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Effect of vortex hotspots on the radio-frequency surface resistance of superconductors
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We present detailed experimental and theoretical investigations of hotspots produced by trapped vortex bundles
and their effect on the radio-frequency (rf) surface resistance Rs of superconductors at low temperatures. Our
measurements of Rs , combined with the temperature mapping and laser scanning of a 2.36-mm-thick Nb plate
incorporated into a 3.3-GHz Nb resonator cavity cooled by the superfluid He at 2 K, revealed spatial scales and
temperature distributions of hotspots and showed that they can be moved or split by thermal gradients produced
by the scanning laser beam. These results, along with the observed hysteretic field dependence of Rs which can be
tuned by the scanning laser beam, show that the hotspots in our Nb sample are due to trapped vortex bundles which
contain ∼106 vortices spread over regions ∼0.1–1 cm. We calculated the frequency dependence of the rf power
dissipated by oscillating vortex segments trapped between nanoscale pinning centers, taking into account all
bending modes and the nonlocal line tension of the vortex driven by rf Meissner currents. We also calculated the
temperature distributions caused by trapped vortex hotspots, and suggested a method of reconstructing the spatial
distribution of vortex dissipation sources from the observed temperature maps. Vortex hotspots can dominate the
residual surface resistance at low temperatures and give rise to a significant dependence of Rs on the rf field
amplitude Hp , which can have important implications for the rf resonating cavities used in particle accelerators
and for thin-film structures used in quantum computing and photon detectors.

DOI: 10.1103/PhysRevB.87.054502 PACS number(s): 74.25.Ha, 74.25.Op, 74.78.Na

I. INTRODUCTION

The physics of electromagnetic response of superconduc-
tors at low temperatures has recently attracted much attention
due to its importance for the understanding of the behavior of
resonator cavities for particle accelerators,1–3 microresonating
striplines,4 and other superconducting thin-film structures
used for qubits5,6 and photon detectors.7–9 One of the main
parameters of merit of such structures is the quality factor
Q = G/Rs inversely proportional to the surface resistance Rs ,
where G � g0μ0c, μ0c = 377 � is the vacuum impedance, c is
the speed of light, and g0 ∼ 1 is a geometric factor. For s-wave
superconductors, the BCS and Eliashberg theories10–12 predict
an exponentially small Rs(T ) in the Meissner state at low
radio-frequency (rf), ω � kBTc/h̄ and temperatures T � Tc

much lower than the critical temperature Tc. However, Rs(T )
observed on many s-wave superconducting materials is usually
described by13–15

Rs = (Aω2/T ) exp(−�/kBT ) + Ri, (1)

where the first term is the BCS contribution due to ther-
mally activated quasiparticles, and � is the superconducting
gap. In the dirty limit, the Mattis-Bardeen theory yields
A � (μ2

0λ
3�/ρnkB) ln(9kBT /4h̄ω), where λ is the London

penetration depth and ρn is the normal-state resistivity.4,10 The
last term in Eq. (1) is the residual resistance Ri , which remains
finite as T → 0. The Nb resonator cavities can reach Q �
1010–1011 and very low Rs � 10–30 n� and Ri � 2–10 n�
at 2 K.1,3

Residual resistance can be a significant source of the rf
dissipation in resonator cavities and superconducting thin-film
qubits at very low temperatures. Generally, nonzero Ri implies
a finite density of subgap states at the quasiparticle energies
|E| < � and a finite density of states at the Fermi level, as
was indeed revealed by tunneling measurements.16–18 The

subgap states have been attributed to inelastic scattering of
electrons on phonons,19 strong Coulomb correlations,20 local
variations of the BCS coupling constant by impurities,21 or
pair-breaking magnetic impurities taken into account in a more
rigorous way than in the original Abrikosov-Gor’kov theory.22

In other theories, the tail in N (E) at E < � results from spatial
correlations in impurity scattering.21,23

Aside from the subgap states, Ri has also been attributed
to such extrinsic factors as grain boundaries,24–27 non-
superconducting second-phase precipitates,2 or generation of
hypersound by the rf field.28 Another significant contribution
to Ri comes from trapped vortices oscillating under the rf
field.29–33 Trapped vortices can appear during the cooldown
of a superconductor through Tc due to the effect of stray
magnetic fields H > Hc1(T ), including the unscreened Earth
field, since the lower critical field Hc1(T ) vanishes at Tc.
This mechanism becomes particularly important in thin films
where vortices can be generated by very weak perpendicular
stray fields as the perpendicular Hc1 is reduced by a large
demagnetizing factor.34 Spontaneous vortex-antivortex pairs
and vortex loops can appear upon cooling a superconductor
with a finite-temperature ramp rate35–41 or be produced by ther-
mal fluctuations37 even if a superconductor is fully screened
against external magnetic fields. Generation of trapped vortices
due to these very weak mechanisms is negligible in typical
magnetization measurements of superconductors, but it can
give the main contribution to the exponentially small surface
resistance in the Meissner state at very low temperatures.
This contribution becomes apparent in the resonator rf cavities
because of their extremely high-quality factors Q ∼ 1010–1011

at 2 K, so the Nb cavities in which the densities of screening
Meissner currents can reach the depairing limit2,3 can be
a unique tool to probe the dynamics of mesoscopic vortex
structures under strong rf fields.
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Trapped vortices in random pinning potential can bun-
dle together, forming localized hotspots in which vortices
oscillate under the rf field. Hotspots in the Nb resonator
cavities have been revealed by temperature-map measurements
using arrays of carbon thermometers mounted at the outer
cavity surface.15,42 Hotspots due to trapped vortices have
also been observed on thin-film structures.33,43 Given that
many materials factors such as inhomogeneous distribution
of impurities, lossy nonsuperconducting precipitates, grain
boundaries, surface topography, and other structural defects
can also result in hotspots in resonator cavities1–3 or THz
radiation sources based on the layered cuprates,44,45 distin-
guishing vortex hotspots from hotspots caused by materials
defects becomes important. This can be done using the fact
that vortices, unlike the hotspots due to fixed materials defects,
can be moved by thermal gradients46 produced by outside
heaters47 or scanning laser beams.48,49 Thus, any changes in the
temperature maps observed before and after applying thermal
gradients would indicate that the underlying hotspots are due
to trapped vortices.

The unprecedented sensitivity of the Nb resonator cavities
with Q ∼ 1010–1011 combined with the temperature mapping
and the scanning laser techniques give an opportunity to probe
the behavior of low-density vortex structures which can give
rise to the observed residual resistance under the rf field. This
situation can also be relevant to other high-Q structures such
as thin-film superconducting qubits,5,6 photon detectors,7–9

or superconducting screens used in the search of magnetic
monopoles.50 Moreover, the laser51,52 and electron beam53,54

scanning techniques can be used not only to move vortex
hotspots, but also to annihilate and break them into pieces
by increasing the beam intensity. Displacement of vortices by
scanning electron beams has been demonstrated in annular
Josephson junctions55 and thin-film SQUIDs,56,57 and also
calculated theoretically.58

The behavior of vortex hotspots under the rf field is related
to the following outstanding issues: (1) power dissipated by
trapped vortices and its dependence on the rf frequency and
the geometry of the pinned vortex segments; (2) temperature
distributions produced by oscillating vortex segments and
their detection by temperature-map experiments; (3) moving
and breaking vortex hotspots by scanning laser beams and
possibilities of using this technique to reduce the contribution
of vortices to rf dissipation; and (4) contributions of trapped
vortex hotspots to the low-field residual resistance, as well as
the nonlinear surface resistance at high rf fields at which the
hotspots start expanding and can ignite thermal quench propa-
gation. In this paper, we address these issues by combining
the surface resistance and temperature-map measurements,
scanning laser technique, and theory. Our experiments were
performed on a Nb plate incorporated in a resonating cavity.
The paper is organized as follows.

