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In the theory of electron-phonon superconductivity both the magnitude of the electron-phonon coupling A and
the Coulomb pseudopotential p* are important to determine the transition temperature 7, and other properties.
We calculate corrections to the conventional result for the Coulomb pseudopotential. Our calculations are based
on the Hubbard-Holstein model, where electron-electron and electron-phonon interactions are local. We develop
a perturbation expansion, which accounts for the important renormalization effects for the electrons, the phonons,
and the electron-phonon vertex. We show that retardation effects are still operative for higher order corrections,
but less efficient due to a reduction of the effective bandwidth. This can lead to larger values of the pseudopotential
and reduced values of T,. The conclusions from the perturbative calculations are corroborated up to intermediate
couplings by comparison with nonperturbative dynamical mean-field results.
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I. INTRODUCTION

More than a century after its discovery superconductivity
continues to be a subject of intense research in condensed
matter physics. The research ranges from topics geared to the
technical application of the phenomenon and the search for
new superconducting materials to fundamental questions of
microscopic mechanisms.! The latter are important, as one
might hope that a good understanding of the mechanisms will
make the design of new superconductors at elevated tempera-
tures feasible.?” There are numerous classes of materials, for
which different mechanisms are discussed.'* In most cases a
bosonic pairing function is invoked, which could be of purely
electronic origin such as spin fluctuations or the conventional
phonon mechanism, but also more exotic mechanisms have
been proposed. The electron-phonon mechanism has the
longest history and probably the most established mathe-
matical foundation. An effective electron-electron attraction
generated by the electron-phonon interaction is part of the
celebrated Bardeen-Cooper-Schrieffer (BCS) theory.’ The
more elaborate theory including microscopic details is called
the Migdal-Eliashberg (ME) theory.® With the help of the ME
theory the superconducting properties of many elements and
numerous alloys have been described accurately.”

The general ideas of the ME theory can be presented in a
relatively simple fashion, although the details of the complete
framework, its foundations and specific applications, involve a
substantial degree of sophistication, to which many researchers
have contributed over the years.””' One cornerstone is
Migdal’s theorem,!' which employs the fact that the typical
electronic energy scale E¢ and the typical phonon energy
scale wyy, differ largely, such that Eg/wp, is of the order
of 100 and higher; the electrons move much more rapidly
than the phonons. It can then be shown that the perturbation
theory of the electron-phonon problem greatly simplifies since
vertex corrections are small. The influence of the bosonic
pairing function a® F(w) on the electronic properties and the
occurrence of superconductivity can therefore be computed
reliably. A remarkable aspect of the ME theory is that it is
even well justified for large values of the electron-phonon
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coupling parameter A > 1 as long as the effective expansion
parameter ~Awpn/Ee remains small.''~"* With the help of
the ME equations, the pairing function «’F(w) and the
phenomenological parameter for the Coulomb pseudopotential
w* were extracted from tunneling measurements in a procedure
termed inverse tunneling spectroscopy.' Based on these, other
properties such as 7, and thermodynamic quantities can be
computed. The agreement with the respective experimental
values of many elements and alloys, notably Pb and Nb, is
within the range of a few percent.” This leads to a consistent
picture and was taken as proof of the validity of the ME theory
and the electron-phonon mechanism.”® Further support comes
from first principle calculations for «?F(w), which are, in
many cases, in remarkable agreement with the results extracted
from tunneling.”%15-16

In addition to the effective attraction induced by the
electron-phonon coupling, the applications of ME theory
include the effects of Coulomb repulsion. Due to the enormous
success of the theory it is sometimes understated that, in con-
trast to the electron-phonon problem, no rigorous arguments
exist for the treatment of Coulomb repulsion,'® the reason
being the absence of a small parameter as in Migdal’s theorem.
Traditionally, this is seen as a minor deficiency based on the
following arguments. Some effects of the Coulomb interaction,
such as the renormalization of the electron-phonon coupling
g the electron and phonon dispersion g and w, are implicit
in the experimentally derived results or in the first principle
calculations. It remains to deal with the direct repulsion in
the pairing channel which opposes s-wave superconductivity.
Morel and Anderson (MA) proposed a procedure in two
stages:'7 First, the Coulomb interaction is screened and
averaged over the Fermi surface. Second, it is projected to

the phonon scale. The result possesses the famous form,”!”-18
[he
e - (1)

e —Ee’
I+ e log (2)
which is sometimes termed the Morel-Anderson (MA) pseu-

dopotential. Here, p. is a dimensionless quantity which
consists of a product of the averaged, screened Coulomb
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interaction with the density of states (DOS) per spin at the
Fermi energy; E. is an electronic scale, such as the half-
bandwidth D or the Fermi energy Ef; and wyy, is the phonon
scale, e.g., the Debye frequency. Equation (1) has the important
property that for the typical high -energy separation between
the electronic and the phonon scales, E¢ >> wpn, such that
log(Ee1/wpn) ~ 5-10, w} is much smaller than ji.. This effect
is remarkable, as it enables electron-phonon s-wave supercon-
ductivity to be possible in spite of the Coulomb repulsion,
which on a bare level is much larger and working directly
against it. This is sometimes even termed the true mechanism
of electron-phonon superconductivity.® The textbook physical
picture is that electrons do not need to be close in position space
and suffer from the Coulomb repulsion in order to pair since
the electron-phonon interaction is retarded and thus electrons
can pair with a “time delay.” Using appropriate energy scales
in Eq. (1) leads to estimates of the order u} ~ 0.1-0.14.
This fits well to the parameters p* obtained from tunneling
in many elemental superconductors and alloys.” Hence, the
Coulomb effects are generally considered to be well described
by w*, which is a fairly universal quantity. In contrast to the
pairing function, it is usually not calculated based on first
principles and is, rather, used as a fitting parameter. It is worth
mentioning that there is also an alternative ab initio approach
to superconductivity based on the density functional theory
(DFT) framework. -2

A review of the literature, however, also reveals evidence
that the description of the Coulomb repulsion in the form of
Eq. (1) is incomplete. In some cases, such as V or Nb3Ge,’ the
values for u* appear to be of the order 0.2-0.3, substantially
larger than the traditional quotes, even though the maximal
phonon scales do not seem to be particularly large. DFT
calculations'® for a?F(w) show good agreement with the
tunneling results, but to explain the experimental values of 7,
also somewhat larger values of ©* have to be used. A specific
case which raises doubts about the conventional framework
is the example of elemental lithium at ambient pressure.”???
The coupling constant was estimated to be A ~ 0.4,>>>* which
seems to be in line with specific heat measurements. With the
usual value of u* ~ 0.1 and the appropriate phonon scale,
this implies 7, ~ 1 K. This is in contrast to experiments
where, for a long time, no superconductivity was observed
down to values of 6 mK,” and only recently, 7, ~ 0.4 mK
was found at ambient pressure, which requires p* ~ 0.23.2
In this context, we also mention alkali-doped picene, which
was recently discovered to be superconducting at 7, ~ 7 K
and T, ~ 18 K, depending on preparation.?’ First principle
calculations only seem to be able to explain these values of
T, based on an electron-phonon mechanism with relatively
large values of u* ~ 0.23.2% However, other interpretations
also exist.??3°

It is our endeavor to reanalyze the expression for the
Coulomb pseudopotential in Eq. (1) and calculate correc-
tions to it. We focus on the reduction of phonon induced
s-wave superconductivity due to the Coulomb repulsion
between electrons. Superconductivity which is induced in
an anisotropic higher order angular momentum channel by
purely repulsive interactions, such as the well-known Kohn-
Luttinger effect,®’ is not dealt with in the present work.
Berk and Schrieffer’ included a specific class of higher
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order diagrams describing the coupling to ferromagnetic (FM)
spin fluctuations, addressing almost-FM metals, like Pd. They
found that retardation is ineffective for the added diagrams
and that superconductivity is strongly suppressed, which can
help to explain the cases when FM spin fluctuations are
important. In another line of work going beyond that of
MA, the jellium model for electrons was considered and the
Eliashberg equations were solved including the frequency
and momentum dependence of the dynamically screened
Coulomb interaction. Curiously, random phase approximation
(RPA) calculations by Rietschel and Sham yielded negative
values for n) when the density parameter r, exceeded values
ry > 2.5.3% The resulting unrealistic large values of T, were
interpreted as plasmon induced superconductivity.* It was
shown that vertex corrections lead to a reduction in 7, and
partly cure this problem.’*3> Phenomenological models of
the form of Kukkonen and Overhauser®® for the screened
Coulomb interaction mostly yield realistic positive results
for u* ~ 0.1 and no s-wave superconductivity,”>” although
different conclusions also exist.’® We remark that Richardson
and Ashcroft* arrived at a rather accurate prediction for
T, in Li at ambient pressure based on such calculations.
Nevertheless, there does not seem to be a conclusive study
which systematically analyzes higher order corrections to the
unphysical RPA result.

Rather than treating the Coulomb interaction in the electron
gas, our approach is based on a model with local interactions.>
It can thus be interpreted as only considering the second step
in the MA procedure, where the projection of the screened
interaction to the phonon scale is considered. To be specific we
take the Hubbard-Holstein (HH) model, where there is a local
electron-electron repulsion and an electron-phonon interaction
present. The advantage of the restriction to this model is that it
can be analyzed by means of the dynamical mean-field theory
(DMFT).® Since the DMFT becomes exact in the limit of large
dimensions, it can provide benchmark results independent of
the interaction strength and thus allows us to test otherwise
uncontrolled perturbative approximations. Retardation effects
encoded in the frequency dependence of the self-energies
are fully contained. DMFT treats both the electron-phonon
and the electron-electron interaction nonperturbatively and
therefore includes contributions to u* to all orders. However,
it also includes renormalization effects of the phonons, the
electrons, and the electron-phonon coupling. This makes the
interpretation of the results and the extraction of u more
difficult. In order to be able to, nevertheless, obtain meaningful
insights, we developed a diagrammatic perturbative approach
for the HH model in the limit of large dimensions. This allows
us to see how accurate the conventional theory describes the
benchmark results and which corrections are necessary to get
a good agreement between the perturbative results and the
DMFT. We see that higher order corrections to p} enter in a
modified form compared to Eq. (1).

The occurrence of superconductivity in the HH model has
been analyzed theoretically beyond ME theory.**** Freericks
and Jarrel** studied the suppression of instabilities towards
charge density wave formation and superconductivity at and
away from half-filling within the framework of DMFT. Their
finding of robustness of a charge density wave state against
superconductivity could be explained within weak coupling
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perturbation theory without invoking corrections to the pseu-
dopotential resultin Eq. (1). Functional renormalization-group
studies***** found spin density wave, charge density wave, and
different superconducting instabilities. The phonon scale in
those works was, however, relatively large such that retardation
effects only played a moderate role.

