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Amplitude or Higgs modes in d-wave superconductors
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In Lorentz-invariant systems spontaneously broken gauge symmetry results in three types of fundamental
excitations: density excitations, Higgs bosons (amplitude modes), and Goldstone bosons (phase modes). The
density and phase modes are coupled by electromagnetic interactions while the amplitude modes are not. In
s-wave superconductors, the Higgs mode, which can be observed only under special conditions, has been detected.
We show that unconventional d-wave superconductors, such as the high-temperature cuprate superconductors,
should have a rich assortment of Higgs bosons, each in a different irreducible representation of the point-group
symmetry of the lattice. We also show that these modes have a characteristic singular spectral structure and
discuss conditions for their observability.
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The concept of “broken symmetry,”1 that the symmetry
of the vacuum may be lower than the Hamiltonian of a
quantum theory, plays an important role in modern physics.
A manifestation of this phenomenon is the Higgs boson in
particle physics,2 whose long-awaited discovery appears to
have been made. Spurred by some mysterious experimental
results,3 the theory of the oscillation of the amplitude modes
of s-wave superconductivity was provided4 in the 1980s. This
is equivalent to the Higgs modes in s-wave superconductors.5

It was also shown that a necessary condition for this to occur6

is the emergent Lorentz invariance in the superconducting
state while the metallic state and the region just below Tc

are manifestly non-Lorentz-invariant.
The order parameter � in s-wave superfluids and supercon-

ductors is a complex number. The oscillation of the phase of
� is massless at long wavelengths in a neutral superfluid. This
phase mode may be understood as the azimuthal oscillation of
a particle near the bottom of a Mexican hat potential, depicted
in Fig. 1(a). In a charged superconductor, it moves to the
frequency of the plasmon in a gauge-invariant theory coupling
phase modes to electromagnetism.7 While very interesting
as the W boson in particle physics, it tells nothing new
about excitations of the superconducting state. In contrast,
the amplitude mode, which oscillates in the radial direction,
does not couple to charge and has an excitation gap at long
wavelengths equal to twice the superconducting gap 2�.
This is just where the continuum of particle-hole excitations
begins; hence it is heavily damped and usually unobservable.
Special situations which lower its energy are therefore required
to detect this mode in s-wave superconductors.4 Interesting
related modes have also been discussed in superfluid 3He.8

Even before the discussion of amplitude fluctuations
in superconductors, Bardasis and Schrieffer9 showed that
electron density fluctuations in angular momentum channels
� �= 0 may occur for s-wave superconductors as bound states
with energy below 2� because such � have only short-range
interactions. There does not appear to have been any clear
evidence in experiments of such collective exciton modes.10

Many variants of these states have also been predicted to appear
in different superconducting compounds.11–13 We discuss them
in Appendix A.

In this paper we show that superconductors with lower
symmetries support additional amplitude or Higgs modes
labeled by the point-group symmetry in which the deformation
of the order parameter occurs.14 As expected, one of these
modes is the conventional s-wave Higgs mode which appears
at 2�. The other amplitude modes, however, in general, have
lower energies than 2�. As these additional modes correspond
to deformation of the ordered state to different irreducible
representations with variable relative phases θi , the Higgs
modes acquire a characteristic singular two-peak line shape
which is derived here.

A very important point about the amplitude modes is
that, being chargeless and spinless, external probes do not
directly couple to them, just as they do not to the Higgs
modes in particle physics. (For discussion of this point,
see Appendix A and Ref. 4.) They can only be excited
by other excitations which shake the ground state. If such
other excitations are coupled to external probes, the am-
plitude modes only appear by stealing weight from them.
So to experimentally identify such modes, there must exist
excitations in the normal state whose intensity decreases on
transition to the superconducting state and is transferred to the
amplitude mode with the sum preserved. Since what shakes
the superconducting ground state are generally the normal state
excitations which cause it, this also serves as an identification
of the fluctuations which are responsible for pairing.15 This
conservation of weight can be used to distinguish the Higgs
amplitude modes from the exciton or Bardasis-Schrieffer
modes,9 which can directly couple to external probes, in
experiments.

