as a function of temperatures, the maximum (star
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FIG. 10. (Color online) Relative resistance δR vs the temperature
T at the interface parameters {Z0,Zs} = {0,0.7} (solid curve), {0,0.4}
(dashed), and {0.7,0} (dotted), convention as presented in Fig. 9.
Notice that the dotted curve almost coincide with the axis.
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signs in graph) occurs at nonzero but very low temperature,
indicating a reentrant effect.

To characterize the difference between P and AP cases, we
plot δR vs T for the same set of parameters in Fig. 10. We see
that δR can be smooth, widely fluctuating, or even endowed
with a sign change for different SDIB conditions. The salient
feature here is that in the spin-independent case, due to the
low polarization, δR is exceedingly small and constant on
the scale shown. However the SDIB cases show that temper-
ature can alter the sign of δR and what might have started as
negative at low temperature can reverse the trend. The lack of
trend has also been found in different samples in experiment.38

V. CONCLUSION

In this paper, we studied electronic transport physics in
superconductor–double ferromagnet (S-FF) junctions with
spin-dependent interface barriers (SDIB) using the Blonder-
Tinkham-Klapwijk (BTK) treatment. We proposed spin-
dependent Z parameters modeling SDIB for the BTK cal-
culations and discussed its relation to microscopic physical
quantities at the interface. Our extended model is one of the first
incorporating SDIB for S-FF junctions and shows that SDIB
can increase crossed Andreev reflection (CAR) current. We
found that SDIB can cause interference in wave functions of
CAR and other scattering processes that can either collaborate
or compete with the imbalance effect in the F leads. This
competition can cause more current carried by F leads of
parallel (P) magnetization than by the antiparallel (AP) case
(resulting in a positive δR), which does not occur in the case
of spin-independent barriers. Our calculations showed that
positive δR is stable in a sufficiently large parameter regime
as a function of Z parameters, magnetization, geometry of the
system, and temperature. At low magnetization, the effects of
SDIB are responsible for the different transport between P and
AP cases, resulting in positive or negative δR that is sensitive
to the Z parameters. At high magnetization, δR is always
negative due to the population imbalance in the F leads, and
SDIB contributes large additional enhancement of CAR in the
AP case. Variance in the geometry of the junction results in
oscillations in δR, which reveal the interference effects on the
transport physics.

Our studies suitably describe recent experiments of Ref.
38 and can be used as a guide for further investigation in
such settings, including the possibility of controlled tuning of
S-F interface properties in the presence of artificially grown
SDIB barriers. Our model easily extends to a wide class of
multiterminal hybrid junctions. An important ingredient to
take into account in the future, particularly to explain differing
P versus AP behavior, is to incorporate induced spin-triplet
correlations together with the spin-flip scatterers.18,49–53 This
would be particularly relevant to currently intense explorations
of coherent properties and long-range entanglement in super-
conductor heterostructures.
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APPENDIX A: SEMICLASSICAL PICTURE FOR SDIB

In this section we use a semiclassical picture to model
the spin-dependent component of the SDIB parameter, Zs , in
Eq. (7). In the original BTK treatment,1 Z is considered as a
phenomenological barrier parameter capable of characterizing
distinct properties of the interface, such as a metallic or
insulating one. In our extended model for the SDIB, the Z

parameters ought to reflect general concepts in the spin-related
transport, such as the spin-dependent interfacial phase shift.19

Based on this assumption, we derive Zs by relating the
phase shifts between scattering through the phenomenological
δ-function barrier and that through the microscopic Zeeman
potential at the interface, provided the spin-independent
component Z = 0. Microscopically, an injected spin passes
through the barrier region and accumulates a phase shift φ in
the interface region, compared with the case without a barrier.
In a semiclassical picture, the phase shift due to the deviation
of the exchange energy (compared with the no-barrier case),
δεex(x), is

φ =
∫ t0

0

δεex(x(t))
h̄

dt =
∫ ξ

0

δεex(x)

h̄vF

dx ≡ ξ 〈δεex〉
h̄vF

, (A1)

where t0 is the total time to pass the barrier, vF is the Fermi
velocity, δεex(x(t)) is the local deviation of exchange energy
when the particle passes the position x at time t , and 〈δεex〉
is its average over the width of the interface, ξ . Here x = vF t

given that the energy variance is small compared to the Fermi
energy.