In this work we show that retardation effects lead to the
reduction i, — w7 also in the higher order calculation, but not
as efficiently as for the first-order one. Nonperturbative DMFT
calculations clarify that the perturbative result is accurate up
to intermediate coupling strength. An important conclusion
is, then, that retardation effects indeed lead to rather small
values of p, even when contributions beyond the standard
theory are considered. For systems with sizable Coulomb
interactions u., our values for p’ are, however, larger than
in the standard theory and therefore lead to reduced values of
the superconducting gap and 7. The paper is structured as
follows: In Sec. II, the details of the model are introduced,
as well as some basic properties of the DMFT approach. In
Sec. III, we discuss the diagrammatics for the calculation of
T, from the pairing equation, including self-energy and vertex
corrections. In Sec. IV, similar diagrams are discussed for
calculation of the gap at T = 0. In Sec. V, we focus on the
calculation of the p! and derive analytic results including
the higher order corrections. In Sec. VI, we put together the
results from the perturbation theory and validate our findings
up to intermediate couplings with the nonperturbative DMFT
results, followed by the conclusions.

II. MODEL AND DMFT SETUP

The purpose of our work is to obtain generic insights into the
behavior of a coupled electron-phonon system. Specifically,
we employ the HH model,

H=-— Z(t,-jciacj_g +Hc)+U Zﬁi«Tﬁivi

i,j,0 i
+wozbjbi+82(bi+bj)<2ﬁi,g—1). 2)
i

¢; , creates an electron at lattice site i with spin o, and b]

a phonon with oscillator frequency wy, 7;, = ci(,cw. The
electrons interact locally with strength U, and their density
is coupled to an optical phonon mode with coupling constant
g. The local oscillator displacement is related to the bosonic
operators by £; = (b; + bj)/ /2wp, where i = 1, and one can
define a characteristic length xo = 1/,/w, for the oscillator.
We have set the ionic mass to M = 1 in (2). The model in
Eq. (2) possesses the minimal ingredients necessary, such as
energy scales for electrons, phonons, and their interactions. In
the limit of large dimensions this model can be solved exactly
by DMFT. Hence, we can provide controlled benchmark
results in this situation. The following calculations are based
on this model in the limit of large dimensions. In this case
the self-energy is independent of the momentum k but retains
the full frequency dependence. This can be compared with the
usual application of ME theory, where one usually projects to
the Fermi surface and only deals with frequency-dependent
quantities.
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A. Calculating T,

In DMFT the critical temperature can be calculated by
analyzing the relevant susceptibility. For completeness we
display some of the results, which we use later. The notation
follows that in Ref. 45. The equation for the s-wave su-
perconductivity susceptibility x,(iw,) reads, with x,(iw,) =
D onymy Xg(A@n, s iwn,5iy),

Ra(ion, iwn,;iwy,)

1
~0/- . . ~0(- . .
= Xq (za)nl,lwnz;za),,) 4+ — Z Xq (za),,l,la)n};zwn)
ﬂ n3,ng
x TP (iw,, iwy,;i0,) Xq (iOn,ion,;i0,). 3)

PP (iw,, ,iw,,;iw,) is the irreducible vertex in the particle-
particle channel which is local in DMFT. The corresponding
pair propagator )Z;)(iwn] siwy) 18

g (ionion;ion) =Y Gilion) Gy r(ion — iwn,)8n,.n,-
k

4

For special values of ¢ and iw, we can evaluate the pair
propagator.* We are interested in the limit ¢ — 0 and iw, —
0, and one finds

Gliwn,) — G(—iwy,)
;(_iwnl) - ;(iwnl)
where ¢(iw,) = iw, + 1 — L(iw,) and

Xg(iwnl,iwnz;O) = Snl,nza (5)

£0
8—
((iwy) — €

One has, for the semielliptic DOS,

Gliw,) = | d = HT[pol(¢(iwn)).  (6)

2t

HT[pol(z) = / de :0(8; = zitz(z — sgn(Im(z))v/ 2% — 41%),
—2t -
@)

where the square root of a complex number w is given by
Jrel?’? where ¢ = [0,27), such that the imaginary part of
J/w is positive. At half-filling G(iw,) and Z(iw,) are purely
imaginary functions. The phonon Green’s function D(iw,,),

D(iwy)™' = D%iwy) ™" — Spniwn), ®)

where D°(iw,,) = 2wo/[(iwm)* — a)g], and its self-energy
Yon(iw,) are real functions. In the noninteracting case the
Green’s function reads

Gliw,) = #(a)n — sgn(wy)y/ w2 + 412). )

At half-filling © =0, G(—iw,) = —-G(iw,), Z(—iw,) =
—Y(iwy). With L(iw,) = iw,(1 — Z(iw,)), where Z(iw,) is
symmetric and real, we find

G(ia),,l)

-0/ . -0) = —
Xo(za),,,,la)np ) iC()an(iw"l

P 10)
)

This expression is positive.
We can write Eq. (3) as a matrix equation (omitting the
general arguments, ¢, i),

1 =x"+xTx. an
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The instability criterion is that x diverges for some T, iw,, q.
This can be written as the eigenvalue equation [{°I']v = v or,
with v = [°]'/2%,

(12T [%°1% = v, (12)

where the matrix is symmetric if I" is symmetric. The relevant
symmetric matrix reads

My, = =/ £0(i@s,) [T (iwp, iwn,;0) ]y X0 (iwn,),  (13)

1
B
and we have to find its largest eigenvalue. We have simplified
the notation for the arguments for ¥° omitting the ¢ = 0 label.
In a DMFT calculation for a given temperature 7, we first
determine X(iw,) and the full particle-particle irreducible
vertex TP (iw,,,iw,,;0). The pair propagator ¥°(iw,,) is
obtained from Eq. (5). Then we can search for the largest
eigenvalue of the symmetric matrix in Eq. (13) for the
instability criterion.

B. Calculations in the superconducting phase

We also perform calculations in the superconducting phase.
We work in Nambu space with matrices then. The local lattice
Green’s functions have the form

Gii(iw,) = AgHT[pol(e4) + BcHT[pol(e-)  (14)
and
Go(iw,) = ApHT[pol(e ) + BFHT[pol(e-),  (15)

with Ag = (L(iw,) + e (iw,))/(er(iw,) — & _(iwy)), B =
(L(iwy) + e_(iwy)/(e—(iwy) — e4(iwy)), Ap = Zo1(iw,)/
(e4(iwy)—e_(iwy,)), and Br = Xy (iw,)/(s—(iwy)—e1(iwy)),
where
_ é‘l(lwn) - ;2(iwn)
£ 2

1
£ V(@00 + Eain) — 45 () Dintion),

with §1(z) = z + pu — X11(z) and §(z) = 7 — . — Xaa(z). We
have G2(iw,) = G21(iw,) and G (iw,) = —G(—iw,) for
the Nambu Green’s functions. We use X1r(iw,) = Xo(iw,)
and Ypn(iw,) = —Xj1(—iw,) for the self-energies. This can
be deduced from the properties of the corresponding Green’s
functions including the assumption of time-reversal symmetry.
Athalf-filling G, (iw,) and ¥, (iw,) are imaginary functions,
whereas G (iw,) and %5 (iw,) and D(iw,,) and Xy, (iw,,) are
real functions.

In the NRG approach we calculate the self-energy ma-
trix for the effective impurity model from the matrix of

higher Green’s functions F(w) with Fj1(w) = ((cg,4ny; ij»w’
Fio(@) = (capnyica Vo Fai(@) = —(c} npich No. and
Fy(w) = _<<CZZ,¢”T§Cd,¢>)w~ For the phonon part we
use  Mi(w) = ((car(b+ bT);C;T»a)v Mz (w) = ((car (b +
b ca ) Vo Mar(@) = —((ch (b + b1 c) Do, and May(w) =

—((cjm(b —i—bT);cd,i))w. In the NRG we calculate M;; and
M, directly on the real axis from the Lehman spectral
representation. The others follow from M, (w) = — My (—w)*
and My (w) = M (—w)*. We can define the self-energy
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matrix by

() = UF(@)G() ™ + gM(®)G(w)™". (16)

For self-consistency the local lattice Green’s function G(w)
has to be equal to the impurity Green’s function, G(w) = G(w),
where

G ) = wly + pu1s — K(0) — Z(w),

with the matrix K () describing the effective medium. We can
take the form of the effective impurity model to correspond
to an Anderson-Holstein impurity model*® and calculations
are carried out as detailed, for instance, in Ref. 47. We solve
the effective impurity problem with the numerical renormal-
ization group*®*’ (NRG) adapted to the case with symmetry
breaking. The NRG has been shown to be very successful for
calculating the local dynamic response functions, and we use
the approach®>>! based on the complete basis set proposed
by Anders and Schiller.’> For the logarithmic discretization
parameter we take the value A = 1.8 and keep about 1000
states at each iteration. The initial bosonic Hilbert space is
restricted to a maximum of 50 states. We mainly consider two
cases: (i) constant DOS pg = 1/ W, where W is the bandwidth;
and (i) semielliptic DOS po(g) = /412 — £2/(2mt?) with
W =4t =2D.

a7

III. DIAGRAMMATIC CALCULATION FOR T,

In this section we first show how the standard approach to
conventional superconductivity, ME theory, would be applied
to the model under consideration and which diagrams are
included. To determine 7, we use the instability criterion,
Eq. (12), which is equivalent to the linearized ME equations.

A. Standard diagrammatics, ME theory

In ME theory the irreducible vertex in Eq. (13) is given by
the full phonon propagator

F(pp)(ia)m,iwnz;iwn =0) = _gZD(ia)n1 —iwy,,). (18)

Diagrammatically this is depicted in Fig. 1(a).

Due to Migdal’s theorem'! other vertex corrections in-
cluding the phonon propagator are neglected. In general, the
ME theory is a self-consistent calculation, and the electronic
self-energy reads [see Fig. 2(a)]

2
E(la)n) = _g_ Z G(ia)m + iwn)D(ia)m)-

(19)
:
D(iwp, — iwn,) U
I
I
—wn, | —Wn, | m
@) (b)

FIG. 1. Contributions to the irreducible vertex: (a) electron-
phonon part; (b) first order in U.
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D

L

G
(@) (b)

FIG. 2. Diagrams for (a) electronic self-energy and (b) phonon
self-energy.

The phonon self-energy reads [see Fig. 2(b)]
. 2¢° . . .
Epnlion) = =~ Y Gliw)Glioy +iw,).  (20)

We define wy, as the relevant renormalized phonon scale, which
is extracted from the peak position of the full phonon spectral
function p?(w). The electronic Green’s function G(iw,) is
determined as in Eq. (6). An appropriate definition of the
coupling constant A is

00 2
A :2/ PRaACl @1
0 w

where the pairing function is defined via a Fermi surface
average,

1
@’ F(w) = p Yo F@)d(ex — dlex — ), (22)
0 kK

with
2 _ 2 D
ak’k/F(a)) = p0|gk,k’| pk_k’(a))' (23)

For the Holstein model using the free spectral function we
have o F(w) = pog?[8(w — wy) — 8(w + wp)], such that we
obtain Ao = po2g?/wo, purely in terms of bare parameters.
However, more relevant is the effective coupling A for the
Holstein model, which is given by the full renormalized
phonon propagator,'?

oo D

r =28 / e ey
0

The dimensionless quantity for the Coulomb interaction

corresponding to Ag is . = poU.