In Sec. II, we discuss mechanisms by which various vortex
configurations can be trapped upon cooling a superconductor
and the ways by which these vortices can be moved by thermal
gradients produced by scanning laser beams. Section III
describes the temperature-mapping technique which was used
to reveal hotspots in the Nb plate mounted inside a Nb
resonator cavity. We show that scanning the surface of the
Nb plate with a laser beam moves and breaks hotspots and

causes hysteretic behavior of the surface resistance on the
rf field, indicating that these hotspots are indeed caused by
trapped vortices. In Sec. IV, we present detailed calculations
of the rf power produced by single vortices as functions of
the rf frequency and the length of a pinned vortex segment.
Section V describes calculations of temperature distributions
produced by vortex hotspots and reconstruction of the underly-
ing dissipation sources from the measured temperature maps.
In Sec. VI, we address the effect of trapped vortices on the
residual resistance and the nonlinear surface resistance at high
rf fields. Section VII contains a discussion of the results.

II. TRAPPED VORTICES IN SUPERCONDUCTORS

A. Generation of trapped vortices

Trapped vortices can be produced by any external magnetic
field H > Hc1(T ) upon cooling a superconductor through Tc.
For instance, the unscreened Earth field BE = μ0HE � 40 μT
can generate vortices spaced by a � (φ0/BE)1/2 � 7 μm.
Since Hc1(T ) � Hc1(0)(1 − T 2/T 2

c ) increases as T decreases
[Bc1(0) � 170 mT for Nb], the subsequent cooldown to lower
temperatures at which H � Hc1(T ) makes vortices thermody-
namically unstable, forcing them to escape through the sample
surface. In doing so, a fraction of vortices can get trapped by
the materials defects such as nonsuperconducting precipitates,
networks of dislocations, or grain boundaries, giving rise to
pinned vortex bundles depicted in Fig. 1. In the field-cooled
state, vortices are mostly oriented along the shortest sample
dimension since the perpendicular H⊥

c1 ∼ Hc1d/w is strongly
reduced by the demagnetizing factor of films with small aspect
ratio d/w � 1, where d and w are the film thickness and width,
respectively.34,59 Despite a seemingly weak effect of the Earth
field, it can result in the rf vortex dissipation exceeding the
BCS contribution in the Meissner state at T � Tc, so the Nb
accelerator cavities are magnetically screened to reduce the
Earth magnetic field by ∼10–100 times.1

Hpcos( t)
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FIG. 1. (Color online) Trapped vortices in a film on a substrate
(black), the top of the film being exposed to the rf field penetrating in
the layer of thickness ∼λ. A scanning laser beam produces a moving
hotspot which can push the tips of the vortex lines along the film (a).
Possible vortex configurations at the surface exposed to the rf field
(b): (1) a vortex segment crossing the region of the rf field penetration,
(2) pinned vortex semiloop at the surface, (3) vortex line going all the
way across the film. The black regions depict pinning centers.
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Even the complete magnetic screening can not fully
suppress the formation of trapped vortices, particularly vortex
loops which appear spontaneously during the cooldown
through Tc and then get trapped by pinning materials de-
fects. This can occur, for example, due to the Kibble-Zurek
mechanism35,36 of generation of vortex-antivortex pairs with
the areal density nf ∼ (τGL/τQ)1/2ξ−2

0 in thin films. Here,
τGL � πh̄/8kBTc is the characteristic relaxation time of the
superconducting order parameter, the time τQ = Tc/(dT /dt)
quantifies the temperature cooling rate dT /dt , and ξ0 is the
coherence length at T = 0. The vortex density generated by
this mechanism would be equivalent to the magnetic field

BKZ ∼ Bc2(τGL/τQ)1/2, (2)

where Bc2 = φ0/2πξ 2
0 is the upper critical field, and φ0 is

the magnetic flux quantum. For Nb with Tc = 9.2 K, Bc2 �
0.4 T, τGL ∼ 10−12 s, and τQ ∼ 1 s, Eq. (2) predicts BKZ �
0.4 μT. As will be shown in the following, even such small
fields BKZ � BE could result in a residual surface resistance
Ri ∼ 1 n�, of the order of what has been observed on the
high-performance Nb cavities.

The Kibble-Zurek scenario has been tested experimen-
tally on superconducting films cooled down with different
rates37–39 and by numerical simulation of the time-dependent
Ginzburg-Landau equations.40,41 While the experiments have
shown spontaneous generation of vortex-antivortex pairs in
superconducting films cooled down through Tc with different
rates, significant numerical discrepancies with the model35,36

have been observed. Alternatively, it was proposed that vortex
loops can be generated by thermal fluctuations in a narrow
temperature region near Tc where the line energy of the vortex
ε ∝ 1 − T/Tc vanishes.37 Suggestions that trapped vortices
can be generated by magnetic fields caused by thermoelectric
currents1 seem less plausible since thermoelectric currents
vanish in the Meissner state.60

In this work, we address the effect of trapped vortices on
the surface resistance irrespective of particular mechanisms
by which vortices can appear in a zero-field-cooled supercon-
ductor. Usually, these weak mechanisms produce low-density
vortex structures in which the vortex spacing is larger than λ so
that interaction between vortices can be neglected. We assume
that vortices are trapped by randomly distributed materials
defects, giving rise to distorted vortex lines which can either
connect the opposite faces of the sample or form closed loops
in the bulk or semiloops ending on one side of the sample,
as depicted in Fig. 1. For thick-film screens with d � λ, only
short tips of these pinned vortex segments are exposed to the
rf field.

Figure 1 shows three different types of vortex configurations
contributing to Ri : (i) small segments of a vortex line close
to the surface, (ii) vortex loops starting and ending at the
surface exposed to the rf field, and (iii) vortex lines connecting
two opposite faces of the sample. Here, only tips of vortices
perpendicular to the surface or fraction of parallel vortex
segments spaced by �2λ from the surface are exposed to the
rf field. Calculation of Ri for a pinned flexible vortex segment
parallel to the surface [case 1 in Fig. 1(b)] was done before.32

Here, we mostly focus on cases 2 and 3 for which the rf
dissipation in a thick film (d � λ) is mostly determined by
the distribution of oscillating vortex tips along the surface and

the lengths of the dangling vortex segments � defined by the
distance between the nearest pinning center and the surface, as
illustrated by Fig. 1(b). We are considering here mesoscopic
vortex bundles oscillating under the rf field and producing
hotspots which are then detected by an array of thermometers
on the sample surface.

B. Moving vortices by thermal gradients.

Vortices can be moved by the Lorentz force produced
by the superfluid current density J or by the thermal
force fT = −s∗∇T exerted by the temperature gradient ∇T

(Ref. 61). Here, s∗(T ) � −βc∂ε0/∂T is the transport entropy
carried by quasiparticles in the vortex core, βcε0 is the free
energy of the vortex core, ε0 = φ2

0/4πμ0λ
2, and βc ≈ 0.38

is evaluated numerically from the Ginzburg-Landau (GL)
equations.62 Vortex segments can be shifted from one pinned
configuration to another if fT locally exceeds the pinning force
φ0Jc per unit length where Jc is the critical current density.
The depinning temperature gradient |∇T |c is estimated from
s∗|∇T |c = φ0Jc:

|∇T |c � φ0Jc/s
∗ ∼ 16μ0Jcλ

2
0T

2
c

/
φ0T , (3)

where we used λ−2(T ) = λ−2
0 (1 − T 2/T 2

c ). Taking here λ0 =
40 nm, Tc = 9.2 K, and Jc ∼ 107 A/m2 for clean Nb (Ref. 63)
yields |∇T |c ∼ 7 K/mm at 2 K.