Besides the U (1) gauge symmetry, anisotropic supercon-
ductors are also invariant under a point-group symmetry
determined by the crystal lattice structure.16 For definiteness,
we consider a two-dimensional unconventional d-wave super-
conductor with dx2−y2 ordering on a square lattice, point-group
symmetry D4.17 The high-temperature cuprate superconduc-
tors belong to this category. The nature of the additional
amplitude modes is sketched in Fig. 2 and corresponds to
excited states with admixtures of additional dx2−y2 , dxy-wave,
gxy(x2−y2)-wave, and s + g(x2−y2)2 -wave components to the
ground state, respectively.
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FIG. 1. (Color online) Pictorial representation of the effective
potential corresponding to (a) s-wave Higgs mode and (b) additional
non-s-wave Higgs modes. The phase mode (black circle) oscillates
in the azimuthal direction, whereas the amplitude (Higgs) mode (red
curve) oscillates in the radial direction. In (a) the constant curvature
of the effective potential results in an angle-independent finite mass
gap. In (b) the effective potential plotted for the nonconventional
Higgs modes V (ρi,θi) = (a + b sin2 θ )(ρ2

i − �2
i )2 exhibits twofold

symmetry leading to a periodic angular dependent curvature. The
non-s-wave amplitude mode results in a more massive fluctuation at
θi = π/2 than θi = 0, in contrast with the s-wave Higgs mode. This
leads to an angular-dependent energy ω(θi) with the minimum and
maximum occurring at θi = 0,2π and θi = π/2,3π/2 respectively.

We represent the ground state and the oscillations about it
by the order parameter,

�(Q,k) = �0(k) + δ�(Q,k,ω)eiθ(Q). (1)

�0(k) is the uniform ground state which we assume to
be in the B1g , i.e (k2

x − k2
y), symmetry with phase θ = 0.

δ�(Q,k,ω) are the amplitude of the deviations representing the
collective modes with total center-of-mass momentum Q and
internal momentum k with phase θ (Q). At long wavelengths,
δ� may be written as a separable function of Q and k.
The k dependence is expressed in the four one-dimensional
even-parity irreducible representations (B1g,A1g,B2g,A2g) of
the D4 point-group symmetry. For notational simplicity, we
will represent δ�(0,k) as linear combinations of φi(k) =
|φi(k)| exp (iθi),i = 0,1,2,3, respectively.

In the limit Q = 0, the field theory is given by the
Lagrangian (see Appendix A)

L =
3∑

i=0

|∂tφi |2 + ai |φi |2 − bi |φi |4

−
∑
i<j

(
cij |φi |2|φj |2 + dij

2
(φ�

i φj − φ�
jφi)

2

)
. (2)

We include only second-order time derivatives; this is only
valid well below the Ginzburg-Landau regime near Tc, where
a first derivative in time representing dissipation dominates
and the Higgs mode cannot occur due to lack of Lorentz
invariance.6 We have introduced two distinct set of parameters
cij and dij in (2) so that the energy of the collective modes
depends on the relative phase θi between the assumed ground
state representation and the others. This is required by
symmetry and introduces distinctive features in the spectra
of the collective modes as we see below.

FIG. 2. (Color online) Pictorial representation of the additional
Higgs or amplitude modes of the d-wave superconducting order
parameter predicted in this paper. Each mode can be labeled by an
irreducible representation of the point-group symmetry of the lattice
in which the deformation of the order parameter occurs (see text
for details). The horizontal direction represents the fluctuations of the
order parameter due to the admixture of other symmetries. For the case
of dk2

x−k2
y

order parameter depicted above these amplitude fluctuations
are different admixtures of dx2−y2 -wave (“breathing mode”), dxy-
wave (“rotating mode”), gxy(x2−y2)-wave (“clapping mode”), and
s + g(x2−y2)2 -wave (“osculating mode”) components to the ground
state, labeled from top to bottom.