In a self-consistent numerical calculation for a given
temperature T', we first determine X(iw,) and Zpn(iw,) by
iterating Egs. (19) and (20) and thus G(iw,) and D(iw,,). Then
we determine §°(iw,,) from Eq. (5). D(iw,,)is used in Eq. (18)
to determine the irreducible vertex. Then we calculate the
largest eigenvalue of the symmetric matrix in Eq. (13) for the
instability criterion. Instead of calculating the phonon Green’s
function self-consistently, we can also take it as an input. Using
the DMFT results for D(iw,,) we found in previous work'?
that 7, obtained from this procedure agrees well with the full
DMEFT result as long as the renormalized Migdal condition,
Awj/ W small, is satisfied. In the DMFT calculation I'?P and
Y (iw,) contain all higher order corrections.

In the usual theory the Coulomb repulsion is included
directly up to first order or as an additional empirical parameter
w*. The vertex then has two contributions, one as before, due
to the electron-phonon interaction, and the second one from
the Coulomb repulsion [see Fig. 1(b)],

TP (iw,, iwn,;iw, = 0) = —g*D(iw,, — iwy,) — U. (25)

PHYSICAL REVIEW B 87, 054507 (2013)

The eigenvalue equation, (12), with the pairing vertex, (25),
can be solved analytically with approximations similar to those
of McMillan.>* This yields

2Cwy, z
<V SR S
m A — w14 32]
where C =e” =~ 1.78 with the Euler-Mascheroni
constant ¥y =0.57721. We have introduced Z =

1 —lim,—0 X(iw)/iw and wp} is given by Eq. (1) with
Eq =D and wp, = wp. This corresponds to the result of
McMillan>® or Allen and Dynes,’*
_ o) s

T, = T3¢ z , 27
where Z =14 A is used. The essential feature is that the
Coulomb repulsion, which is the same for all i w, is effectively
reduced from . to ) when counteracting the electron-
phonon attraction with strength . This shows how retardation
effects assist the electron-phonon-induced superconductivity
by suppressing the detrimental effects due to Coulomb
repulsion.

In summary, the diagrams in Figs. 1 and 2 are those
included in the standard theory of superconductivity. Usually,
the phonons are not calculated self-consistently but rather
taken as an input, for instance, from DFT calculations or from
experiment. Also, u} is usually not calculated but used as a
fitting parameter. In the following we consider higher order
corrections to the standard approach.

B. Higher order terms

The perturbation expansion for two different interactions
is rather involved, since terms in each perturbation series as
well as mixtures can appear. In a skeleton expansion higher
order contributions can be grouped into the following terms
for self-energies and vertex functions.

(1) Contributions to the full electron-phonon vertex ' =
TP 4+ T8 4 T where the bare vertex is Ty? = g:

8
(a) Higher order corrections I's® purely due to g, not
including F(()ep).

(b) Contributions F;fp) which include the bare vertex
F(()ep) and higher order terms purely due to U.

(c) Higher order corrections FSZ/) due to mixed terms

of g and U, not including F(()ep).
(2) Contributions to the phonon self-energy Xpp:
(a) Higher order contributions to X, which can be

written in terms of Fg,ep), i.e., purely due to g.
(b) Contributions to X, due to mixed terms of g and

U. These can be expressed in terms of I'y” or 7).
(3) Contributions to the electron self-energy x:

(a) Contributions to X, which can be written in terms
of Fi,ep), i.e., purely due to g.

(b) Contributions to X purely due to U.

(c) Contributions to X due to mixed terms, which can
be expressed in terms of ng) or FS’;}.

(d) Contributions to ¥ due to mixed terms, which
cannot be written in terms of I'"P),
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j:lubrxrv j:>r\r»rv + -O~ 4 (i) ¥

FIG. 3. Contributions to the electron-phonon vertex Fifp).

(4) Contributions to the irreducible vertex ['®P):

(a) Contributions to I'PP purely due to U.

(b) Contributions to I'® due to g and U, which can be
written in terms of full propagators and the electron-
phonon vertex I"CP),

(c) Contributions to I'?P due to g and U, which cannot
be written in terms of [P,

We assume in the following that the parameters are chosen
such that higher order contributions of the type l"f;p), ie., 1(a),
2(a), and 3(a), are small due to Migdal’s theorem. By taking
the full phonon propagator from the DMFT calculation as in
previous work,'® we avoid considering in detail the effects of
2(b) and, rather, assume that we can include the correct phonon
propagator. We focus on contributions 1(b), 3(b), 3(c), 4(a),
and 4(b) in the following, which are the main contributions
in the low-order perturbation theory. Contributions of types
1(c), 3(d), and 4(c) include higher order diagrams and are not
explicitly considered here.

We can generally write contributions to the pairing vertex
of form 4(b) as

PO (100, i, i =0) = —T P (i, i) Do, — iy,

X TSP (—iw,,, —iwy,),  (28)
where FSP) includes g and all corrections due to U (see
Fig. 3).

For I‘S’P)(ia)n],iwnz), iwy, is the ingoing electronic fre-
quency, i w,, is the outgoing one, and the bosonic one is iw,, —
iwy,. D(iw,) is the full propagator including corrections due
to U and g. Diagrammatically, these contributions to I'®P) are
displayed in Fig. 4(a).

The higher order corrections included in Eq. (28) can be
seen as a redefinition of A defined in (24). The vertex Fﬁp)
does not vary much up to the small phonon scale, such that we

can write approximately, with g" =T Sp)(0,0),

oo D
. (w) r
x>~ 2polg ]2/ do® = —polg" P D(0),  (29)
0

Wny T Wy T

D
D(iwp, — iwn,)
—Wn, l —Wny l G

(a) (b)

FIG. 4. (a) Higher order terms involving vertex corrections of the
electron-phonon vertex. (b) Electronic self-energy including vertex
corrections for the electron-phonon vertex.
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where p?(w) can also include self-energy corrections due to
U. Such a redefined A enters the approximate results for 7,
such as Eq. (26). We can also take into account the effect that
FSP) is a function of frequency and average over a range given
by the phonon Green’s function such that

TP (0,i,,) D (iwn,),

(g (30)

Np -
where Np =, D(iw,,).
We now consider the diagrams contributing to the electron-

phonon vertex Fg’p). Some of them are shown in Fig. 3. To
order Ug we have

TP (iwnsion,) = g[1 + UM (ion, —iw,,)], (31
where the particle-hole bubble is given by
1
M) = 7 > Gliwy + iwn)Gliwn). 32)

I1(0) can be evaluated analytically at 7T = 0 and one finds
I1(0) = —21o0g(2)pg for the constant DOS and I1(0) = —;—‘ 00
for the semielliptic DOS. It turns out that a good empirical
form for I1(i w) is given by

—apo

Miw) = ———£°
() = ol + b

(33)
If G(iw,) is the noninteracting Green’s function in Eq. (32),
then a = 4/3 for the semielliptic DOS. In this case we find
that by = 1.3/D and b, = 1.63/D? give a good fit.

We can sum up a whole series of diagrams of the type
discussed in Eq. (31) which corresponds to screening on the
RPA level:

(ep,RPA) 8
i

1 — UN(iwy, —iwp,)

iwn, iwy,) = (34)
Note the absence of a factor 2 in the denominator for the
Hubbard interaction. Since IT < 0 these diagrams lead to an
effective reduction of the electron-phonon coupling. If one
assumes that IT does not change much on the phonon scale
enforced via D(iw,,), then one can approximate g" = g/[1 —
UTI(0)], and for the Bethe lattice g" = g/[1 + 4u./3].

There are three diagrams to order U? in addition to the
screening term to correct the vertex [see the third diagram in
Figs. 3(c) and 5(¢)].

The first term, Fig. 5(a), reads

gU?
B
X Glwg + iwy).

Z (i) Gliwg +iw,)
k

(35)
The second one, Fig. 5(b), is of the form

U2
TP o ion) = —g? D Mylio)Glioy — iw,)
k
x Gliwy —iwp), (36)
where we have introduced the particle-particle bubble,
1
Mppion) = 5 Y Glio, —iw)Glio,).  (37)
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[ W — W,
Wn — Wm Wn — Wm

FIG. 5. Vertex corrections to the electron-phonon vertex to order
2
gU~.

At half-filling we have G(—iw,,) = —G(iw,,), which implies
I,,(iw,) = —I(iw,). With this, one obtains

,2,2) s . 2,1) . .
TSP (i w,,iwp) = =T (iwg,iwp), (38)

and the first diagram is canceled. The third diagram, Fig. 5(c),
is like the first one, T\** (iw,,iwn) = TSP iwy,ioy).
So altogether we have just one contribution of the form (35)
at half-filling. Diagrams of this type together with the RPA
screening series were discussed by Huang et al.> for the two-
dimensional HH model. The full electron-phonon vertex was
calculated with quantum Monte Carlo. It was found that for
values of U up to half the bandwidth the diagrammatic and the
nonperturbative results are in good agreement. However, for
large values of U, the perturbation theory breaks down.

As can be seen from this analysis of the vertex correction,
there is a considerable effect to suppress the coupling g when
U is finite. Including diagrams in Egs. (34) and (35) we can
write the approximate form,

r 1
% = Tvam bu?, (39)
where a = —T1(0)/pp and
1
b= Y Mw)Glio). (40)
0

In the simplest case for free Green’s functions and a semiel-
liptic DOS we have a = 4/3 and b = 0.8237 numerically. In
a calculation strictly up to second order in U we have, instead
of Eq. (39),

r

g; =1—au,+(@* —b)u?, (41)

We plot the results for (g"/g)? in Fig. 6.

We see that a substantial suppression occurs, such that
already for s = 0.25 the quantity (g" /g)? is reduced to about
a half of its value for i, = 0. Since a®> > b, the second term in
Eq. (41), which dominates for larger u., leads to an upturn of
the result. The result in Eq. (39) overestimates the suppression
effect for large values of u..>> For the interacting system,
coefficients a and b tend to be smaller than the values in the
noninteracting limit.

The vertex corrections FSP) also enter the electronic self-
energy as one class of diagrams contributing to 3(c). This can

PHYSICAL REVIEW B 87, 054507 (2013)

1

0.8r

(979)

0.4}

0.27

0 0.2 0.4 0.6 0.8
lJ’C

FIG. 6. (Color online) (g’ /g)* as a function of u.. Solid line,
according to Eq. (39); dashed line, according to Eq. (41).

be written as

1 ¢
Sl =—7 Y TSPy im + i02)G i + iwy)

m

X D(i )T iy + i, iw,). (42)

This is shown diagrammatically in Fig. 4(b). As discussed
above, there are also other types of mixed diagrams 3(d), which
cannot be written in the form of Eq. (42).

C. Higher order corrections from purely U

We now deal with the higher order corrections purely from
U, i.e., of type 4(a). We restrict our attention only to the terms
second order in U. The corresponding contribution (crossed
diagram) to the pairing vertex reads

F(Pw(iwnl,iwnz;iwn = O) = Uzn(iwnl + iwm)' (43)

The diagram is depicted in Fig. 7(a).