Vortex hotspots can be moved or split by thermal gradients
caused by outside heaters, as was observed on the Nb resonator
cavities.47 In this work, we use a scanning laser beam to
produce a moving hot region (in which the temperature can
locally exceed Tc) to depin trapped vortex segments. This
method is basically a higher-power version of the scanning
laser51,52 or electron beam53,54 microscopy, which allows us
not only to probe vortex hotspots, but also to selectively apply
high-temperature gradients to a particular vortex bundle and
push it in a desired direction. The effect of temperature gradient
depends on particular configurations of pinned vortices shown
in Fig. 1. For instance, a hot region produced by the laser
beam can depin the vortex segment 1 and push it away from
the surface by a distance �λ, where this segment gets trapped
by another pin and can no longer be reached by the rf Meissner
currents. Likewise, the laser beam can depin and annihilate the
loop 2 in Fig. 1(b), but it can only shift a tip of vortex 3 along
the surface. Therefore, vortices connecting the opposite faces
of a flat sample can not be eliminated by thermal gradients,
unless they are pushed all the way to the sample edges. Yet,
the laser beam can depin the ends of threading vortices which
are then trapped by other pins. As a result, the vortex ends get
redistributed along the surface and can either spread around
or clump together, depending on a particular configuration of
pins. Experimental evidence of these effects will be shown in
the following.

III. EXPERIMENTAL SETUP AND MEASUREMENTS

We have developed an experimental setup which allows us
to measure the surface resistance and to scan a laser beam with
adjustable size and power onto the horizontal inner surface
of a semispherical Nb cavity placed in a vertical cryostat
(2.75 m high and 71 cm in diameter) filled with a superfluid He,
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FIG. 2. (Color online) Schematic of the experimental setup used
for local heating of the inner surface of the Nb cavity with a scanning
laser beam (Ref. 48).

as shown in Fig. 2. Technical details of this setup are described
elsewhere.48 The same apparatus was used to obtain maps of
the surface resistance using a low-temperature laser scanning
microscopy (LSM) technique.48 A 10-W, 532-nm continuous-
wave laser is placed on the top plate of the cryostat, along with
optical components which allow adjusting the output power
between ∼3 mW and 9.8 W and the beam diameter, defined at
1/e2 of the maximum intensity, at the cavity location between
0.87 and 3.0 mm. Two remotely rotatable scanning mirrors
are located inside a vacuum chamber on top of the cavity and
allow scanning of the laser beam in the x-y direction.

The Nb cavity consists of a half-cell of the Tesla shape1 with
a flat Nb plate of diameter 20.7 cm and thickness d = 2.36 mm
welded at the equator. The resonant frequency of the TM010

mode was 1.3 GHz, however, in our experiments, we excited a
different resonant mode: the TE011 mode at 3.3 GHz because
it ideally has zero surface electric field, thereby minimizing
the field emission of secondary electrons.1 In the TE011 mode,
the magnitude of the rf magnetic field B‖(r) parallel to the
surface vanishes in the center and at the edges of the flat Nb
plate, B‖(r) increasing from 60% to 90% of the peak value
Bp as the radial distance r from the center increases from 10
to 35 mm, respectively. Our setup allows deflecting the laser
beam to the maximum distance rm ≈ 40 mm from the center
of the Nb plate. The peak surface magnetic field occurs in
a region near the cavity iris, which is not accessible by the
laser. The geometry factor G = Q0Rs of the TE011 mode in
the cavity is 501.2 �. The cavity was built from a large-grain
(a few millimeter grain size) Nb with the residual resistivity
ratio of ρ(300 K)/ρ(Tc) � 200. To avoid contamination of the

surface of the Nb plate during measurements, the laser beam
was transmitted through an optical window which isolated the
cavity from the vacuum chamber with the scanning mirrors.

The post-fabrication cavity treatment consisted of 100-μm
material removal from the inner surface by buffered chemical
polishing (BCP) with HF:HNO3:H3PO4 = 1:1:2, heat treat-
ment in an ultrahigh vacuum (UHV) furnace at 800 ◦C for 3 h
followed by additional BCP to remove ∼20 μm damaged layer
from the inner surface. The typical surface preparation includes
the conventional high-pressure water rinse with ultrapure
water,1 assembly of input and pickup rf antenna, attachment
to the mirrors chamber on a vertical test stand, and evacuation.

Another key component of the setup is an array of
thermometers attached to the outer surface of the flat Nb plate.
The system consists of 128 calibrated resistance temperature
sensors evenly distributed along seven concentric “rings” of
radii from 12.5 to 88.9 mm, such that the distance between
neighboring sensors is 12–20 mm. The thermometry system
allows identifying the rf hotspots as well as locating the
position of the laser beam on the cavity flat plate and verifying
the movement of the beam during laser sweeping.

The experiment proceeded as follows: (a) the cavity was
cooled down to 2 K, (b) baseline rf measurements were
performed and the thermometry was used to identify hotspots
on the flat Nb plate, (c) the rf power was switched off, the
laser beam was turned on and directed to each hotspot and
then swept with different patterns, (d) the laser was turned off,
the rf power was switched on, and another rf measurement
was performed using thermometry to detect changes in the
temperature maps. Different sweeping patterns, such as line
scans along the x or y axis, inward and outward spiral laser
scanning, have been tried, given that neither distribution of
pinning centers nor orientation of trapped vortices are known in
advance. For example, if a vortex is pinned at a grain boundary
(GB), sweeping the laser in different directions would reveal
the grain-boundary orientation, depending on the direction in
which the vortex would move. If intragrain pinning is due to
random defects, GBs become channels of preferential motion
of vortices for which pinning along GB is weaker than pinning
in the perpendicular direction.64 Furthermore, using an inward
spiral trajectory of the laser beam, starting at a large radius
from the cavity center and ending at the cavity center, it might
be possible to drag vortices towards the center of the cavity,
where the amplitude of the surface magnetic field is close to
zero. In the latter case, the scanning laser is used as a “thermal
broom” which can reduce the global rf dissipation in the cavity.

IV. EXPERIMENTAL RESULTS

We show here representative results of many measurements
based on the procedure outlined in the previous section (some
earlier data were published in Ref. 49). The first group of
measurements (labeled “test No. 11c”) was obtained after
the cavity had �27 μm additional material removal by
BCP 1:1:2, heat treated in UHV at 600 ◦C for 10 h, then
etched for additional �9 μm material removal. The cavity
wall thickness at several locations was measured after each
chemical etching step with an ultrasonic probe. For test
No. 11c, a solenoid (20 mm in diameter and 50 mm long) was
coaxially mounted at �25 mm below the Nb plate, underneath
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FIG. 3. (Color online) Q0(Bp) measured at 2.0 K during test No.
11c, before and after laser heating. Inset shows the geometry of the
dc magnet relative to the Nb plate.

the thermometry system. During the first cooldown to 2 K, the
residual resistance Ri � 30 ± 8 n� was obtained from the
Arrhenius plot of Rs(T ) between 4 and 2 K. Then, the cavity
was warmed up to 20 K, and the solenoid was powered
up to generate a maximum dc field �13.8 μT at the Nb
plate as the cavity was cooled down again. Once the cavity
temperature reached 4.3 K, the solenoid was turned off and the
temperature of the cavity was lowered to 2.0 K by pumping on
the liquid-He bath inside the cryostat. The residual resistance
increased to �150 n�, resulting in Q0 � 2.3 × 109. The rf
power was increased for the baseline test and a brief processing
of multipacting (MP), the field emission of electrons which
then produces an avalanche of secondary electrons repeatedly
impacting the Nb surface, occurred above Bp � 40 mT. This
and another MP onset at Bp � 70 mT were suppressed by He
processing. Quenches were observed at Bp � 92 mT, but the
quench location was not on the Nb plate.