The equations of motion using (2) give the energy of the
collective modes at Q = 0 to be

ωi(θi) = ±
√

[ci0 + di0 sin2(θi)]|�0|2 + ai ; (3)

here θi is the relative phase of the i �= 0 order parameters
with respect to the ground state order parameter |�0|2 =
−a0/2b0. The (k2

x − k2
y) order parameter assumed for �0

implies a0 < 0 for T < T c
0 = T c (where T c is the critical

temperature). a′
i s (i �= 0) remain positive as T approaches

T c from below. cij > dij > 0’s are expected because of
the competition between different order parameters. ω0 =√

4b0|�0|2 corresponds to the simple s-wave Higgs mode of
the d-wave superconductor and appears at 2�. The energies
ωi correspond to fluctuations of the dk2

x−k2
y

order parameter in
which it deforms to other point-group symmetries as depicted
in Fig. 2.
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The mass ωi of the modes can be estimated from general
considerations and by comparison with the s-wave Higgs
mode. In order to compare the energies ωi with ω0 one
can gain insight by using a two-parameter Landau-Ginzburg
energy functional in the parameter subspace (φ0,φi). The phase
diagram in this subspace allows for three broken-symmetry
phases (a) |φ0|2 = −a0/(2b0),|φi |2 = 0, for a0 < 0,ai > 0;
(b) |φ0|2 = 0,|φi |2 = −ai/(2bi) for a0 > 0,ai < 0; and a
mixed phase (c) |φ0|2 �= 0,|φi |2 �= 0 which only appears for
ai < 0 and a0 < 0. Since we assume that the broken-symmetry
superconducting state has dk2

x−k2
y

order, we must require that
|a0| > |ai | for ai < 0 and a0 < 0. In order to avoid a second-
order transition to the mixed phase we must satisfy

ci0 < 2
√

b0bi and ci0 > 2b0
|ai |
|a0| , (4)

which establishes an upper and a lower bound on the energies
ωi .

In order to estimate the values for bi and ai we assume
an attractive potential is dominant for all the irreducible
representations,

V (�k − �k′) = V1 + V0α0(k̂)α0(k̂′) + V3α2(k̂)α2(k̂′)
+V4α0(k̂)α2(k̂)α0(k̂′)α2(k̂′), (5)

where α0(k̂) = k̂2
x − k̂2

y and α2(k̂) = k̂x k̂y , with Vi < 0 for
all values of i and |V0| � |Vi | (i �= 0). This is a natural
assumption for the dxy symmetry, since the difference from
dx2−y2 arises only due to the anisotropy in the density of
states, and so also for the dxy(x2−y2) case. No such strong
argument can be given for the s-wave case and so a repulsive
potential is allowed for this case.18 In the “weak coupling”
limit NF V0 � 1, where NF is the density of states evaluated
at the Fermi energy, an estimate for the values of ai and bi

gives

ai = a0
Vi

V0

ln(T/T c
i )

(T − T c)
, bi = b0

Vi

V0
, (6)

for T ∼ T c. Since ai > 0 for T ∼ T c the energies ωi start-
ing initially at a nonzero value decrease in magnitude for
temperatures below the transition temperature T c as ai → 0
for T → T c

i , whereas ω0 increases in magnitude as the
temperature is lowered from the transition temperature T c.
This can be seen from a combination of energy expression
(3) and the upper bound on the values of ci0 ∼ di0 which
gives ci0 < 2b0(Vi/V0)1/2 � 4b0. This indicates that there
exist temperatures T �

i < T c where ωi � ω0, thus establishing
an upper bound on the energies ωi .

The lower bound in Eq. (4) follows from the condition that
energies ωi are always positive, so that no transition from the
chosen ordered phase is allowed. The collective mode energies
ωi for the Higgs modes as a function of a combination of
the phenomenological parameters and superfluid density are
depicted schematically in Fig. 3(a). An examination of Eq. (3)
and subsequent considerations reveals that ωi at T = 0 for
(i �= 0) is simply the difference of the ground-state energy of
the ith symmetry from that of the realized (i = 0) symmetry,
as could have been guessed at the outset.