A naive way of taking this into consideration would be to
assume that I1({w,, + iw,,) varies little for the scales under
consideration, such that for all frequencies we can assume
—poU?T1(0) = ap?. Then this term can be treated in the same
way as the first-order term in U, where we can simply write
We = fie = We + ap?. This quantity is then subject to the full

Wny + Wny + Wiy T

Wy T \\ // Wy T —c
\ //
<
[V l |
4 AN ! I
/ N U\ | U
I
I
Wn. o
—Wp, | ns L —Wny | o o o

(a) (b)

FIG. 7. (a) Higher order diagram vertex contribution from the
Coulomb repulsion. (b) Second-order-in-U diagram for electronic
self-energy.
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retardation effects and becomes fi}:
He

—5> 44)
1+ ficlog ()

e =
However, as analyzed in detail in Sec. V retardation effects
are less efficient for the second-order term when the decay of
[1(i w) is taken into account properly.
For self-energy contributions of type 3(b), we only consider
the standard second-order diagram depicted in Fig. 7(b):

2
S(iw,) = —U—2 > Gliwn —iwn,)G(iwn, +iwn,)G(iwn,).
ni,nz

(45)

IV. DIAGRAMMATIC CALCULATION FOR THE
SUPERCONDUCTING STATE

In this section we consider calculations in the superconduct-
ing state. We first present the application of the standard theory
to the HH model and then discuss higher order corrections.
These calculations allow us, for instance, to study the gap at
T = 0. The relevant quantities are matrices in Nambu space.
We have to calculate the diagonal and off-diagonal components
of the self-energy. First, we present the diagrams usually used
in the standard ME approach.

A. Standard diagrammatics, ME theory

To lowest order the diagonal self-energy is given by
2
Si(io,) = —% Y Gulion +io)D(iwy),  (46)
and the off-diagonal self-energy reads
&
Baion) = Y Galion +io)Diiwy).  (47)

This is depicted in Fig. 8(a), with the off-diagonal self-energy
labeled F.
In the limit of low temperature, T — 0, we use

%Xn:f(ia)n) - %/Zdw fliw).

For the off-diagonal self-energy [see Fig. 8(b)] we have the
Coulomb contribution (n — 0)

(48)

. Y . io,
Saion) = 5 > Galion)e . (49)
D
/ \
D WS S -
F F

(a) (b)

FIG. 8. Diagrams for the off-diagonal self-energy (a) from
electron-phonon interaction and (b) for the Coulomb repulsion with
the notation F = G;.
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Since G»;(iw,,) decays sufficiently rapidly the factor ¢/“»" is
usually not needed.

These are the equations which are taken into account in the
standard theory. Often, the Coulomb term is then projected
onto the phonon scale (Coulomb pseudopotential), where
only the reduced value u) enters. Making a few simplifying
assumptions (see Sec. V B) we can derive, for the spectral gap
atT = 0, Asp ~ 221(0)/2,

Ay = 20he D)

(50)

This result is very similar to the one for 7. Equations (46),
(47), and(49) correspond to the standard approach for the
theory of conventional superconductivity.”$

B. Higher order corrections

In a similar way as for the analysis of the pairing vertex in
Sec. III, we can classify terms for the self-energy into different
contributions. We follow the same logic as in the calculation
of T, and focus on the same type of diagrams as before. Here
we consider a subclass of type 3(c), which includes Coulomb

vertex corrections of the electron-phonon vertex of type FSP).
It reads

1 e
Enlion) = =5 D Ti"(onion +io)Gulion + i)
X D(i )T (i + iy, iw,). (51)

Assuming a slow variation of I'; on the phonon scale, a good
approximation is of the form

g1
B

Similarly we have for the off-diagonal self-energy,

YGwy) = —

> D(iww,)Gi(ion +ion,). (52)

my

1 c
i) = - Y TP (o ion + i) G (o + iwy)

m

X D(iwn)TSP i + iwnsiwy). (53)

For Fsp)(iwn,iwm) we consider the same diagrams as in
Sec. IIIB. We assume that D(iw,) is the full phonon
propagator and hence it contains corrections due to U as well.

C. Higher order corrections from purely U

Of the contributions of type 3(b) we discuss all terms to
second order in U. In the Nambu perturbation theory ones has
(cf. Ref. 56)

U 2
20 (w,) = _<F> S Gur(iwn + i )G lion)
my,my
X G22 (lwml + iwmz) (54)
and
U 2
Zition = (5) X Gulion + iom)Gusfion)
mi,my
x Gy (iwm, + iwm,). (55)
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For the off-diagonal part we have

UN\2
2521',2(1'60:1) = —<—> Z Goi(iwy + i, )Gro(iwm,)

p my,m;
X Glz(ia)ml + iwmz), (56)
U\2
S w,) = (E) > Gulion +ion,)Gnliom,)
nmip,mjp
X Glz(ia)m1 + ia)mz). (57)

The first diagram 2521‘_2(1' w,) is the well-known U? diagram,
which gives the first dynamic correction, also in the normal
phase as in Eq. (45). In comparison, 25212 (iwy) gives a smaller
contribution, as it is proportional to two off-diagonal Green’s
functions. 2521"2(1' w,)1s also comparably small, but Egzg (iwy,)
gives a sizable reduction of the superconducting state. We can

see this by writing it as

1
20w = —U =Y (ioy +ion, )Gy (ion).  (58)
nm;
where I1(iw,) is given in Eq. (32) with G(iw,) = G11(iwy).
For small iw,, a crude approximation is to write

1
E0O0) = Va0 Y Galion). (59

m

where it is assumed that G;;(iw,,,) is only finite in a small
interval such that we can take I1(iw,) constant. Hence we find
a direct correction to the term E;ll) - With the result for I1(0),
one then has approximately

1
o+ ZR0O = U +anog 3 Galion).  (©0)

mj

This is the same effect that was discussed for 7, and the crossed
diagram [see Fig. 7(a)], where naively the effective ;. becomes
e = (1l + ape). In a more accurate treatment, we have to
take the frequency dependence into account, and we see that
this leads to modifications.

V. ANALYTIC AND NUMERICAL RESULTS FOR u?

In the previous two sections we have analyzed the diagram-
matic expansion for the model in Eq. (2) and discussed certain
types of diagrams. In this section we want to specifically
study the pseudopotential effect without including all other
corrections. We are interested in whether the first- and second-
order calculations give qualitatively different results for . We
present a combination of analytical and numerical arguments.
In the literature, there exist a number of ways to calculate p*
for a given microscopic model. One early approach, by Bogoli-
ubov et al., is based on an integral equation for the Coulomb
part in the pairing equation.”'® MA!” gave an approximate
solution for the ME equations including a screened Coulomb
repulsioninthe 7 = 0 formalism. The pseudopotential ) also
appears naturally when superconducting pairing instabilities
are studied in a renormalization-group framework.**7 In the
following we first calculate p’ directly by projecting the
pairing matrix to low energy. Analytic and numerical results
are compared. Then in the second approach we calculate Ag,
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from an approximate solution of the self-consistency equation
and thus extract w. Finally, we also compute numerical results
for T, obtained from the instability condition and analyze these
results in terms of w).

A. Projection scheme
The starting point for the projection approach is the pairing
matrix in the form

Anm = Snm - M, (61)

where M,,, is given in Eq. (13). This matrix becomes singular
at 7.. We introduce the “low-energy part,”

1
Anor:LV = Apm — Z

[y, ||, |>wph

Ann’[A_l]n’m’Am’ms (62)

n,m such that |w,|,|w,| < wp, and A is the matrix that is
left after the blocks given by |w,| < wpn or |w,| < wpn are
removed. If A~! is not singular, Eqs. (61) and (62) become
singular for the same parameters. This way we can reduce
the matrix size so that it only includes frequencies for which
the electron-phonon interaction is important. The “folding-in”
of higher frequencies then describes how retardation effects
reduce the effects of the Coulomb repulsion on low-frequency
properties.

We first consider the lowest order term of I'®P) in U, namely,
PP = — /. We want to focus on the dependence on the half-
bandwidth D and assume that the DOS scales as

1 e
=—pnl == 63
p(€) 2DP<2D> (63)
where p is independent of D. For simplicity we assume in
the following that p(x) = 1 is a constant for |x| < 1/2 and is
0 otherwise, such that pp = 1/(2D). It is then a rather good
approximation to write

S0y _ Jpor/lw,| if o] < D;
X (i) = {0 otherwise. (64)
Matrix A then takes the form
T
Anm = ‘snm + e, (65)
B |wn @y |

which is separable and can be inverted exactly. We obtain
TTfhe
BV Twanl (L + 7 pic/B 3 1/l

where Z;c involves a summation over |wi| > wpy. Replacing
the summations in Egs. (62) and (66) by integrals, we find

[A_l]nm = 8nm - 66)

o g T % _plox(Djoy
nm " IBV |a)na)m| ¢ ,3\/ |a)nwm| 1 + Mclog(D/wph)
m e

Ot Tamaon] 1+ 210g(D far) ©7
Comparison of Egs. (65) and (67) leads to the Coulomb
pseudopotential, (1, — w7, as given in Eq. (1), and it is the
result of MA."7

We next consider the second-order term of I'PP in U
[Eq. (43)]. Because of the form of [1({w, + iw,,), it is then
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not possible to invert A in Eq. (62) analytically. For the DOS
[Eqg. (63)] we can rewrite [1(iw, + iw,) as

1 Wy, + wp
“2p” <—zu )
where f is independent of D. As in Eq. (33) it is quite accurate
to approximate f as

fx) =

(i, + i) = (68)

a

_ 69
1+ b|x| + cx? (69)

where a = 1.38, b = 2, and ¢ = 5 are suitable values for the
constant DOS.

We now want to calculate A®Y in Eq. (62) to third order
in U. We use the result for A~ in Eq. (66), which neglects
the second-order term and is therefore correct only to order U.
However, since the off-diagonal terms of A in Eq. (62) are of
the order U, the final result is of the order U3. We obtain

Z Aln[Ail]nmAml

nm

2 2
=x°(z‘w1)<%) 3 x°<iwn>[1+ucf<;”l';)]

|@n | Zwph

B (g)* 7o)
:3 1+ Mclog(D/wph)

2
x{ > xo(iwn)[lwcf(;”—l’;)”,
|@n |Zwpn

where we focus on the diagonal result for the lowest frequency
;. Using the definition of %°(iw,) in Eq. (5), not the
approximation in Eq. (64), and applying the limit wp, < D,

we calculate the sums
DA,
og| — ), (71)
Wph

~0,: Wy
> (w)n)f<2D>
|@n | Zwph
where Ag ~ 1.00, A; ~ 0.32, and A, ~ 0.20. For k = 1 and
2 the denominator of f reduces the integral for large |w,]|,
which effectively reduces the bandwidth by a factor Ay. This
reduction is naturally larger for k = 2 than for k = 1.
We now make an ansatz for p

(70)

k_ akﬁl
2D

_ e + ap?
1+ pclog (w%,) +ap?log (2 Axp)’

'ph

e (72)
along the lines of the MA form but including a second-order
term and a corresponding logarithm. Based on Eq. (71) we
expect the effective bandwidth to be smaller for the second-
order term and we therefore allow for a different multiplying
factor Ay in the logarithm. Since the result in Eq. (70) is
correct to order U? the factor A, in Eq. (72) can be identified,
Ay = A2/Ag ~ 0.10. The ansatz in Eq. (72) is then also
correct to order U?.