The Q0(Bp) curve for the baseline test is shown in Fig. 3.
The rf field was then reduced back to 10 mT and the rf power
was switched off. Shown in Fig. 4 is the temperature map of the
Nb plate measured at Bp = 74 mT as the rf field was ramped
down. Hotspots are clearly present on rings 2 and 3 (rings of
thermometers are numbered from 1 to 7 for increasing ring
diameter). The laser beam with the diameter of 0.87 mm and
power of 10 W was directed to four locations of the Nb plate

FIG. 5. (Color online) Temperature rise �T measured at 2.0 K,
74 mT by thermometers along rings 2 (a) and 3 (b) in the temperature
maps of Fig. 4, before and after laser heating in test No. 11c. The
red arrows indicate the locations where the laser beam was scanned
following an “outward spiral” trajectory. The blue arrows at the
bottom indicate the location of grain boundaries. The solid lines
are guides to the eye.

on rings 2 and 3 (indicated by arrows in Fig. 5) and a sweep
following an outward spiral trajectory was done starting from
the center of each hotspot location. The maximum radius of

FIG. 4. (Color online) Temperature maps at 2 K, Bp = 74 mT measured in test 11c while decreasing the rf field during the baseline test
(left) and while increasing the rf field after laser heating (right).
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FIG. 6. (Color online) Q0(Bp) measured at 2 K during test No.
13, before and after laser heating with different laser beam trajectories
done at 2 K. A temperature map during MP at the Bp � 84 mT is
shown in inset.

the spiral trajectory was 1 cm, changed with 1-mm increment.
The laser was then turned off and a new rf measurement of
Q0(Bp) showed that the cavity quenched at Bp � 100 mT
with higher Q0, as evident from Fig. 3. Furthermore, Fig. 4
shows that the temperature map of the hotspot distribution
measured at Bp = 74 mT changed after laser heating (LH).
Such changes are also evident from the profiles of the local
temperature rise �T measured by thermometers along rings
2 and 3 before and after the laser sweep presented in Fig. 5.
These results clearly show that, as a result of laser scanning,
hotspots do move and reduce or increase their intensity. Here,
the true values of �T (r) at the outer surface of the Nb
plate can be estimated by dividing the measured �T by the
thermometers’ efficiency, which is about ∼20%. Some of the
sensors turned out to be located at grain boundaries (marked as
“GB” in Fig. 5) observed by optical microscopy of the Nb plate.
Temperature maps measured before and after LH indicate that
grain boundaries do not necessarily manifest themselves as rf
hotspots relative to other places of the Nb sample.

The second group of experimental results (labeled “test
No. 13”) were obtained after heating tapes were wrapped

FIG. 8. (Color online) 2D image of the surface resistance at
2.0 K and Bp � 13 mT in the hotspot region labeled as “1” in Fig. 7,
obtained by laser scanning microscopy. The laser beam parameters
were 0.87 mm diameter, ∼4.4 W power, and 10 Hz frequency
modulation.

around the Nb plate, while the cavity was attached to the
vertical stand under vacuum. The Nb plate was baked at
110 ◦C for 24 h, then the heating tapes were removed, and
the test stand was inserted in the cryostat (the solenoid was not
attached for these measurements). We observed the low-field
Q0 � 2 × 109 at 2 K and the multipacting-induced quenches
at Bp � 84 mT as shown in Fig. 6. The residual resistance
increased from ∼128 ± 25 n� to ∼175 ± 78 n� after baking.
The temperature map at Bp = 60 mT measured during ramp-
down of the rf power is shown in Fig. 7. After the rf power
was switched off, the laser beam with the diameter of 0.87 mm
and power of �4.4 W was directed at the locations shown in
Fig. 7. For these laser parameters, the peak temperature at
the inner Nb surface �8.5 K and the temperature gradient
of �8 K/mm were obtained from numerical simulations of
T (r), taking into account the temperature dependencies of
superconducting and thermal parameters of Nb and laser
absorption coefficient.48 Laser sweeps in the positive x

direction were repeated for multiple initial y positions to cover
an area of 20 × 20 mm2 around the initial location. The speed
of the laser scan is �17 mm/s. Then, LH was repeated with an

FIG. 7. (Color online) Temperature maps at 2 K, Bp = 60–61 mT measured during the baseline rf test (left), after LH at 2 K (center), and
after LH done at 4.2 K (right) for test No. 13. Red circles show the locations where some of the local LH was done. A 2D map of surface
resistance at location “1” obtained by laser scanning microscopy is shown in Fig. 8.
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FIG. 9. (Color online) �T (Bloc) measured in test No. 13 at 2 K
for two sensors, one at ring 2, at 75◦ (a), the other at ring 3, 169◦

(b) during ramp-up and ramp-down of the rf field during the baseline
and after LH done at 4.2 K. For the sensors along ring 2, Bloc =
0.726Bp , while for those along ring 3, Bloc = 0.876Bp .

inward spiral trajectory, beginning at a 36-mm radius from the
center of the plate and ending at the center of the plate. This
trajectory was repeated at different speeds, from �2 mm/s and
up to �32 mm/s.

The rf measurements at 2 K following LH revealed MP-
induced quench at Bp � 91 mT, but no significant changes in
either the Q0(Bp) curves or the temperature maps during ramp-
up of the rf field before and after LH (see Figs. 6 and 7 and
the temperature map taken during MP in inset of Fig. 6). This
experiment was repeated at higher He bath temperature T0 =
4.2 K by directing the laser beam with the same parameters at
the locations shown in Fig. 7. An outward spiral scanning laser
beam trajectory, started at the center of the thermometer and
stopped 16 mm away from it was tried at each hotspot location.
Then, laser sweeping following an inward spiral trajectory
similar to the one done at 2 K was done at a reduced laser
power of �1 W and speed of �9 mm/s. The bath temperature
was then lowered back to 2 K by pumping on the He bath
and another rf measurement was performed. We observed the
low-field Q0 � 2 × 109, a multipacting barrier at Bp � 70 mT,
and the multipacting-induced quenches at Bp � 84 mT. There
was no significant change in the Q0(Bp) curve as compared
to the baseline test or after LH at 2 K, but the temperature
maps at Bp = 61 mT during ramp-down of the rf field at 4.2 K
did change after LH as compared to 2 K. A two-dimensional
(2D) color map of the local surface resistance of the hotspot
region labeled as “1” in Fig. 7 was obtained using the LSM
technique48 is shown in Fig. 8. This color map reveals local
variations of Rs by the factors �4–5 over spatial scales �1–
10 mm. Figure 9 shows the temperature rise as a function of
the local amplitude of the rf field (Bloc) at some thermometer
locations, during cycling of the rf power in the baseline as well
as in the rf tests after LH at 4.2 K.

The last group of experimental results (labeled “test
No. 14”) shown here were obtained after the cavity was
maintained assembled on the test stand at 300 K and under
vacuum, following test No. 13. The baseline rf measurement
was done after cooling the cavity to 2 K in the vertical cryostat.
We observed the low-field Q0 � 2.1 × 109 and strong MP-
inducing multiple quenches at Bp � 86 mT. He processing
did not help us increase the MP barrier. The rf power was
cycled up and down twice, but no significant change in the
Q0(Bp) curve due to rf cycling was observed. At the same
time, the temperature maps at Bp = 65 mT measured during
the first and the second field ramp-up changed as shown in
Fig. 10.

FIG. 10. (Color online) Temperature map measured in test No. 14 at 2.0 K, 65 mT during the second field ramp-up in the baseline (left)
and during the first field ramp-up after LH following a large “inward spiral” trajectory done at 2.0 and 4.2 K (right).
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0

FIG. 11. (Color online) Q0(Bp) measured at 2.0 K in test No. 14,
during ramp-down of the rf field before and after laser heating done
at both 2 and 4.2 K. A temperature map during MP at Bp � 86 mT
is shown in inset.