Since, at low energies, the quasiparticle density of states
in a d-wave superconductor is proportional to the energy, the
lower the energy of the modes in Fig. 3(a), the less they are
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FIG. 3. (Color online) (a) Schematic behavior of the energies for
the additional Higgs modes at θi = 0 as a function of the coupling
constants and superfluid density ai/ci0|�0|2 at T = 0. The modes
are labeled by their Raman scattering geometry, the black (solid)
line corresponds to the rotationally symmetric A1g-Higgs mode,
whereas the red (dotted), blue (dashed), and green (dot-dashed)
lines correspond to the additional A2g-, B2g-, B1g-Higgs modes
(see text for details). We have assumed an attractive potential in
all the irreducible representations. (b) Schematic representation of
the line shape associated with the “clapping” B2g-Higgs mode
(chosen arbitrarily) indicating the energy continuum and square-root
singularities at the edges of the energy spectrum ω3(0) and ω3(π/2).

damped. All the Higgs modes in d-wave superconductors,
being oscillations of the amplitude of the superconducting
condensate, are neutral spin 0 modes. As such they do not
couple to the usual external probes. In the case of s-wave
superconductors,4 they could be discovered only through
appearing in the self-energy of the superconducting state of
phonons which promotes superconductivity, and steal intensity
from them. Similarly, for cuprates, we expect that if the broad
quantum-critical fluctuations, whose q → 0 limit is visible
in Raman scattering, promote superconductivity,19 they will
partially give their weight to the Higgs modes.

Elementary considerations indicate that ω2 or the breathing
mode occurs in the s-wave or A1g symmetry because for it
δ� also has (x2 − y2) symmetry, the rotating mode occurs in
the A2g symmetry because for it δ� has xy symmetry, the
clapping mode occurs in the B2g symmetry because for it δ�

has xy(x2 − y2) symmetry, and the osculating mode occurs
in the B1g symmetry because for it δ� has s-wave symmetry.
The line shapes, which can be calculated from Eq. (3), exhibit
a two-peak structure with square-root singularities at the edges
of the energy spectrum as shown in Fig. 3(b) (see Appendix C).
This line shape is characteristic of the additional amplitude
modes predicted in this paper which can further distinguish
these modes from the exciton modes. The actual observation
of the A1g mode will likely occur as a sharp peak below
2� through coupling to the continuum. Indeed a mysterious
intense mode in the A1g channel has already been detected.20
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In Appendix B we deduce the Lagrangian for the gradient
terms to derive the leading Q dependence of the energies.
We find that there are interesting couplings between phase
and amplitude modes, which are not influenced by Coulomb
interactions, because counterflow in the excited states of
supercurrents in two different symmetries keeps the system
charge neutral. However, to quadratic order in Q, the energy
spectrum ωi(θi) remains unchanged due to this coupling, only
acquiring a quadratic dependence in the wave vector Q [see
Eq. (10) in Appendix B]. Any effects of this coupling appear
beyond quadratic order in Q.

The low-energy physics of many condensed matter systems
(lattice bosons near a Mott transition,21 antiferromagnets,22 in-
commensurate charge-density waves, and superconductors23),
close to a quantum critical point, is captured by a Lorentz
invariant critical theory. One consequence of spontaneous
breaking of a continuous symmetry in a Lorentz-invariant
local gauge theory is the appearance of bound states; one
could call such bound states the “Higgs” modes. We show
that when such symmetries are endowed with an additional
discrete space symmetry, a rich assortment of Higgs modes
should be present. The number of these Higgs modes should
be equal to the number of irreducible representations of the
discrete point-group symmetry consistent with any internal
symmetries (such as spin or valley) of the system.

We wish to thank Yuan Li and Alan Sacuto for discussion
of Raman scattering results.

APPENDIX A: COLLECTIVE MODES IN SINGLET
SUPERCONDUCTORS

In describing superconducting order and its excitations, for
the purposes of our discussion it is prudent to express the
Hamiltonian in the form H = HBCS + Hint with

HBCS =
∑

k

ψ
†
k(εk − �kτ̂1)ψk, (A1)

where we take �k real, τ̂i are the Pauli matrices i = 1,2,
and 3, and ψ

†
k = (c†k↑,c−k↓) is the Nambu-Gorkov spinor.

The Hamiltonian describing the residual interaction can be
expressed as

Hint = 1

2L2

∑
k,k′,q

vq(ψ†
k+qτ̂3ψk)(ψ†

k′−qτ̂3ψk′)

+
∑

k

�kψ
†
kτ̂1ψk, (A2)

where vq is the renormalized density-density interaction that
includes the effect of phonons. To further simplify our
discussion we decompose the density-density interaction in
angular momentum channels l,

v(q) =
∑
L

Vl

m=l∑
m=−l

Y
†
lm(θ,φ)Ylm(θ,φ), (A3)

and assume that the superconducting state forms in the angular
momentum channel of the ground state L (for example, in
s-wave superconductors L = 0). Since we are working within
a thin energy shell around the Fermi surface the renormalized

TABLE I. Excitations.