Figure 9 shows the results obtained by performing the
calculations in Eq. (62) numerically using the first- or second-
order result in U for P and without introducing the
approximation in Eq. (64). The figure also shows the analytical
result of Eq. (72). The second-order result is clearly larger than
the first-order result. For u. < 0.5, Eq. (72) describes the full
second-order calculation rather well, while for larger . there
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0.4 r Second Order. Calc. ——
Second Order. Analyt. ———
First order. Calc. ~  ==r=:=
0.3 | D/w,,=100 -7
k:*(f 02t ,” _____________
01 A7
0 L L L L
0 0.25 0.5 0.75 1 1.25 1.5
He

FIG. 9. Pseudopotential i as a function of . for D/wp, = 100
and Bwyn, = 240. Calculated results using both the first-order and the
first- plus second-order result for '® as well as the approximation
in Eq. (72).

are corrections to the analytic result which make p still larger
compared to Eq. (72).

It is interesting to discuss the origin of the factor Ay
in Eq. (72). In the present language the term log(D/wpyn)
in the first-order calculation arises from folding in high-
frequency contributions from U in Eq. (62), which extend
to approximately w ~ D. The second-order term in U is
folded in in a similar way. However, as shown by Eq. (69),
the contribution from high frequencies is reduced, leading to
the effective bandwidth’s being reduced by some factor for the
second-order contribution. This reduction factor is surprisingly
large (1/10). The origin can be seen in Eq. (70), where the
relevant terms are a product of the first- and second-order
contributions in the first term, containing a factor 2, and the
first-order contribution in the second term. The prefactor 2 of
the logarithm in the first contribution leads to the factor A?
and, thereby, a very small factor.

This shows that the second-order terms contribute to
retardation effects, like the first-order contribution. However,
the reduction is substantially less efficient, as described by the
small factor Ay,. The bandwidth therefore has to be very large
to make this contribution to retardation efficient.

It is interesting to consider the second-order contribution
alone. We can then calculate results accurate up to order U*.
Matrix A~! can be approximated by a unit matrix. Making an
ansatz for ) and identifying with the fourth-order result, we
obtain

o_ o am
He =1 + apllog(222)’

@ph

(73)

where A, = 0.20 was given above. The result of a full
calculation is compared with the analytical approximation
[Eq. (73)] in Fig. 10. Also, in this case the analytical result
agrees rather well with the full calculation for p. < 0.5.

Finally, we compare the first- and second-order results as a
function of log(D/wyp) in Fig. 11. Different values for u. were
used in the first- and second-order calculations and chosen such
that both calculations gave the same p for D/wpn, = 10. It is
quite interesting that v’ then decreases in a very similar way
in the two cases.
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0.4 | Calculated ——
0.35 | Analytical
03 | Only second order term |
| D/ =100
025 PN -
(&}
= 0.2 1
0.15 1
0.1 | / i
0.05 |
0 ~ L L L L L L L
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Ke

FIG. 10. (Color online) w1 as a function of . for D /wy, = 100
and Bwp, = 240. The calculated value using just the second-order
result for I'® as well as the analytical approximation in Eq. (73).

We are now in the position to discuss the results for n}. We
have performed calculations using the first- or second-order
expression for T'PP). We then either calculated Eq. (62)
numerically, without any further approximations, or performed
analytical calculations involving the neglect of additional
higher order terms in U.

When the first-order result for I'®P is used, the analytical
calculations can be performed without further approximations.
This leads to the MA result, which has two important features.
When D/wpn, — oo, ui — 0, and when U — oo, u} —
1/log(D/wpn) stays finite and saturates. Is this still true when
the second-order contribution to I'®P is included?

The analytical results in Eqgs. (72) and (73) have these
properties. However, these results were not derived but are
ansatze inspired by the MA result and adjusted so that they
agree with the analytical calculations to low order in U.
Actually, Figs. 9 and 10 show that although retardation effects
strongly reduce p, there is no sign that the values saturate
as U becomes very large. In this sense there is an important
difference from the MA result. For these large values of U,
higher order effects in I'® become important, and it is not
clear how these influence the conclusions.

023 — . ‘
\ First Order
0.22 | Second Order

0.21
0.2
0.19
0.18
017 ¢
0.16
0.15
0.14 r

0_13 1 1 1 1 1 1
2 2.5 3 3.5 4 4.5 5 5.5

Iog(D/o)ph)

He

FIG. 11. (Color online) u; as a function of log(D/wy,) for
Bwpn = 240 according to a first-order (141 = 0.5) and a second-order
(pe2 = 0.2756) calculation. . and w., were chosen so that the same
u; was obtained in the two calculations for D /wp, = 10.
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The second issue is how w7} is influenced when D/wyp
becomes very large. As is clear from Egs. (72) and (73),
retardation effects also reduce the second-order contribution
to w. This is also shown in Fig. 11. However, the effective
bandwidth is smaller, due to the frequency dependence of
the second-order contribution, and retardation effects are less
efficient. Nevertheless, the second-order contribution goes to 0
as D /wpy, — oo. In this context Fig. 11 may seem surprising.
One might have expected the second-order contribution to drop
more slowly with D/w,. To understand this one can study
Egs. (72) and (73) and find the ., and w.,, which lead to the
same u; in the first- and second-order calculations. Because
of the less efficient retardation effects for the second-order
term, [, has to be chosen smaller than would otherwise have
been the case. The criterion for the choice of ., is, however,
independent of D. Thus the two curves in Fig. 11 should be
identical according to Egs. (72) and (73). The small deviation
is due to the inaccuracies of these analytical results for finite
U . Figure 11, nevertheless, nicely illustrates how both the first-
and the second-order contributions are systematically reduced
as D /wpy, is increased.

B. Calculations for the gap at T = 0

In this section we conduct a complementary analysis to
extract results for p’. We calculate the spectral gap of the
superconductor Ag, at 7 = 0 and show how 1% enters naturally
in the analytical description. We present this analysis to order
U?. The approach here is similar to the original work by
MA,!” which included only the first-order term in U and was
carried out in the 7 = 0 formalism. Here, we work on the
imaginary axis in the limit 7 — 0. The starting point is the
self-consistency equation for the off-diagonal self-energy,

Zatio) = 5 3 Gaion K Gopion). (74

where the kernel K (iw,,i®,,) includes the following terms:

K(iwp,iwy) = g2D(iw, — iwy) + U — UT(iw, + iwy).
(75)

The second and third terms are as given in Egs. (49) and
(58). The expression for G, (iw,,) is given in Eq. (15) and a
semielliptic DOS is used in the following. We do not consider
vertex corrections of the electron-phonon vertex here, and we
simply use the form
s A 1

& D(iw,) = —————.

PO 1+ ()

Wph

(76)

The effect of the diagonal self-energy is taken into account in
the analytical calculations for completeness, with a Z factor
for low frequencies, |@,| < wpn. In the numerical calculations
in this section it is neglected.

The self-consistency equation, (74), can be solved numer-
ically by iteration to find a solution for Xj;(iw,). For an
analytical solution, we need to make some approximations.
At half-filling we use, for the Green’s function for |w,| < wph,

1 o1 (iwy)

Goiwy) =~ —— ; (77
2 12202 + Zo1(iw,)?
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for wpn < |w,| < D,

1 3o,
Garlicoy) ~ —» 221U, (78)
ol
and for |w,| > D,
-
Goy(iw,) ~ —% ~0. (79)

As discussed, T1(iw) is well approximated by the form given
in Eq. (33). As noted by MA!” the @ dependence of the off-
diagonal self-energy is very similar to that of the pairing kernel
K (iwy,iowy). Hence, a suitable ansatz for the off-diagonal self-
energy is

A, Ay — Ay — Aj
1 + bi|w| + brw? 1+ (1)2

Wph

Yo1(iw) = Az + (80)

It contains the parameters A;. We assume that b; and b, take
the same values as found for [1(iw) in Eq. (33). By comparing
the @ dependence with the full numerical solution we find
reasonable accuracy for this assumption. In general we then
have to solve for the three parameters Aj, A,, and A3 by
evaluating the self-consistency equation at suitable values
of iw. Unfortunately, the general case is algebraically very
involved. It is discussed to some detail in the Appendix. Here
we only treat the first- and purely second-order cases to see
the major effects.

For the first-order case, we set A, = 0 and omit the U? term
in Eq. (75). We use the self-consistency equations X1 (0) = A
and X(i D) >~ Asz. When evaluating the X,,(0) and X,(i D)
according to Eq. (74), we approximate the integrals in order to
find an analytic solution (see the Appendix). We also assume
A; K wpn K D for simplification. Then for a self-consistent
solution the parameters A; and A3 have to satisfy the equations

A — e 2Zwpn D
Al = Al lOg + aOAA3 — MC-A3 lOg — 1,
VA Al @Wph
Al ZZa)ph D
A3 = —p.| = log + Azlog| — ) |. 81)
VA Al Wph

The coefficient a is given in the Appendix. This yields the
nontrivial solutions

*
A1 = 2Zwge T, Ay = _ 220t s
A=k
(82)
where the standard result for p} is obtained:
w He (83)

- 1+/Lclog(w%|)'

Note that the gap in the spectral function A, found from the
pole of the Green’s function, occurs at |w| = A;/Z in this
approximation.

Accounting for the approximations made in this derivation
we can use this form with three fitting parameters as in
Eq. 27),3

__Zo
Asp = cwpne J—pg (I+c3) ,

(84)

where ¢; > 0, ¢c; > 1. We can determine the parameters c, ¢,
by fitting to the numerical solution of Eq. (74) for . = 0 in
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0.4} = numerical result 9
-©-analytical fit 5
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0.3F

< 0.25f
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0.15f
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0.05¢

5 0.2 04 06
A

FIG. 12. Spectral gap Ay, as calculated from the numerical
solution of Eq. (74) as a function of A for D /w,, = 80 in comparison
with the analytical form in Eq. (84), with the parameters ¢; = 1.7 and
¢ = 1.07.

the regime 0 < A < 0.5. Note that, in contrast to the analytical
solution, the result of the numerical solution depends in general
on the bandwidth W. It only becomes independent in the large-
bandwidth limit.>®

For p. =0, D = 8/wp, = 80, we find, with ¢; = 1.7 and
¢ = 1.07, good agreement of formula (84) with the numerical
results for A < 0.5, as shown in Fig. 12. Note that for the
Holstein model and larger values of A, the result in Eq. (84)
underestimates Ay, as already pointed out by Allen and
Dynes.