The temperature map at Bp = 65 mT during the first field
ramp-up after LH is shown in Fig. 10, and the effect of MP on
the temperature map is shown in the inset of Fig. 11. Here,
LH was done with the laser beam with the power 4.4 W
and diameter 0.87 mm, following an inward spiral trajectory,
starting at a radius of 38 mm from the center of the cavity plate
and ending at the center. The radius decreased by 0.5 mm after
each turn and the scanning speed was �30 mm/s. The He bath
temperature was then increased to 4.2 K and LH was repeated
with the same parameters and trajectory as at 2 K. Finally,
the bath temperature was lowered back to 2.0 K by pumping
on the He bath and a high-power rf test was performed by
again cycling the rf power twice. No significant change in the
Q0(Bp) curve resulted from cycling the rf power, and the data
for the second ramp-up are shown in Fig. 11. Figure 12 shows
an example of �T (Bloc), measured by the thermometers in
ring 2 at 75◦ angle and in ring 3 at 169◦ angle, during the rf
cycling, before and after LH.

We also probed the stability of the superconducting state
at various locations at the Nb plate by locally heating it with
the laser beam and measuring the rf field at which it can ignite
the quench propagation. An example of such measurement is
shown in Fig. 13: during test 11c, the laser beam (0.87 mm
diameter, 10 W power) was directed at the sensor located on
ring 3 at 169◦ and the rf field was increased from zero up to
a quench field value Bloc = 64 mT. In the absence of the laser
heating, this area was stable up to higher field Bloc = 75 mT
at which the quench occurred at some other location.

The data presented above show that the scanning laser
beam can move and split hotspots on the surface of the
Nb plate. Moreover, cycling the rf field back and forth
between the lowest value and the quench field can produce
hysteretic changes in the temperature maps, and �T values
at particular locations as shown in Figs. 9 and 12. To
understand possible mechanisms of such hysteresis, we first
notice that redistribution of impurities caused by a low-
power laser hotspot moving with the velocities ∼1 cm/s
can not explain it. Indeed, thermally activated diffusion of

FIG. 12. (Color online) �T (Bloc) measured at 2.0 K for two
sensors: in ring 2 at 75◦ (a), in ring 2 at 255◦ (b) while cycling
the rf field during the baseline and after LH in test No. 14.

such common impurities as C, O, or N in Nb by distances
∼ few nm typically requires ∼10 h at 100◦–200 ◦C (Refs. 2,
65, and 66), so no diffusion redistribution of impurities can
occur at liquid-helium temperatures. Quantum tunneling of
hydrogen interstitials in Nb at low T has been discussed in the
literature,67 but tunneling over distances ∼1 cm characteristic
of the changes in our temperature maps does not appear
plausible.

Another possibility for the hysteretic temperature maps
may result from the LH-induced changes in the distribution
of multipacting sources at �40, 70, 85 mT. For the ideal
cavity geometry, electron field emission should not occur in
the TE011 mode, but our three-dimensional (3D) numerical
simulations have shown that MP may occur in some regions
of the flat Nb plate where the TE011 mode’s cylindrical
symmetry is perturbed by the presence of side ports and
coupling antennas.68 Multipacting is usually triggered by dust
microparticles or nanoscale layers of hydrocarbons which
change the secondary emission yield from the Nb surface.1

Laser scanning could, in principle, break such absorbed layers,
“scraping” the Nb surface off the multipacting sources, but the
weak local overheating �10 K due to absorption of 2.3-eV
photons produced by our low-power scanning laser is not
sufficient to cause any chemical changes of adsorbates, which
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FIG. 13. (Color online) �T (Bloc) measured at 2.0 K for the sensor
located in ring 3 at 169◦ with and without additional heating produced
by a 10-W laser beam of 0.87 mm in diameter.

typically require much higher laser powers and photon energies
in the ultraviolet spectrum.69 In any case, had LH somehow
deactivated the MP sources on the Nb surface, the hysteresis
in the temperature maps would have disappeared after the
first laser scan. However, we observed consistent hysteretic
changes in the temperature maps after repeatedly cycling the
rf field [although �T (Bloc) in some locations did not always
follow the previous hysteretic loop].

Based on the above experimental data, we conclude that the
hysteretic temperature maps can be explained by the presence
of trapped vortex bundles, the only objects in a superconductor
which can be redistributed over the surface by a low-power
scanning laser beam producing local overheating of only a
few degrees. For instance, the local laser overheating by �7 K
can turn the top of the hot region in Fig. 1 in the normal state,
depinning the tips of all vortices in this area. As the laser
beam moves, the tips of the vortex lines get redistributed and
stuck in other configurations in the random array of pinning
defects at the surface. The fact that some of the hotspots
do not disappear but become either weaker or stronger is
consistent with the redistribution of trapped vortex lines shown
in Fig. 1, which can also explain the hysteretic behavior of
�T (Bp) upon cycling the rf power up to the quench field.
The field dependence of �T at hotspots can be described
as �T ∝ Bn

p with n ranging between 1.5 and 3, as shown
in Fig. 12. From the thermal map and scanning laser data,
we can infer an information about local dissipation sources,
particularly trapped vortex bundles, as will be shown in the
following.

V. DISSIPATION DUE TO TRAPPED VORTICES

A. Dynamic equations

Based on the qualitative picture shown in Fig. 1, we
calculate the power P dissipated by a perpendicular vortex
segment pinned by a defect spaced by � from the surface,
as shown in Fig. 14. In this work, the effect of thermal
fluctuations of vortices on Rs at T � Tc (see, e.g., Ref. 31) is
neglected. The dynamic equation for the vortex in a weak rf

2

FIG. 14. (Color online) Oscillating vortex segment pinned by a
defect spaced by � from the surface in the presence of rf Meissner
currents.

field H (z,t) = Hp exp(−z/λ + iωt) parallel to the surface is
given by

ηu̇ = ε̂u′′ + F exp(−z/λ + iωt), (4)

where z is the coordinate perpendicular to the surface, u(z,t) is
the vortex displacement parallel to the surface, F = φ0Hp/λ

is the amplitude of the rf driving force, λ is the London
penetration depth in the ab plane, η = φ0Bc2/ρn is the
viscous drag coefficient, where Bc2 = φ0/2πξ 2 is the upper
critical field, ρn is the normal-state resistivity, and ξ is the
coherence length. The operator ε̂ describes the dispersive
vortex line tension in a uniaxial superconductor with the c

axis perpendicular to the surface. The Fourier transform of ε̂

is34,59

ε(k) = ε0

2�2
ln

κ2
GL�2

1 + λ2k2
+ ε0

2λ2k2
ln(1 + λ2k2), (5)

where ε0 = φ2
0/4πμ0λ

2, κGL = λ/ξ is the GL parameter, and
� = λc/λ is the anisotropy parameter. We calculate P (ω,�) for
a vortex line trapped by sparse pinning centers (for example,
oxide nanoprecipitates), following our previous calculations
of Rs for pinned vortex segments parallel to the surface.32

This approach takes into account all bending modes of a
vibrating vortex segment (the case of a vortex trapped by a
columnar defect perpendicular to the surface was considered in
Ref. 70), unlike theories of microwave response29–31,34 using
a phenomenological Labusch pinning spring constant for a
vortex regarded as a particle rather than as an elastic string.

For strong core pinning, the boundary conditions to Eq. (4)
are that one end of the vortex is perpendicular to the surface34

and the other end is fixed by the pin:

u′(0) = 0, u(�) = 0. (6)

The solution of Eq. (4) which satisfies Eq. (6) is

u(x,t) =
∞∑

n=0

An cos(knz)eiωt , kn = π

�

(
n + 1

2

)
. (7)
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Substituting Eq. (7) into Eq. (4) multiplied by cos knz and
integrating over z from 0 to � yields

An = FIn

iωη + k2
nε(kn)

, (8)

In = π (2n + 1)(−1)ne−a + 2a

a2 + π2(n + 1/2)2
, (9)

where a = �/λ. Notice that Eq. (7) is not a complete solution
if � < λ so that the rf Meissner currents can reach trapped
segments of the vortex behind the first pin at z > �. We first
consider the case of � > λ for which only the nearest to the
surface vortex segment is excited, and then address the case of
� < λ (particularly relevant to thin films) in Sec. V C.