Now we compare the phase shifts with those of a scattering
problem having the δ-function potential,

− h̄2

2m
∂2
x + h̄vF Zsδ(x). (A2)

By solving the Schrödinger equation for an incoming wave
around the Fermi surface, we obtain Zs as a function of the
phase shift of the transmitted wave,

Zs = − tan φ. (A3)

Substituting Eq. (A3) into Eq. (A1), we derive the aimed
relation of Eq. (8). The tangent function implies that Zs in
nonmonotonic in and sensitive to the exchange energy and
microscopic length. Notice that the majority and minority spins
have opposite exchange energy which leads to different signs
for the spin-dependent Z parameter. In this paper we choose
±Zs for majority (minority) spins, as shown in Eq. (7). Notice
that our focus here is one of the scattering-related causes for
an SDIB. We perceive that other effective treatments, such
as first-principles methods,54–56 can be applied for further
analysis.

APPENDIX B: I-V RELATION

In this section we detail the calculations for current-
voltage relations in the SFF junction following the standard
BTK formalism1,39 and identify the current contributions for
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each scattering process. The total current contributed by an
incoming wave characterized by indices {τσjn} is given by

Iτσjn = Aτ

∫ ∞

0
dE[f→(E) − f←(E)], (B1)

where A is a constant associated with density of states, Fermi
velocity, and an effective cross-sectional area and f→(←)

denotes the incoming (outgoing) populations

f→(E) = f0(E − τeV ), (B2)

f←(E) =
∑

{τ ′,σ ′}=±{τ,σ }

∑
j ′

∑
n′

∣∣J̃ τ ′σ ′j ′n′
τσjn

∣∣f0(E − τ ′eV )

+
∑
τ ′=±

∑
n′

∣∣J̃ S;τ ′n′
τσjn

∣∣f0(E). (B3)

Here we replace the distribution function for holes in the F
regions as 1 − f0(−E − eV ) = f0(E + eV ). By substituting
Eqs. (B2) and (B3) into Eq. (B1) as well as applying a
conservation relation for the probability currents,∑

{τ ′,σ ′}=±{τ,σ }

∑
j ′

∑
n′

∣∣J̃ τ ′σ ′j ′n′
τσjn

∣∣+ ∑
τ ′=±

∑
n′

∣∣J̃ S;τ ′n′
τσnj

∣∣ = 1,

we eliminate the contributions from quasiparticle transmis-
sions and hence derive the I -V relation of Eq. (27), as a
function of only processes in F regions. By summing over
the incoming degrees of freedom, we obtain the total current

as in Eq. (28), or simplified at zero temperature as

I (V,T = 0) = A
∑
σ=±

∑
n

∑
j=1,2

∫ eV

0
dE

×
⎡
⎣1 +

∑
n′

2∑
j ′=1

(∣∣J̃+σ̄ n′j ′
−σnj

∣∣− ∣∣J̃+σn′j ′
+σnj

∣∣)
⎤
⎦ .

(B4)

From Eq. (B4) we identify four components of the total current
in the subgap regime below: the local normal current ILN

contributed by the incoming wave and LNR, as well as the
crossed normal current ICN, the local Andreev current ILA,
and the crossed Andreev current ICA contributed by CNR,
LAR, and CAR, respectively:

ILN = A
∑
σ=±

∑
n,n′

∑
j=1,2

∫ eV

0
dE
(
1 − ∣∣J̃+σn′j

+σnj

∣∣),
ICN = A

∑
σ=±

∑
n,n′

∑
j=1,2

∫ eV

0
dE
(−∣∣J̃+σn′ j̄

+σnj

∣∣), (B5)

ILA(CA) = A
∑
σ=±

∑
n,n′

∑
j=1,2

∫ eV

0
dE
∣∣J̃+σ̄ n′j (j̄ )

−σnj

∣∣.
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27I. Žutić and O. T. Valls, Phys. Rev. B 61, 1555 (2000).
28G. J. Strijkers, Y. Ji, F. Y. Yang, C. L. Chien, and J. M. Byers, Phys.