For fixed A = 0.5, we also compare the p. dependence of
the analytical resultin Eq. (84) with the full numerical solution.
In Fig. 13 a comparison can be found, where we used the same
values for ¢; and ¢; as for . = 0 and found that ¢3 = 0.8
gives a reasonable fit.

We now analyze the situation including only the U?
term. We set A3 =0 in this case and omit the constant
U term in Eq. (75). To determine the parameters A,
and A,, we use the following two conditions: X;(0) =

0.25 T T T
—>-numerical, order U
-O-analytic fit, order U
0.%3 —+numerical, order U? 1

'A'analytic fit, order u?
—*numerical, only u? |
-©-analytic fit, only U2

0.05¢

FIG. 13. (Color online) Spectral gap A, as calculated from the
numerical solution of Eq. (74) with different kernels as a function
of p. for D/wp, = 80 in comparison with the analytical result in
Eq. (84).
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A=Y, NijAiand (i D)+ Zp(—iD) ~2A, /(1 + b D +
b,D*) = Zi Ny; A;. This yields the self-consistency equation,
N12N21

=N+ .
— Ny

l+b1D+b2D2

(85)

Making an approximation similar to that in the first-order
calculation, we find, for the coefficients N;;,

1 2
Nip = — (= apg) log(Th) (86)
and
2 apg log(T)) (87)
_— 10 .
AT T D+ D2 B!
with
Zwpn + [ (Zop)* + A3
T, = ) (88)
Ay
One also finds
D
N =a12?»—a,uL log (_AI2> (89)
Wph

and

2 D .
Ny =—ap?—————log| —An]). (90)
1+ b1D + b,D? @ph

The expressions for aj;, A1y, and Ay, can be found in the
Appendix. The coefficients A, < 1 and Ay, < 1 appear due
to additional terms to 1 /w in the integrand which accelerate the
decay towards a higher energy. Hence, they lead to a reduced
effective bandwidth, D — A,, D, as discussed in the previous
section. The solution of Eq. (85) yields

.z
Al — 2Za)phe 7~—nf(l+zx12)»)7u:1 , (91)
with
X apg
c 92)
T+ ap?log (2 A22)
and
log 42), w
v 93)
’ 1 + apg lOg ( A22)

The result for u’ has the same form as what was derived in
Eq. (73). In addition, a higher order term u ; appears. In the
first-order calculations all higher order contributions cancel
in the numerator of the expression for ;. However, in the
second-order calculation this is not the case anymore and an
additional term remains. The coefficient log(As;/A ;) does
not increase with the bandwidth W and therefore the whole
term becomes small in the large-bandwidth limit due to the
logarithm in the denominator. For the relevant values one has
A /A1 ~ 2 such that the coefficient of the ,u% is relatively
small and the term does not contribute much for small values
of u.. For larger values, however, it does play a role. Thus
it can account for the discrepancy between the numerical and
the analytical result from Eq. (73) shown in Fig. 10, where the
numerical result does not seem to saturate.

PHYSICAL REVIEW B 87, 054507 (2013)

We would like to check these analytical findings with
the full numerical solution of the self-consistency equation.
Formally, we had found results very similar to the ones in
the previous section derived from the projection scheme.
For comparison with the numerics we take these expressions
and use the values for the parameters derived there; i.e., we
use Ayy — A,, where A, = 0.197 or log(Ay) = —1.624. We
omit the term “’j,l’ and for ¢, ¢, we take the same values
as above, and we use ajp = c3. The reason for this procedure
is that, due to a number of approximations involved in the
analytic calculation, the results for these coefficients do not
tend to be very accurate. Moreover, we aim for a unified
description with as few parameters as possible.

The result for the “only U?” calculation is added in Fig. 13
and compared with the full numerical solution. We find good
agreement. For small values of u. the reduction of Ag, is
smaller than for the first-order term, but then Ay, drops
more rapidly. Note that the second-order result for p’ is
analogous in form to the first-order calculation. The difference
is the factor Ay < 1 in the logarithm in the denominator.
Hence, the retardation effects are less effective in this case as
discussed in the previous section. The results here are derived
independently from the arguments in the previous section but
are fully consistent with them. The higher order term p , is
not very important for the values of u. appearing in Fig. 13.

In the general case including both the first- and the second-
order terms in Eq. (75), we have to solve for three parameters
and hence have three self-consistency equations to be solved.
In general this can be written as a matrix equation A = MA.
Algebraically this becomes rather lengthy and yields a number
of different terms for u), as discussed in the Appendix. To
simplify the discussion, we use results in the form of Eq. (84)
with p* as introduced in Eq. (72),

= e + ap?
¢ 1+,u610g( )—I—autlog( A22)

for comparison with the numerlcal results. In Fig. 13 we have
included the numerical result of Eq. (74) with the full kernel
in Eq. (75). We also included the analytical description based
on Egs. (84) and (72) with the same value, log(Ay) = —2.28
or Ay = 0.1022, as in the previous section. We find a rather
good agreement for the range of values of 1.

We can accurately calculate the dependence of the spectral
gap Ay, on . for given A, D, and wp, numerically. However,
it is not possible to calculate ) directly from the self-
consistency equation, (74). If we assume that the form of
Eq. (84), which neglects higher order terms of the form
Eq. (93), gives a good description and we can solve for p:

A ZC2

e = ©5)
I+ esh 1og( L)(1+¢3h)

(94)

As higher order terms are neglected, this is not the complete
result for u} for the whole range of u.. However, if p’ is
interpreted as the quantity in competition with A to cause
superconductivity, then this form is useful and the inversion of
Eq. (84) can give us an estimate for p}.

The results for u) obtained from Eq. (95) together with the
analytical estimates in Egs. (1), (73), and (72) can be found in
Fig. 14.
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FIG. 14. (Color online) w} as a function of u. for D/wy, = 80
computed from Eq. (95). We show in comparison the result for the
first-order and the second-order calculations. Fit parameters ¢, ¢;,
and c3 are the same as above.

The results look very similar to those in Fig. 9. For small p.,
u} increases linearly with p. in Egs. (1) and (72). This implies
an initially relatively large drop of superconductivity once the
Coulomb repulsion becomes finite (see Fig. 13). However, then
the curves bend and the analytical results saturate. Only for
very small values of 1. are the first- and second-order results in
agreement; otherwise, the second-order result is substantially
larger. For the first-order calculation the upper boundary is
givenby u? . =1/ log(w%) independent of p.. It is reached
in the limit of both large u. and high ratio D /wpy. For instance,
for D/wpn = 1000, we have uf .. ~ 0.145, similar to what is
usually used in the literature. Using 1, = 0.5 for the screened
Coulomb interaction gives, with the same ratio for D /w,y, the
value p* = 0.112 (see Table I).

We can see that the higher order results for p’ are
generally substantially larger than in the first-order calculation.
In particular, the results are larger than the simple-minded
estimate &’ in Eq. (44), where retardation effects are the same
for the first- and second-order terms. For this expression the
limits of large bandwidth and large p. lead to the same result,
ﬁjmax =1/ log(w%), which is, however, already reached for
smaller values; e.g., for u. = 0.5 we have i} = 0.1233. In
contrast, the result in Eq. (72) goes to g ., = 1/ IOg(w%hAzz)
in the limit of large u. and to uy .. =1/ log(w%‘) in the
limit of a very large bandwidth. With the estimate for
A, above we find for D/wyn, = 1000 that, in the large-pi.
limit, w7 . &~ 0.216 is about 50% larger than the first-order

estimate. For comparison we give some results in Tables I and
II for pe = 0.5, ue =1, and the ratios D/wp, = 10, 100, and

TABLE I. Exemplary values of u} for u. = 0.5.

D/wp 10 100 1000
w*in Eq. (1) 0.232 0.151 0.112
i’ in Eq. (44) 0.286 0.172 0.123
w* in Eq. (72) 0.386 0.204 0.139

PHYSICAL REVIEW B 87, 054507 (2013)

TABLE II. Exemplary values of u} for u. = 1.

D/wy, 10 100 1000
wurin Eq. (1) 0.303 0.172 0.127
ik in Eq. (44) 0.366 0.199 0.136
wurin Eq. (72) 0.700 0.268 0.166

1000. Note that the more accurate result for %, obtained from
the numerical calculation and shown in Fig. 9, can still be
significantly larger than the estimate in Eq. (72). We conclude
that the usual result in Eq. (1) substantially underestimates 1
for intermediate and larger values of u.. However, for very
large values of D /wy, retardation effects are operative in all
cases and lead to a strongly reduced value of 1.

C. Calculations for T,

For completeness we also include a brief section on the
critical temperature 7. It is analyzed similarly to the analysis
in the previous section. The basis for the calculations is the
pairing matrix in Eq. (13). For the pairing vertex we use the
same terms as in the previous section in Eq. (75):

T (iw, iw,,;0) = —K (iwn,,iwn,). (96)

The effect of the Z factor is neglected. Then with the bare
Green’s function and a semielliptic DOS,

op G(iwn) n 41
X (la),,l,0,0) = i, _p02t< 1+ " l>. o7
IM(iw,) is calculated numerically from the free Green’s
function. With this we compute the matrix M,, ,, in Eq. (13)
and search for the largest eigenvalue. We compare the results
for T, for three calculations: (1) including only the U term, (2)
including only the U? term, and (3) including both.

Apart from the first-order calculation it is not easy to find a
good analytic approximation for the eigenvalue equation, (12).
In principle, one can do something similar to what was done
in the preceding section and make an appropriate ansatz for
the eigenvector. To first order in U this works reasonably well.
We find a result of the standard form,

__Za
TC = cla)phe Ang(+e3h) |

(98)

where p is given by Eq. (83). For the higher order analysis we
did not pursue an analytical solution and, instead, also assume
T asin Eq. (98) and, for u}, the form in Eq. (72).

First, we fix the constants ¢; and c¢; by fitting to the result for
ue = 0 (see Fig. 15). We take the value ¢; = 1/1.2 = 0.833
as in Ref. 54 and find a good fit for ¢, = 1.04. Similarly as
before the agreement is only good up to values of A < 0.5.

In Fig. 16 we give the numerical result for 7, as a function
of u. for the first-order, for only the second-order, and for
the first-plus-second-order calculations. We have kept > = 0.5
constant.

T, decays in a very similar way as does the spectral gap
when . is increased. We included results from the analytic
fit form in Eq. (98) with the value c¢3 = 0.8. For the first-order
calculation, we find good agreement with the numerical result
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FIG. 15. (Color online) T as a function of A for D /w, = 80.

for the case A = 0.5. For the second-order results we use the
same parameters as before and the fits are reasonable; i.e., they
show that the functional form is close to the actual result.