If the spatial dispersion of ε(kz) can be neglected, the
solution of Eq. (4) becomes

u(z,t) = Hpφ0λeiωt

iωηλ2 − ε

[
e−z/λ + 1

qωλ
sinh(qωz)

− cosh(qωz)

cosh(qω�)

(
e−�/λ + 1

qωλ
sinh(qω�)

)]
, (10)

where qω = (iηω/ε)1/2 and ε = ε(kz → 0). In isotropic super-
conductors, ε = φ0Hc1, where Hc1 is the lower critical field.
The anisotropy affects ε as follows:

ε = φ2
0g

4πμ0λ2
, g = 1

�2
ln(�κGL) + 1

2
. (11)

Equation (10) shows that the amplitude of driven rf
oscillations of a long vortex segment is maximum at the surface
and decays along z over the length which depends on ω. At low
frequencies, ω � ωl where �qω = 1, the surface rf Meissner
current at 0 < z < λ causes rocking of the whole vortex
segment of length � � λ. At ωl � ω � ωλ where λqω = 1,
the rf oscillations of the vortex are mostly localized in the
surface layer of thickness of 1/qω smaller than � but larger
than λ. At higher frequencies ω � ωλ, only a short tip ∼λ of
the vortex is driven by the rf currents. Here, ωλ and ωl are
given by

ωλ = gρnξ
2

2μ0λ4
, ωl = gρnξ

2

2μ0λ2�2
. (12)

The rf power P (ω) behaves quite differently in these fre-
quency domains 0 < ω < ωl , ωl < ω < ωλ, and ω > ωλ, and
becomes independent of pinning at ω > ωl .

B. Dissipated power in a semi-infinite superconductor

We first consider the case of � � λ for which the Meissner
current density is negligible at the pin and only one vortex
segment at 0 < z < � is excited. Using Eqs. (7)–(9), we obtain
the mean power P = −(ωF/2)Im

∫ �

0 u(z,ω) exp(−x/λ)dx

dissipated by the vibrating vortex segment, as shown in
Appendix A:

P = H 2
pω2

4λ2

∞∑
n=0

ηφ2
0�I

2
n

ω2η2 + k4
nε

2(kn)
. (13)

This equation enables one to calculate P (ω,�), taking into
account both the nonlocality of the vortex line tension and
the uniaxial anisotropy essential in layered materials such as

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

ω/ω
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P
(ω
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P
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)

Γ = 25

Γ = 1

FIG. 15. (Color online) The frequency dependence of P (ω)
calculated from Eq. (13) for � = 4λ, κGL = 100, and different
anisotropy parameters � = 25 and 1. Here, P (ω) is normalized to
the maximum P (ω → ∞), and ω is normalized to ω0 = ε0/2ηλ2.

high-Tc cuprates. An example of such calculation for � = 4λ,
λ/ξ = 100, and different anisotropy parameters � is shown in
Fig. 15. Here, P (ω) first increases quadratically with ω, then
goes like P ∝ ω1/2 at ωl � ω � ωλ, and saturates at higher
ω. The behavior of P (ω) calculated from Eq. (13) taking into
account all bending vortex modes is more complicated than
P ∝ ω2/(ω2

p + ω2) of the Gittleman and Rosenblum model,29

which contains only one phenomenological depinning
frequency ωp.

The anisotropy increases P (ω) at low and intermediate
frequencies, but does not affect P at ω � ωλ. This large
anisotropy parameter � reduces the vortex line tension ε(k)
in Eq. (5), particularly at kλ > 1. The anisotropy thus reduces
the frequencies at which the term k4

nε
2(kn) in the denominator

of Eq. (13) becomes negligible so that P (ω) levels off as the
factors ∝ω2 cancel out.

For long vortex segments, ε(kz) can be taken in the local
limit at kz = 0 since the main contribution to the sum in
Eq. (13) comes from knλ < 1. In this case, the summation can
be done exactly, or one can directly use Eq. (10) to calculate
P , as shown in Appendix A. The result can be presented in
two equivalent forms

P = H 2
pφ2

0χ
2

4ηλ

[
5 + χ2

(1 + χ2)2
− 2

χ3/2
Im

tanh
√

iν√
i(1 − iχ )2

]
, (14)

χ = ωηλ2/ε, ν = ωη�2/ε. (15)

Separating here the imaginary part yields

P = H 2
pφ2

0χ
2

2ηλ(1 + χ2)2

[
χ2

2
+ 5

2

+ (1 − 2χ − χ2) sinh
√

2ν − (1 + 2χ − χ2) sin
√

2ν√
2χ3/2(cosh

√
2ν + cos

√
2ν)

]
.

(16)

Here, χ = ω/ωλ and ν = ω/ωl are dimensionless frequen-
cies where ωλ = ε/ηλ2 and ωl = ε/η�2 are defined by
Eq. (12). Taking ξ/λ = 1, ρn = 10−9 � m, and λ = 40 nm
for clean Nb at T � Tc, we obtain ωλ � 2.5 × 1011 Hz, about
one tenth of the gap frequency ω� ∼ 1.76kBTc/h̄ � 2.3 ×
1012 Hz above which the rf field generates quasiparticles
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at T � Tc. The frequency ωλ(T ) � ωλ(0)(1 − T 2/T 2
c ) de-

creases as T decreases, vanishing at Tc. By contrast, ωl(T ) is
nearly temperature independent and remains finite at Tc. Thus,
for large vortex segments � � λ, we have ωλ(T ) � ωl(T ) at
T � Tc, but ωλ(T ) � ωl(T ) if T is close to Tc.

For χ = ω/ωλ � 1, Eq. (16) simplifies to

P = H 2
pφ2

0(sinh
√

2ν − sin
√

2ν)
√

ν

23/2η�(cosh
√

2ν + cos
√

2ν)
. (17)

At low frequencies ν � 1, Eq. (17) takes the form

P = 4πH 2
pλ4μ2

0�
3ω2/3ρng

2ξ 2, ω � ωl. (18)

Here, P decreases as the mean spacing � between pins
decreases, unlike the region ω � ωl in which P becomes
independent of pinning. Indeed, at intermediate frequencies
ν � 1, Eq. (17) yields

P = πH 2
pλξ (μ0ρnω/g)1/2, ωl � ω � ωλ. (19)

At high frequencies χ = ωηλ2/ε � 1, P becomes indepen-
dent of ω, �, and the vortex line tension:

P = πH 2
pξ 2ρn/2λ, ω � ωλ. (20)

It is instructive to trace the effect of nonmagnetic impurities
on P (ω) in different frequency regions, taking into account
the dependencies of ρn ∝ l−1

i , ξ ∝ l
1/2
i , and λ ∝ l

−1/2
i on the

mean-free path li in the dirty limit. Then, Eq. (18) shows
that P ∝ l−2

i at ω � ωl increases strongly as li decreases. At
intermediate frequencies ωl � ω � ωλ, the power P ∝ l

−1/2
i

keeps increasing upon decreasing li but much weaker than at
ω � ωl . This trend reverses at high frequencies ω � ωλ for
which P ∝ l

1/2
i decreases as the surface gets dirtier.

We estimate P in Nb at frequencies ω � ωl for which P (ω)
is independent of �. Taking ρn = 10−9 � m, ξ = λ = 40 nm
for clean Nb, we obtain from Eq. (19) that P � 0.13 μW for
Bp = 100 mT and ω/2π = 2 GHz. This estimate corresponds
to the intermediate frequencies ωl � ω � ωλ relevant to our
experiment. For the same materials parameters, the high-
frequency limit of P defined by Eq. (20) yields P � 0.4 μW.