Modes Channel Type

Density τ̂3 e
∑

σ c
†
k,σ ck,σ

Phase τ̂2 c
†
k,σ c

†
−k,−σ − ck,σ c−k,−σ

Amplitude τ̂1 c
†
k,σ c

†
−k,−σ + ck,σ c−k,−σ

interactions for a given channel Vl can be attractive or
repulsive. Next, we describe all excitations that can exist in
conventional superconductors.

In conventional s-wave superconductors there are three
types of long-wavelength fluctuations: the electron-density
fluctuations ρ, the fluctuation of the phase φ, and the
fluctuation in the amplitude of the superconducting order
parameter �. In the Nambu-Gorkov notation used above the
electron density fluctuations are in the τ̂3 channel, the phase
fluctuations, which are coupled to the density fluctuations,
appear in the τ̂2 channel, whereas the amplitude fluctuations
appear in the τ̂1 channel. In the long-wavelength limit (q → 0)
the excitations are listed in Table I. From now on we use capital
L for the ground-state angular momentum and lowercase l to
denote the relative angular momentum associated with the
excitation.

In the L = 0 channel the electronic density and the super-
conducting phase excitations are coupled to the long-range part
of the Coulomb interaction and are therefore pushed up to the
plasmon energy.7,24 For s-wave superconductors Bardasis and
Schriffer9 showed that density excitations can occur in angular
momentum channels l �= 0 different from the ground-state
pairing channel L = 0. Due to the residual density-density
attractive (repulsive) interactions with a coupling strength
proportional to Vl , the spectrum might contain the bound state
with Cooper pairs or the excitonic mode below 2�. Since these
excitation have an angular momentum quantum number l �= 0,
the role of Coulomb interactions is drastically reduced as the
long-range Coulomb interaction is decoupled. These modes
are discussed explicitly in Tutto and Zawadawski12 for Nb2Se,
s-wave superconductors. They have also been discussed in the
context of pnictides by Scalapino and Devereaux.13 It should
also be mentioned that this mode has not been observed in
experiments, most likely as the binding energy of the bound
pairs is small.

It is interesting to note that the different angular momenta
excitations in the normal state correspond to the Landau-
Pomeranchuk excitations. In the long-wavelength (q → 0)
limit, they correspond to distortion of the Fermi surface in
different angular momentum channels. In the superconducting
state due to the presence of a gap, they have bound-state parts.
These excitations directly couple to light probes, and can exist
as sharp excitations for s-wave superconductors. For non-
s-wave superconductors L �= 0 these modes will be over-
damped. Klein and Dierker25 considered the effect of the
penetration depth of light which can lead to mixing of angular
momentum channels. In a normal metal surface plasmon
excitations result from this. In s-wave superconductors, these
surface plasmons may appear as sharp peaks if their en-
ergy is below the energy gap 2�. However, in non-s-wave
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TABLE II. Collective modes.

Modes Pairing momentum Relative momentum Name Energy Damping

Phase, φ L = 0 Goldstone ωp

Density, ρ L = 0 l = 0 Plasmon ωp

L = 0 l �= 0 Bardasis-Schrieffer <2�

L �= 0 l = 0 Plasmon ωp

L �= 0 l �= 0 Bardasis-Schrieffer <2� Overdamped
Amplitude, � L = 0 l = 0 Higgs 2�

L = 0 l �= 0 <2� Overdamped
L �= 0 l = 0 Higgs 2�

L �= 0 l �= 0 <2� Depends on point group

superconductors they are unlikely to appear as sharp bound
states because of the continuum of particle-hole excitations.