Rev. B 63, 104510 (2001).
29J. N. Kupferschmidt and P. W. Brouwer, Phys. Rev. B 83, 014512

(2011).
30A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).
31V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V. Veretennikov,

A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).
32T. Kontos, M. Aprili, J. Lesueur, F. Genet, B. Stephanidis, and R.

Boursier, Phys. Rev. Lett. 89, 137007 (2002).
33J. W. A. Robinson, S. Piano, G. Burnell, C. Bell, and M. G. Blamire,

Phys. Rev. B 76, 094522 (2007).
34B. Kastening, D. K. Morr, L. Alff, and K. Bennemann, Phys. Rev.

B 79, 144508 (2009).

054509-10

http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1103/RevModPhys.69.731
http://dx.doi.org/10.1088/0953-8984/10/5/003
http://dx.doi.org/10.1088/0953-8984/10/5/003
http://dx.doi.org/10.1103/PhysRevB.80.134511
http://dx.doi.org/10.1103/PhysRevLett.74.306
http://dx.doi.org/10.1103/PhysRevLett.82.3911
http://dx.doi.org/10.1103/PhysRevLett.82.3911
http://dx.doi.org/10.1063/1.125796
http://dx.doi.org/10.1103/PhysRevB.63.165314
http://dx.doi.org/10.1103/PhysRevB.63.165314
http://dx.doi.org/10.1209/epl/i2001-00303-0
http://dx.doi.org/10.1209/epl/i2001-00303-0
http://dx.doi.org/10.1140/epjb/e20020071
http://dx.doi.org/10.1103/PhysRevB.68.174515
http://dx.doi.org/10.1103/PhysRevB.67.134515
http://dx.doi.org/10.1103/PhysRevLett.95.027002
http://dx.doi.org/10.1103/PhysRevLett.95.027002
http://dx.doi.org/10.1103/PhysRevB.74.214510
http://dx.doi.org/10.1103/PhysRevB.74.214510
http://dx.doi.org/10.1103/PhysRevB.82.180503
http://dx.doi.org/10.1103/PhysRevB.82.180503
http://dx.doi.org/10.1088/0953-8984/19/23/233202
http://dx.doi.org/10.1103/RevModPhys.77.935
http://dx.doi.org/10.1103/RevModPhys.77.1321
http://dx.doi.org/10.1103/RevModPhys.77.1321
http://dx.doi.org/10.1103/PhysRevB.72.180503
http://dx.doi.org/10.1103/PhysRevLett.102.107008
http://dx.doi.org/10.1103/PhysRevLett.102.107008
http://dx.doi.org/10.1103/PhysRevB.62.11812
http://dx.doi.org/10.1103/PhysRevB.65.144502
http://dx.doi.org/10.1103/PhysRevB.65.144502
http://dx.doi.org/10.1103/PhysRevB.69.094501
http://dx.doi.org/10.1103/PhysRevB.69.094501
http://dx.doi.org/10.1103/PhysRevB.73.064505
http://dx.doi.org/10.1103/PhysRevLett.74.1657
http://dx.doi.org/10.1103/PhysRevLett.74.1657
http://dx.doi.org/10.1103/PhysRevB.58.R11872
http://dx.doi.org/10.1103/PhysRevB.61.1555
http://dx.doi.org/10.1103/PhysRevB.63.104510
http://dx.doi.org/10.1103/PhysRevB.63.104510
http://dx.doi.org/10.1103/PhysRevB.83.014512
http://dx.doi.org/10.1103/PhysRevB.83.014512
http://dx.doi.org/10.1103/PhysRevLett.86.2427
http://dx.doi.org/10.1103/PhysRevLett.89.137007
http://dx.doi.org/10.1103/PhysRevB.76.094522
http://dx.doi.org/10.1103/PhysRevB.79.144508
http://dx.doi.org/10.1103/PhysRevB.79.144508


TRANSPORT IN MULTITERMINAL . . . PHYSICAL REVIEW B 87, 054509 (2013)

35D. Beckmann, H. B. Weber, and H. v. Löhneysen, Phys. Rev. Lett.
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