C. Vortices in a thin film

The results of the previous section can be used to calculate
P for a perpendicular vortex in a thin film with d � λ

relevant to the rf dissipation in thin-film multilayers in
accelerator cavities71 and the nanoscale thin-film structures
in superconducting quibits and photon detectors. We consider
a vortex pinned by a single defect spaced by � from the
film surface, as shown in Fig. 16, for which P essentially
depends on the way by which the magnetic field is applied.

d J 
 

FIG. 16. (Color online) A vortex pinned by a single defect spaced
by � from the surface of a thin-film screen with d � λ. Under the
action of uniform Meissner currents flowing perpendicular to the
plane of the picture, two vortex segments bow out in such a way that
their tips remain perpendicular to the film surface.

In the first case, the rf field is applied to one side of a
thin-film screen so that the Meissner current density J ≈ Hp/λ

is nearly uniform over the film thickness. The second case
corresponds to a film in a uniform parallel rf field, for
which J (z) = (Hp/λ) sinh(z/λ)/ cosh(d/2λ) changes sign in
the middle of the film at z = 0.

In a thin-film screen, the rf power dissipated by two vortex
segments of length � and d − � is given by Eq. (13) with In →
4(−1)n/π (2n + 1) being the limit of Eq. (9) at a = �/λ � 1:

P = 4ηH 2
pφ2

0ω
2

π2λ2

∞∑
n=0

1

(2n + 1)2

×
[

�

ω2η2 + k4
nε

2(kn)
+ d − �

ω2η2 + q4
nε

2(qn)

]
, (21)

where qn = π (n + 1/2)/(d − �). Equation (21) simplifies at
low frequencies ω � π2ε(π/d)/ηd2 which can extend to the
THz region for thin films with d � λ. In this case, the terms
of the sum in Eq. (21) decrease very rapidly with n, so to
the accuracy of better than 2%, we can retain only terms with
n = 0:

P � 64ηH 2
pφ2

0ω
2

π6λ2

{
�5

ε2[π/2�]
+ (d − �)5

ε2[π/2(d − �)]

}
. (22)

Here, P is proportional to ω2 and decreases rapidly as the
film thickness decreases. Strong anisotropy � � 1 and elastic
nonlocality of the vortex line tension at πλ/d � 1 increase P

in Eq. (22) because both effects reduce the vortex line tension
ε(k) defined by Eq. (5).

The vortex in the screen gets depinned as the upper and
lower segments of the bowed vortex become parallel and
reconnect at the pin if Hp > Hpin. We evaluate Hpin for the
symmetric case of � = d/2, using the expression72 for the
pin-breaking current density Jc = (φ0/4πμ0λ

2��) ln(2��/ξ ).
Hence,

Bpin � φ0

4πλc�
ln

2�

ξc

, (23)

where λc and ξc are the penetration depth and coherence
length along the c axis in a uniaxial superconductor. The
depinning field Bpin ∼ Bcξ/�� can be much smaller than the
thermodynamic critical field Bc = φ0/2

√
2πλξ , particularly

for highly anisotropic materials.
Now, we turn to a film in a parallel field, limiting ourselves

to the symmetric case � = d/2. Here, P is given by Eq. (13)
in which the form factor In is replaced with Ĩn = (4/d)∫ d/2

0 sinh(z/λ) sin(knz)dz, and kn = π (2n + 1)/d (see
Appendix A):

Ĩn � 4(−1)nd

π2(2n + 1)2λ
, � � λ.

Therefore,

P = 4H 2
pω2

π4λ4

∞∑
n=0

ηφ2
0d

3

(2n + 1)4
[
ω2η2 + k4

nε
2(kn)

]
� 4ηH 2

pφ2
0d

7ω2

π8λ4ε2(π/d)
, (24)
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where the terms ∝(2n + 1)−8 with n �= 0 in the rapidly
converging sum were neglected. Comparing Eq. (22) with
(24) shows that P in a film in a parallel uniform rf magnetic
field is reduced by the factor �(d/πλ)2 � 1 as compared to
a film screen. This is because the screening current density
J � Hpz/λ, which changes sign at the center of the film,
produces much weaker rf drive than the uniform Meissner
current in a screen.

D. Residual resistance due to vortices

Trapped vortices contribute to the residual surface resis-
tance Ri which defines the dissipated power P = RiH

2
p/2 per

unit surface area. Assuming that vortices with the average
density B0/φ appear due to a dc magnetic field B0, we obtain
Ri using Eq. (13):

Ri = ηB0φ0ω
2

2λ2

∫ ∞

0

∞∑
n=0

I 2
nG(�)� d�

ω2η2 + k4
nε

2(kn)
. (25)

Here, Ri is averaged over a statistical distribution of nonin-
teracting vortex segments with the distribution function G(�)
normalized by the condition

∫ ∞
0 G(�)d� = 1.

The frequency dependence of Ri(ω) is similar to that shown
in Fig. 15. We evaluate Ri at ωl � ω � ωλ where P is
independent of �. Then, Eq. (19) yields

Ri = B0

Bc

(
μ0ρnω

2g

)1/2

. (26)

Let us estimate the magnitude of B0 which gives rise to the
observed Ri = 5 n� in Nb at f = 2 GHz.1,15 Taking ρn =
10−9 � m, Bc = 0.2 T, and 2g = 1 from Eq. (11), we obtain
that Ri = 5 n� can result from the residual field B0 � 2.5 μT
much smaller than the Earth field.

In the literature, Ri is sometimes evaluated using the
formula RH

i = (B0/2Bc2)(μ0ρnω/2)1/2, assuming that RH
i is

just the surface resistance in the normal state (μ0ρnω/2)1/2

times the volume fraction of vortex cores B0/2Bc2 regarded
as fixed normal tubes of radius ξ (see, e.g., Ref. 1). The
so-defined RH

i ignores the oscillations of vortices under the
rf field and underestimates Ri as compared to Eq. (26) derived
for ωl � ω � ωλ by the factor �4 for Nb but �40 for
Nb3Sn. Moreover, RH

i ∝ ρ
−1/2
n decreases as the mean-free

path decreases, while Ri ∝ ρ
1/2
n in Eq. (26) increases as the

material gets dirtier since Bc is not affected by nonmagnetic
impurities.73 Equation (26) suggests that Ri may increase
in superconductors with higher ρn, such as Nb3Sn, high-Tc

cuprates or semimetallic Fe-pnictides.74 For Nb3Sn with Bc �
540 mT and ρn � 0.2 μ� m, we obtain Ri � 1 μ� at f =
2 GHz and B0 = 40 μT.