In the 1980s Littewood and Varma4 realized that, other
than the Nambu-Goldstone mode, a massive and completely
orthogonal mode results from the excitations of the order
parameter �k . This is similar to the Higgs mode in particle
physics. For s-wave superconductors this mode has the energy
2�. In our language it appears as a pole in the Bethe-Salpeter
equation in the τ̂1 or amplitude channel. As mentioned before,
these modes modes do not couple to usual probes and are
hard to detect. However, Littlewood and Varma4 showed that
this mode can be detected in Nb2Se. In Nb2Se the phase
transition to superconductivity goes through an intermediate
charge-density-wave (CDW) phase. In this system the CDW
phonon modulates the CDW amplitude, which is coupled
to the superconducting order parameter, by changing the
number of electrons available for superconducting order.
Furthermore, due to the close proximity of the phonon
pole (which appears at ≈5�) this amplitude mode can be
observed in the renormalized phonon propagator by Raman
spectroscopy. Experimentally, the situation is very different
from the excitonic mode as the Higgs mode has spin zero and
is charge neutral so it does not directly couple to light. It does,
however, couple indirectly to light and appears as a pole in the
phonon propagator.

For s-wave superconductors L = 0, one can imagine ampli-
tude excitation in relative angular momentum channels l �= 0.
This can be done by calculating the pole in the Bethe-Salpeter
equation for interactions in the respective angular momentum
channel. However, these amplitude modes will couple to the
phase of the superconducting order parameter φ. Since the
phase couples to the density the modes will couple to external
probes and will be overdamped.

In our current work we have extended the concept of
this amplitude mode to systems which are additionally in-
variant under some point-group symmetry, such as d-wave
superconductors L = 2. We analyze the excitations of the
order parameter in different irreducible representations of the
point-group symmetry of the lattice by expressing

�k =
∑
�i

��(�i), (A4)

where �i are the irreducible representations of the point-group
symmetry which are consistent with the other additional
spin and valley symmetries. Since we are constrained by

the point-group symmetry we only have a finite number of
these modes. Contrary to the Bardasis and Schrieffer mode or
generalization thereof, these modes are in the τ̂1 channel. These
amplitude modes are orthogonal to those predicted earlier.
Furthermore, unlike the case of s-wave superconductors,
whether these modes couple to phase depends on the point
group in question. For example, in the case of D4 point-group
symmetry considered, only the A1g-Higgs couples to the
phase.

In our current work we have explored consequences of
these excitations and discussed their experimental detection
based on symmetry grounds. In order to put our predictions in
perspective we have summarized the known collective modes
in superconductors in Table II.

APPENDIX B: CONSTRUCTION OF THE
ENERGY FUNCTIONAL

Since the free energy originates from the Hamiltonian,
it must be invariant under the symmetry group of the
Hamiltonian. In the case of a d-wave superconductor the
phenomenological Landau-Ginzburg action should satisfy
the U(1) gauge symmetry of the order parameter along with the
point-group symmetry D4 of the lattice.16 In the following we
construct the most general energy functional invariant under
the U (1) ⊗ D4 symmetry.

In the presence of a crystal field the symmetry group of
the Hamiltonian contains the lattice point-group symmetry.
We use the fact that the eigenfunction space of every single
eigenvalue of the microscopic BCS gap equation forms a basis
of an irreducible representation of the symmetry group of the
Hamiltonian. In the case of the D4 point group, which consists
of transformations of the square, there are five irreducible
representations. The even parity irreducible representations
contain the following basis functions:17

A1g 1,2
(
k2
x − k2

y

)2 − 1,

A2g kxky

(
k2
x − k2

y

)
,

B1g k2
x − k2

y,

B2g kxky,

Eg (kxkz,kykz),

where E corresponds to a 2-dimensional representation which
we state for completeness. Since we restrict our system to two
dimensions, kz = 0. The order parameter can be expressed in
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TABLE III. Invariant terms.

|φ0|2 |φ1|2 |φ2|2 |φ3|2

|φ0|4 |φ1|4 |φ2|4 |φ3|4
|φ0|2|φ1|2 |φ0|2|φ2|2 |φ0|2|φ3|2 |φ1|2|φ2|2
|φ1|2|φ3|2 |φ2|2|φ3|2
φ2

0 (φ�
1)2 + c.c. φ2

0 (φ�
2)2 + c.c. φ2

0 (φ�
3)2 + c.c. φ2

1 (φ�
2)2 + c.c.