Note that in spite of the identical form for the pairing kernel,
the results for 7, here and those for the gap at 7 = 0 in the pre-
vious section are obtained from two independent calculations.
The results indicate that for the range of parameters studied
the analytical expressions Egs. (1), (73), and (72) describe the
effect of u} on T, quite accurately. In particular, the results
are very similar to what has been found in the projective
approach before, and hence a consistent picture emerges. We
conclude that higher order dynamic effects, in particular, the
second-order contributions, give an important correction to
the usual results for the Coulomb pseudopotential. Not only
does the higher order term give a direct increase in the
coupling, as would be the case in the expression in Eq. (44), but
also it leads to a reduced effective bandwidth in the logarithm
in the denominator. This is an effect which, to our knowledge,
has not been discussed in the literature so far. In the following
section we analyze how these effects are manifest in the
nonperturbative DMFT calculations.

0.12 T -
—»—numerical, order U
0.1% -&-analytic fit, order U |
' —+ numerical, order U?
-A- o 2
0.08} analyt|.c fit, order gj |
—*~numerical, only U
& -o- o 5
go 0.06} analytic fit, only U° |
'_
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0 ‘ PN :
0 0.2 0.4 0.6 0.8

FIG. 16. (Color online) T, as a function of . for D/wy, = 80.
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VI. DMFT AND PERTURBATIVE RESULTS

In this section we put the analyses in the previous sections
together and compare them with nonperturbative DMFT cal-
culations, which include all possible renormalization effects.
We first clarify that it is therefore very important to work with
renormalized parameters for the interpretation of the results.
Then we demonstrate up to which interaction strengths the
perturbative results derived in the previous section are reliable.

We focus on calculations for the spectral gap Ay, at
T =0 and consider a half-filled band. The spectral gap Ay
is extracted directly from the gap edges of the diagonal
spectral function. It is usually well approximated by the
product z3X5,(0), but it can be a bit larger due to the
frequency dependence of the off-diagonal self-energy. For
an interpretation of the DMFT results we need to compare
with the perturbation theory (PT) results. We include the
following terms for the self-consistent PT calculation: For the
diagonal and off-diagonal self-energy we use Eqgs. (51) and
(53). The vertex is approximated by the contributions from
RPA screening in Eq. (34) up to second order in U and the
second-order-in-U corrections in Fig. 5. For a low phonon
frequency, the w = 0 value of the vertex function provides
a good approximation. From the diagrams in U we take
Egs. (49) and (54)—(57) into account. The phonon propagator
is taken as an input from DMFT calculations and not calculated
self-consistently, similarly to what was done in Ref. 13.

To get a feeling for the renormalization effects let us
first consider calculations where the bare parameters iy =
,002g2/(u0 and wo in Hamiltonian (2) are kept fixed. For
te = 0 the system has a superconducting solution and we
analyze how the gap Ay, is affected, when ji. becomes finite.
For A9 = 0.308 and Ao = 0.382, the corresponding spectral
gaps Ag, are shown in Fig. 17. For comparison we have also
included the results from the self-consistent PT as explained
above in Fig. 17. These are seen to be in very good agreement
with the DMFT result.

We find a rapid decrease in Ay, when . becomes finite,
similar to the results in Fig. 13. However, note that Ay, goes
to O for even smaller values of . ~ 0.3. Naively one could

_._DMFT ) =0.3081
off n  _ ]

_,_DMFT z°")  =0.3081

= DMFT 2 =0.3821 |
off

_ DMFT z°") =0.3081

_oPT1,=0.3081

_o-PT7,=0.3821

0 0.1 02 = 03" 0.4

FIG. 17. (Color online) Behavior of the spectral gap A, and
z2°%(0) for constant Ay = 0.308 and Aq = 0.382 (wy = 0.1 in both
cases) as a function of ..
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FIG. 18. (Color online) Effective parameters: (a) quasiparticle
renormalization z, (b) renormalized phonon frequency wj/wy,
(c) renormalized coupling constant (g” /g)? (the solid line corresponds
to the result with @ and b obtained from the free Green’s functions),
and (d) effective X as a function of p..

conclude that w) is even larger than what was discussed in the
last section, even though we are still at very weak coupling in
U. As we will see, however, this drastic reduction in Ay, has a
different origin. It can be understood by analyzing the relevant
effective parameters and the PT results.

Since, as shown in Sec. V, many aspects of the PT are
well described by approximate analytical results, such as
Eq. (72) for p} or Eq. (84) for A, it makes sense to use
those equations to analyze the results. In Sec. V the equations
were used in terms of bare parameters, but to understand the
DMEFT results we need to use renormalized parameters. Those
effective parameters extracted from the DMFT calculation are
shown in Fig. 18 as a function of p.

The z factor in Fig. 18(a) increases moderately with pt..
According to Eq. (84) with Z = z~! this would actually help
superconductivity, so it cannot be responsible for the reduction
inFig. 17. The renormalized phonon frequency wy, in Fig. 18(b)
also increases with p., showing that corrections to the phonon
self-energy and electron-phonon vertex from finite U are
important. In the prefactor of Eq. (84) with wpn = wy, this
leads to an enhancement of Ag,, whereas ) increases with wy,
which leads to a reduction in Ag,. Both effects are not strong
enough to be decisive. The strongest and most important effect
of . can be seen in Figs. 18(c) and 18(d), where we plot the
renormalized coupling g” from Eq. (39) and the effective A
according to Eq. (29). The parameters a and b in Eq. (39)
are calculated from the full Green’s functions. We find that
the renormalized coupling g” decreases substantially with ..
In addition, the phonon self-energy is modified for finite U.
Therefore, the effective A becomes much smaller. So the main
reason for the rapid suppression of Ay, is the strong effect
of the corrections to the electron-phonon vertex and to the
phonon self-energy, such that the effective A decreases.

PHYSICAL REVIEW B 87, 054507 (2013)

Using values wp, = w;; we can calculate results for the
Coulomb pseudopotential p) according to Eq. (72). The ratio
of electron-to-phonon scale is, with D /wj ~ 35, not as large as
in the previous section, and thus retardation effects are not as
effective. For the largest value p, ~ 0.318 we find u} ~ 0.2.
At this . we have A ~ 0.45 and the analytic expression in
Eq. (84) yields Agp/wp 2~ 0.0002, where Z = 771, Wph = Wy,
and, for the fitting parameters c;, take the same values as in
Sec. VB. This is in agreement with the DMFT finding that
superconductivity goes to O then. If we compare the results for
the spectral gap according to Eq. (84) with the renormalized
parameters in Fig. 18 with the results from the full calculation
in Fig. 17, we find good agreement. Hence we conclude that
the superconducting state at small u. can be well understood
in terms of the effective parameters A, wy, z, and u} and the
approximate equations for p} and Agp,.

The conclusion up to this stage is that the strongest effect
of the Coulomb repulsion in the DMFT calculations is to
renormalize the effective A via electron-phonon vertex and
phonon propagator such that the superconductivity drops to
0 rapidly. Even at very weak coupling these effects play an
important role in the HH model and must be taken into account.
Since in this work our main interest is the effectiveness of
retardation effects visible in the direct competition between A
and u), we offset the vertex-correction effect in the following.
We do this by appropriately adjusting the bare parameters, i.e.,
increasing Ay and wg. We proceed by keeping A = A(u.) as
defined in Eq. (29) constant. For g” we rely on the perturbative
results. This was found to give a relatively good description
uptoU ~ W/ 2.55 First, we do a calculation for certain bare
values wg and A¢ at £, = 0. From the phonon spectral function
we can then extract the value wj and A from (29), where,
g" = g. Then we choose a finite value of .. We have to
increase Ag and wyp, such that wyf roughly equals the U =0
value and A remains approximately the same according to
Eq. (29). For the renormalized coupling g" entering Eq. (29)
we consider two conditions: (a) the second-order expansion as
in Eq. (41) and (b) the RPA series plus the second-order terms
as in Eq. (39). With the set of bare parameters (1g,wp,/Lc)
found with this procedure we also do perturbative calculations
for comparison. We distinguish PT-a, which includes up to
second-order diagrams for the electron-phonon vertex, and
PT-b, which includes the RPA series plus the second-order
terms for the electron-phonon vertex. The results of such
a calculation, where A >~ 1 according to condition (a) and
wy/D >~ 0.025, are shown in Fig. 19 as Agp vs pie.

The DMFT results show a steady decrease in Ay, upon
increasing .. Since the effective A and w,, are kept constant,
the diminution of Ay, is now due to the competition with the
Coulomb repulsion p.. To understand the result quantitatively
we compare it with the perturbative calculations PT-a and PT-b
and the analytic results based on Eq. (84) using the effective
parameters and p) according to Eq. (72) with the value of
Aj; as in Sec. V. We find a relatively good agreement of
the DMFT result with PT-a and the analytic formula up to
te ~ 0.5. This demonstrates that (i) the effective parameter
description is appropriate, (ii) the electron-phonon vertex
correction according to condition (a) is suitable, and (iii) the
derived higher order form for the Coulomb pseudopotential in
Eq. (72) captures correctly the results of the PT and of the full
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FIG. 19. (Color online) Behavior of the DMFT result for the
spectral gap Ay, and zZ°T(0) for constant A >~ 1 according to
condition (a) for the vertex corrections (see text), wp > 0.05 as a
function of p. in comparison with PT-a and PT-b (see text), and the
analytic formula in Eq. (84).

DMEFT calculation. This validates the analysis in Sec. V in a
more complete calculation and it corroborates our findings for
w’ and retardation effects by comparison with nonperturbative
DMFT up to intermediate values of . ~ 0.5. For larger
values of ., higher order corrections enhance the value of
w; such that A, is suppressed more strongly. In addition, the
electron-phonon vertex is not well described by condition (a)
anymore. The PT-b calculation agrees with DMFT quite well
up to values of u,. ~ 0.3 but then overestimates the reduction
of the electron-phonon vertex and therefore leads to a too
strong suppression of superconductivity.

To extend the present analysis to larger values of 1., one
needs to find reliable estimates for the full renormalized
electron-phonon vertex ng). A higher order perturbative
analysis or nonperturbative calculation for this quantity could
provide this. A consistent calculation up to certain order in
. should then also include higher order corrections to the
self-energies, which will complicate the analytical calculation
for u further. This is beyond the scope of this work.

VII. CONCLUSIONS

For the occurrence of conventional superconductivity it is
important, on the one hand, that there is a sizable electron-
phonon coupling and, on the other, that the detrimental
effects of the Coulomb repulsion are reduced sufficiently by
screening and retardation effects. We have stressed in this
article that while the effect of the former can be described
in a controlled fashion by ME theory, the standard approach
to the latter is based on an uncontrolled approximation, since
there is no Migdal theorem for the Coulomb interaction. For
the HH model we have analyzed this issue in a controlled
framework by a combination of perturbative calculations and
nonperturbative DMFT calculations. We have shown that the
conventional arguments based on the lowest order diagrams
become modified when higher order corrections are taken into
account. There is still areduction in the Coulomb repulsion due
to logarithmic terms in the denominator. This demonstrates
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that indeed a small value of p} can be obtained due to
retardation effects even when higher order corrections are
considered. Thus our results support the arguments of MA
qualitatively. However, the effective energy-scale separation
is reduced. This is due to the dynamic behavior of the
higher order diagrams, which makes retardation effects less
operative. This result was shown explicitly in two independent
calculations in a combination of analytical and numerical
arguments. By studying the occurrence of superconductivity
with DMFT, where all higher order corrections are present,
we were able corroborate our findings up to an intermediate
coupling strength. The perturbative approach allowed us to
distinguish different renormalization effects. Our analysis is
limited to intermediate coupling strengths due to the difficulty
of reliably estimating the vertex corrections to the electron-
phonon vertex. Nonperturbative calculations for this quantity
would be desirable.