φ2
1 (φ�

3)2 + c.c. φ2
2 (φ�

3)2 + c.c.

term of the irreducible representations outlined above,

�(Q,k) = φ0(Q)
(
k2
x − k2

y

) + φ1(Q) + φ2(Q)(2kxky)

+φ3(Q)
[
2kxky

(
k2
x − k2

y

)]
, (B1)

where Q = (Qx,Qy) denote the center of mass momentum of
the Cooper pair. The set {φi} live in the different even-parity
representations (B1g,A1g,B2g,A2g), labeled by i = 0,1,2,3,
respectively.

Time-reversal symmetry and gauge invariance requires that
the energy functional must be invariant under φi → φ∗

i and
φi → φie

iθ . Hence, only real even-ordered products of φi’s
can occur in the expansion of the free energy. The point-group
symmetry imposes that the energy functional must only
contain terms that belong to the trivial A1g representation.16

The invariant terms allowed by the D4 ⊗ U (1) symmetry, up
to fourth order, are given in Table III.

Terminating the expansion at fourth order we find that the
free-energy functional has the form

L =
3∑

i=0

|∂tφi |2 + ai |φi |2 − bi |φi |4

−
∑
i<j

(
cij |φi |2|φj |2 + dij

2
(φ�

i φj − φ�
jφi)

2

)
. (B2)

Because the fields φi belong to different irreducible repre-
sentations they do not couple at the quadratic level, but can
certainly couple at the quartic level. Thermodynamic stability
imposes restrictions on the coefficients which parametrize this
energy functional; these constraints are used to determine the
upper and lower bounds on the excitation energies. Since the
orbital angular momentum is conserved modulo 4, the last term
is required in the energy functional. The energy functional is
written to highlight this feature; the importance of the last term
becomes apparent in the next section.

Now let us write down the derivative terms. Landau-
Ginzburg formalism also allows spatial variations of the order
parameter; to satisfy the U(1) gauge and lattice symmetries
one must combine the gradient operator ∇ = (∇X,∇Y ) with
the order parameters φi into invariant second-order terms
that transform in the A1g representation. Since the derivative
operator belongs in the two-dimensional E representation, the
A1g-invariant derivative terms allowed for the D4 point-group
symmetry are

Fgrad =
∑

i

|∇φi |2 + ∇Xφ
†
1∇Xφ0 − ∇Y φ

†
1∇Y φ0 + c.c.

+∇Xφ
†
2∇Xφ3 − ∇Y φ

†
2∇Y φ3 + c.c. (B3)

Derivative terms of the form ∇Xφ
†
1∇Y φ2 + ∇Y φ

†
1∇Xφ2 + c.c.,

which also belong in the A1g representation, are excluded as
they violate inversion symmetry. These terms are important
in the presence of an external magnetic field, which acts
on the center of mass of the Cooper pair. Combining the
gradient terms with the energy functional gives the field theory
describing the Q �= 0 collective modes:

Lgrad =
4∑

i=1

|∇φi |2 + ∇xφ
†
1∇xφ0 − ∇yφ

†
1∇yφ0 + c.c.

+∇xφ
†
2∇xφ3 − ∇yφ

†
2∇yφ3 + c.c. + L. (B4)

The collective mode energies form a continuum, and in the
presence of spatial variations of the order parameter allow
coupling of phase and amplitude modes, which we work out
in the following section. This coupling is due to the anomalous
derivative terms whose presence is a direct consequence of the
D4 point-group symmetry of the lattice.

APPENDIX C: CALCULATION OF THE
COLLECTIVE MODES

To calculate the energy dispersion of the normal mode
fluctuations of the dk2

x−k2
y

order parameter we write φ0 =
[|�0| + ρ0(Q)]eiθ(Q) and φi = ρi(Q)eiθi (Q) for (i �= 0). Ex-
panding Eq. (2) to quadratic order in the amplitude ρi(Q)
and phase θi(Q) fields gives

δL =
∑
i �=0

[ω2 − ai − (ci0 + di0 sin2 θi)|�0|2]ρ2
i

+ (ω2 − 4b0|�0|2)ρ2
0 + |�0|2(ωθ )2 + · · · , (C1)

where “· · · ” denotes quartic or higher order terms in the
amplitude and phase fields. The phase mode θ is gapless;
similarly to the case of s-wave superconductors it gets pushed
to the plasmon energy due its to coupling with charge.7 The
collective mode energies for the non-s-wave amplitude modes
ωi(θi) (i �= 0) acquire a dependence on the relative phase
differences θi , resulting in a continuum,