We conclude that the usual expression for u} in Eq. (1) is
only valid for small values of 1. The second-order corrections
lead to less efficient retardation effects as shown in Eq. (72),

= e + ap?
© 14 plog (f—l:) + ap?log (af—i)’

99)

where we found o & 0.1 for a typical large energy separation
of electron- and phonon-scale E.j/wyn. The coefficient a is
given by the limit w — 0 of the particle-hole bubble IT divided
by po, the DOS at the Fermi energy, and « can be estimated
from the decay of IT with w. In addition, higher order terms
appear such that ) does not saturate in the limit of large (..
Thus, for systems with sizable effective Coulomb repulsion we
should expect larger values for p than the traditional quote
pnr: ~0.1. As a consequence, the values for u are not as
universal as sometimes claimed and predictions for 7, can be
unreliable.

It is premature to draw detailed conclusions from our
calculations for real materials such as lithium, since the
Hubbard model is not an accurate description for itinerant
metallic systems, which are better described by an electron
gas model. Nevertheless, one can understand our results as
a qualitative trend, which shows that for systems with less
efficient screening, such that w. is larger, we expect an
enhanced value of 1 compared to what is traditionally quoted.
This can be expected in systems with larger values of 7.
Hence our conclusions would seem to be in line with the
observation in a number of materials, such as Li with enhanced
w*, and what is quoted in work based on DFT calculations.'®
Similar conclusions are important for systems where the ratio
E¢1/wpn is reduced from the usual scenario, which could be the
case in picene. We would like to stress, however, that a more
accurate attempt to understand the problem should also include
the dynamic effect of screening the bare Coulomb repulsion
in a metal, which was not taken into account explicitly. As
discussed in Sec. I this can lead to very small and even
negative values of w). We expect that the combination of
these effects and the corrections studied here, which lead to
an enhancement, will eventually lead to the physical values
occurring in nature. More detailed calculations are required
to fully resolve this quantitatively. As long as w) cannot
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be estimated reliably, the predictive power of the theory of
electron-phonon superconductivity is limited.
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APPENDIX: DETAILS FOR CALCULATION
OF THE SPECTRAL GAP

In this Appendix we collect some details for the analytic
calculation in Sec. V B.

1. Integrals for the first-order case

For %,;(0) we approximate the integrals over low frequen-
cies,

@Wph

. 2 . Al)L
— dwGr(iw)g"D(—iw) ~ —log(T1) (Al)
2 VA

—Wph

and

1 “ph . Ay I’LC
— dwGy (iw)U = log(Ty), (A2)
270 J

where T is given in (88). For higher frequencies we write

1 —Wph D
— U Ydw +/ dw:|G21(ia))g2D(—ia)) = apAzx (A3)
2 -D w,

'ph

and
L[ P D
—|:/ dw +/ da)i|G21(ia))U = —Asu.log <—)
2 -D Wph Wph
(A4)
We have

/Dd ! ! 11 2 D’ (AS)
ap = w——— = — 10 ).
L el T 2 g w}, + D?

'ph

For X,1(i D), the electron-phonon contribution is small for
wph/D < 1, and the Coulomb contribution is the same as
above. This yields Eq. (81).

2. Integrals for the only second-order case

We give some results for the second-order calculation. To
determine the coefficient A, we calculate

[t - (28)
w———— =log [ — ,
o 0 i@\

filw) = 1+ by|o| + b

(A6)

where

(AT)
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One finds that

_ 2
A]Z fl(a)ph exp |:i2 <2b2 (bl + blsz)
Si(D) By fi(D)

2by — (b* + bib b3 —6b,b
_ 2b (b7 12wph))]exp< ; 212fa>
Fil@pn) B
with By = ,/4b, — bf and
by +2b,D by +2b
fa. = arctan <1+B—2> — arctan (%) (A8)
1 1

By comparing the integrals in Eqs. (A4) and (A6) we see that
the factor 0 < A, < 1 leads to a reduction in the effective
bandwidth. For the given fitting values b; and b,, and high
ratios D/wpy > 100, one finds Ay = 0.2, which can be
compared to the calculation in Eq. (71). The coefficient Ay, is
obtained from the integral

/D 1 1 ( 1 1 )
do— +
on O H@\ID+w)  fi(D—w)

2 IOg ( A22)
B ﬁ@)'

The integral on the left-hand side can be carried out analyti-
cally, but the expression is lengthy and not instructive. We can
express Ay as

: P fi(D) 1
Ay =exp |:/wphd _(2f1(a))<f1(D o)

1
-1/
+ﬁw—m) >}

Since the function 1/f1(D + w) 4+ 1/f1(D — w) increases in
the integration interval the coefficient Ay, comes out larger
than Aj,. For the parameters above we find Ay = 0.44. The
coefficient for A reads

/D 1 1 1
app = dw—
oy @1+ 2 + & fl(w)

'ph

(A9)

The integral can be solved analytlcally but the expression is
lengthy. Due to the reduction factor 1/f;(w), the a;, term is a
bit smaller than a( in Eq. (AS).

3. Calculation up to second order

We use the following three conditions: (i) X5;(0) = Ay; (ii)
21(ib1) + To1(—iby) = 2A3 + 245/ f1(b1),  (A10)
with b, = 1/by; and (iii)
¥01(D)+ X (—iD) ~2A5 +2A,/f1(D).  (All)
We use 251(0) = ), Ni; A,
To1(iby) + To1(—iby) = Y., Ny Ay, (A12)
(D) + o (—iD) = 3}, N3 A (A13)
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This implies Ny; = Mjy;,

My = fi(b))N21 /2, My = fi(b))N»n/2, (Al4d)
Mz = fi(b1)(Ny3 —2)/2, M3 = N31/2,  (Al5)
M3y = (N3 — 2/f1(D))/2, Ms33 = N33/2. (Al6)

The calculations give, with certain approximations in the
integrals,

1 2
Nu = 2(* — te — ap?) log(Th), (A17)
D D
Niz = aph — pclog <—A(l)) —ap; log <—A(l22))
Wph Wph
(A18)

_1 D 2 D o
Niz=-A—pclog| — | —ap log| — A |, (Al19)
2 wph C()ph

2 (. o apg
Z (k? TheT (b1)> log(T1),  (A20)

Ny =

D 1 2a,bL D )
Ny = ani — 2u.lo ( A()— < log| —A
2 22 g @ph 2 1Y) g @ph 22
(A21)
D ZCZM )
Ny3 = axph —2u.lo (—) < lo <—A
BT \om/) ™ @) o
(A22)

N ——3< + a“g>1o ()
31 = 7 Me 7,(D) gl1l1),

D 2au? D
N3 = aoh — 2pclog [ —AD ) — 228 jog (=42 ),
32 =daz e 108 (a) 32 f (D) 0og wph 32

(A23)

ph
(A24)
D 2a/,l/ D 2)
N33 = a33A — 2/,LC lo <—> —=< o <—A .
¢ @ph f1(D) o8 wpn
(A25)

The coefficients as, A(lzz) = Ay, and A(322) = Ay are given
above. The others read

= === [ 1) @
ay = wph e o fi (w)< (b1+w)2 1+ (l;lw_zw)z ) (A27)
D 1 | ph
a3 = om 5(1 + (b1+a))2 - (b_l(;zw)z ), (A28)
] oh
"o “)ph w fl(w (1 + (D+w)2 1+ (D_zw)z ), (A29)
@ph
az = Dda)l< 1 )’ (A30)
Woh o\1l+ (D+w) 1 T (D—w)
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b _
A(222)=exp|:/ dwl(fl@l)( |
om @ \2f1(@) \ fi(b1 + )

1
S——— N A31
+f1(b1—60)> )i| (3D
P filhy) 1
@ _ 17/
Az = Ud‘”w< 2 (ﬁ(él t o)
1
S——— A32
+f1(b1—w)> >i| (A32)
D
A%):exp[/ dwl(fl(D)( 1
PO 2 fi(D + w)
+;)—1>:| (A33)
filD —w) '

One can give analytic expressions for the integrals, which
are, however, lengthy and not very instructive. For typical
values of D /w,p, we have A(23) 1.6 and A(323) ~ 1.7. All other
coefficients obey 0 < A(a) < 1, leading to a reduced effective
bandwidth as discussed before. The coefficients a;; are small
for D/wpn > 1.

From the matrix equation A = M A, we can derive the
self-consistency equation,

Mz M
1= py, 4 MM
1 — M3
n (M12 n M3, ) My (1 — M33) + M3 M3,
1 —Ms3 ) (1 — Mx)(1 — Mz3) — My M3,
(A34)
or, when using the expression for M;; with T =
2
Zopt/(Zopm)"+A7 V(AZI“’PM as in Eq. (88),
log(T M\3Ms -2
I og(T) A po—apl + Toa(T1)
Z 1 — Msz;
+ (M 4 M ) z
2+ —
1 — M3z /) log(Ty)
My (1 — M Moz M
21( 33) + M3 M3, i| (A35)
(1 — Mp)(1 — M33) — Ma3z M3,

When solved for the gap parameter Aj, the term in square
brackets is the exponent, such that terms to the right of A
contribute to the expression for the pseudopotential p}. We
now would like to argue that in an expansion in . the dominant
term is of the form of Eq. (72). We neglect the terms involving A
in M;; to simplify the arguments. We then find that —p, — ap?

M log(Tl )

together w1th gives a term of the form in Eq. (72),

. Ie +ap

¢ (A36)
1+Mclog( )+a/L log(

A2
>A%)
where

A2 — ex I:/Dda)l(l< ! + ! >—1):|
B Y\ 2\ D+ o) T AD—w) '

(A37)
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There are also additional terms to order x> and u whose co-
efficients are not proportional to log(D/wpy) in the numerator
(cf. discussion in Sec. V B). The denominator in the other part,
F, = (1 — My)(1 — M33) — My3 M3;, has properties similar
to those of the denominator in Eq. (A36) but contains also
contributions to order u2 and u? and terms ~log(D /a)ph)z.
Due to a cancellation the lowest order term in the numerator,
Mo (1 — M33) + MysMsy, is ~ap(fi(by)/fi(D) — 1). From
the prefactor,

Mix(1 — M33) + M3,

; (A38)
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the lowest order term is —1/[ fi(D)(1 — M33)]. This gives a
contribution
2( filb)
N‘”‘c(.f]](ﬁ) -1)
fi(D)F

which is smaller compared to au?. All other terms are of
order 112 and higher. Hence, in an expansion in p. the term
to the right in square brackets in Eq. (A36) gives a smaller
contribution to u¥. This explains why the numerical results in
Sec. VB were fit well by an expression involving u} of the
form in Eq. (72).

) (A39)
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