ωi(θi) = ±
√

[ci0 + di0 sin2(θi)]|�0|2 + ai, (C2)

corresponding to an admixture of the ordered state φ0 with
the field φi (i �= 0). The s-wave Higgs mode energy ω0 =
±

√
4b0|�0|2 appears at 2� as expected. The dependence

of ωi(θi) on the relative phase difference θi leads to sin-
gular features in the density of states, which can be easily
calculated,

ρi(ω) = 2ω
[
�

(
ω2 − ω2

i (0)
) + �

(
ω2

i (π/2) − ω2
)]

√[
ω2 − ω2

i (0)
][

ω2
i (π/2) − ω2

] . (C3)

The spectral line shape of the additional Higgs modes
exhibit a two-peak structure with square-root singularities
at the edges of the energy continuum ωi(0) and ωi(π/2).
As we argue in the paper, these additional modes and their
distinct spectral signatures can be identified through Raman
spectroscopy.

Now we address the modification of the collective mode
energies for Q �= 0, i.e., the result of spatial variation of the
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order parameters. As before expressing the fields in terms of
amplitude and phase, expanding the action about the dk2

x−k2
y

order parameter, and keeping only quadratic terms in the
amplitude and phase modes gives

δLgrad = [
ω2 − (

Q2
x + Q2

y + ω2
0

)]
ρ2

0 + 2 cos(θ01)
(
Q2

x − Q2
y

)
ρ1ρ0 + {

ω2 − [
Q2

x + Q2
y + ω2

1(θ1)
]}

ρ2
1 + · · ·

+ {
ω2 − [

Q2
x + Q2

y + ω2
2(θ2)

]}
ρ2

2 + 2 cos(θ23)
(
Q2

x − Q2
y

)
ρ2ρ3 + {

ω2 − [
Q2

x + Q2
y + ω2

3(θ3)
]}

ρ2
3 + · · ·

+ |�0|2
[
ω2 − (

Q2
x + Q2

y

)]
θ2

0 + 2 sin(θ01)|�0|ρ1
(
Q2

x − Q2
y

)
(θ1 + θ0) + · · · , (C4)

where “· · · ” denotes higher order terms and the ωi’s are the
collective mode frequencies defined in (C2). Due to
the fact that the “breathing” and “osculating” modes leave
the symmetries of the square undisturbed, whereas the
“clapping” and “rotating” modes deform the square, the
two pairs of modes are coupled. Assuming that θi = 0
the collective mode energies of the “breathing” and “osculat-
ing” amplitude modes ρ1 and ρ0 can be analytically expressed
as

ω2
± = Q2 + 1

2

(
ω2

1 + ω2
2

) ±
√(

Q2
x − Q2

y

)2 + 1
2

(
ω2

1 − ω2
2

)2
,

(C5)

where ωi = ωi (θi = 0). The collective mode energies for
the rotating and clapping amplitude modes ρ2 and ρ3 can
be recovered by substituting ω1 → ω2 and ω0 → ω3 in
the above expression. In the long-wavelength limit, the
behavior of these modes remains isotropic to quadratic order

in Q,

ω+ = ω1 + Q2

2ω1
+ · · · , ω− = ω2 + Q2

2ω2
+ · · · , (C6)

where “· · · ” denotes higher order anisotropic terms.
As before any relative phase differences θi modify collec-

tive mode energies at Q = 0 which become θi dependent. Any
modification due to spatial gradients is difficult to express
in a simple analytic form; therefore we only address the
long-wavelength behavior in the following. The collective
mode energies for the rotating and clapping modes in the
presence of the spatial variations, to quadratic order in Q,
can be recovered from (C6) by substituting ωi → ωi(θ ). Since
the energy of the Goldstone mode which lives at the plasmon
energy is large,7 to quadratic order in Q, the energy for the
osculating mode can also be recovered from (C6) by the
substitution ωi → ωi(θ ). Therefore, in the long-wavelength
limit all energies, except for the s-wave Higgs mode, can be
recovered from (C6) by the substitution ωi → ωi(θ ).
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