Although the thin-film geometry facilitates trapping per-
pendicular vortices, pinning can reduce Ri . Indeed, for a
thin-film screen, Eq. (22) with � = d/2 yields

Ri � 8φ2
0Bc2B0d

5ω2

π6ρnλ2ε2(π/d)
, d � λ. (27)

For a thin film in a parallel rf magnetic field, Ri readily follows
from Eq. (24):

Ri � 8φ2
0Bc2B0d

7ω2

π8ρnλ4ε2(π/d)
, d � λ. (28)

In the dirty limit, the ratio Bc2/ρn is independent of the
mean-free path li while, according to Eq. (5), the products
λ2ε2(π/d) in Eq. (27) and λ4ε2(π/d) in Eq. (28) decrease as
li decreases. In both cases, Ri increases as the concentration
of nonmagnetic impurities increases, although this increase is
much slower for a film in a uniform field. Reduction of Ri

by denser pinning nanostructure (shorted lengths � of vortex
segments) is consistent with low Ri ∼ 2–5 n� observed on Nb
films,75 Nb3Sn films76,77 at 1 GHz, and a significant decrease
of Ri due to incorporation of BaZrO3 oxide nanoparticles in
YBa2Cu3O7−x films.78

VI. TEMPERATURE DISTRIBUTIONS IN VORTEX
HOTSPOTS

A. Uniform rf heating

The rf fields can make the Meissner state unstable due
to the positive feedback between the exponential temperature
dependence of the rf power of Rs(T )H 2

p/2 and heat transfer.
Here, we outline a thermal breakdown model3,79 to introduce
the parameters which will be used for the analysis of vortex
hotspots. We consider a slab of thickness d � λ exposed
to the rf field at one side (z = 0) and cooled at the other
(z = d), so that the rf power released in a narrow layer at
z = 0 is balanced by heat diffusion across the slab, as shown
in Fig. 17(a). Steady-state distribution T (z) and the surface
temperatures Tm = T (0) and Ts = T (d) are determined by the
boundary conditions κT ′ = −RsH

2
p/2 at z = +0 and κT ′ +

αK (Ts,T0)(Ts − T0) = 0 at z = d, where κ is the thermal
conductivity and αK (Ts,T0) is the Kapitza thermal conductance
at the cooled surface.

The rf heating results in a field dependence of the sur-
face resistance Rs ∝ exp[−�/Tm(Hp)] yet the temperature
raise Tm − T0 � kBT 2

0 /� � T0 remains small even at the
breakdown field.3,79 Then, the temperature dependencies of
κ(T ) and αK (T ,T0) (Refs. 80 and 81) can be neglected as
compared to Rs(T ), and the thermal flux conservation yields
(Tm − Ts)κ/d = (Ts − T0)αK . Here, Tm(Hp) is determined
self-consistently by the heat balance equation H 2

pRs(Tm)/
2 = αK (Ts − T0) which is convenient to present in terms of
Bp = μ0Hp as a function of Tm:

B2
p = 2μ2

0καKTm(Tm − T0)

[Aω2 exp(−�/kBTm) + TmRi](κ + αKd)
, (29)

where the thermal impedance αKκ/(κ + αKd) is determined
by heat diffusion across the slab and the Kapitza thermal
conductance at the surface.

The behavior of Tm(Bp) can be understood from the
graphical solution of Eq. (29) shown in Fig. 17(b). Here, point
1 corresponds to a stable state for which Tm(Bp) increases
as Bp increases, while point 2 corresponds to an unstable
equilibrium. The points 1 and 2 merge as Bp(Tm) reaches
maximum at Tm = Tb, defining the breakdown field Bb =
Bp(Tb) above which thermal runaway occurs. Here, Bb can
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FIG. 17. (Color online) (a) Temperature distribution across the
sample where red shows the thin ∼λ � d layer of rf dissipation. The
temperature jump Ts − T0 at z = d is due to the Kapitza thermal
resistance between the superconductor and the coolant/substrate.
(b) Graphic solution of Eq. (29) for different ratios of Ri/RBCS(T0) =
0.1; 1; 5 (from top to bottom). The points 1 and 2 correspond to the
stable and unstable solutions, respectively, and the empty circles show
the breakdown fields. Here, B2

0 = 2μ2
0T0καK/(κ + dαK )RBCS(T0).

be obtained from Eq. (29) and ∂Bp/∂Tm = 0. The breakdown
occurs at small overheating θ = (Tm − T0)/T0 � 1 for which
one can approximate RBCS(T ) = R0 exp(θ�/kBT0) where
R0 = RBCS(T0). For Ri = 0, Eq. (29) and ∂Bp/∂θ = 0 can
be solved exactly, giving θ = kBT0/� � 1, so Tb − T0 and
Bb can be calculated in the first order in Ri/eR0 � 1:

Tb − T0 = kBT 2
0

�

[
1 + Ri

eR0

]
, (30)

Bb = μ0

[
2καKkBT 2

0

e�(κ + dαK )R0

]1/2 [
1 − Ri

2eR0

]
, (31)

where e = 2.718. For Ri = 5 n� and R0 = 20 n� at
1.3 GHz,15 the residual resistance in Eq. (31) only reduces Bb

by �5%. The cold state 1 in Fig. 17 at Bp < Bb is metastable
and can be destroyed by a thermal fluctuation δT � T (2)

m −
T (1)

m , triggering thermal quench. Such thermal bistability can
result in propagation of thermal switching waves82 or dendritic
hot filaments of magnetic flux in superconducting films.83,84

For a clean Nb at 2 K, αK = 5 × 103 W/m2K, κ = 20 W/mK,

�/kB = 17.5 K, Rs(2 K) = 20 n�, and d = 3 mm, Eq. (31)
gives Bb ≈ 200 mT close to Bc of Nb at 0 K. In this case,
the uniform thermal breakdown does not play a major role,
and Rs(Bp) is mostly controlled by nonequilibrium kinetics
of quasiparticles in the Meissner state.85 Thermal stability can
become a problem3 for dirtier Nb or higher-Tc superconductors
such as Nb3Sn or semimetallic iron pnictides for which thermal
conductivities are some 3 orders of magnitude lower than for
Nb.74,86

B. Trapped vortex hotspots

We now calculate the temperature distribution around
vortex hotspots in a slab. For weak rf dissipation produced
by trapped vortices, T (x,y,z) is described by the linearized
thermal diffusion equation

∇2T = 0, (32)

κ∂zT = −P̃ (x,y,T ), z = 0 (33)

κ∂zT = −αK (T − T0), z = d. (34)

The surface power P̃ in the boundary condition (33) includes
both the rf power Rs(T )H 2

p/2 in the Meissner state, and the
localized heat sources P (x,y,T ):

P̃ = P (x,y,T ) + (
H 2

p

/
2
)
[∂Rs/∂T ]T0 (T − T0), (35)

where P can be due to a vortex hotspot or a scanning laser
beam, and the second term describes the induced change in
the BCS rf heating. We consider hotspot in slabs in which
δT (x,y,z) is highly inhomogeneous both along the surface and
in the perpendicular direction, unlike the theory of scanning
electron microscopy87 for thin films in which δT (x,y) is nearly
uniform along z.

Neglecting the dynamic term C∂T/∂t in the thermal
diffusion equation implies that dissipation is localized in
a narrow layer much thinner than the thermal skin depth
�ω = (κ/Cω)1/2, and the rf period is much shorter than the
time tθ = Cd2/κ of thermal diffusion across the film so that
temporal oscillations of T are negligible, where C is the
specific heat. For Nb at 2 K (κ = 10 W/mK, C = 102 J/m3K),
d = 2 mm, and f = 2 GHz, the thermal skin depth �ω =
(κ/Cω)1/2 � 3 μm is much greater than λ = 40 nm, while
tθ � 40 μs �1/f , justifying Eq. (2). For Nb3Sn at 2 K
(κ = 10−2 W/mK, C = 102 J/m3K, Ref. 86) and f = 2 GHz,
�ω = (κ/Cω)1/2 � 100 nm becomes comparable to λ/2 =
45 nm.

The temperature distribution in the film can be obtained
by the Fourier transform of Eqs. (32)–(34), as described in
Appendix B:

T (ρ,ζ )

= T0 + H 2
pRs(Tm)d(1 − ζ + β

)
/2κ

+
∫

Pk[kβ cosh k(1 − ζ ) + sinh k(1 − ζ )]eikρd2k

αK [kβ(1 − γ ) cosh k + (k2β2 − γ ) sinh k](2π )2
,

(36)

β = κ

dαK

, γ = H 2
p

2αK

[
∂Rs

∂T

]
Tm

, (37)

where Pk = ∫
e−ikρP (ρ)d2ρ is the Fourier image of the local-

ized heat source, ρ = r/d and ζ = z/d are the dimensionless
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lateral and transverse coordinates, respectively, r = (x,y),
and k2 = k2

x + k2
y . The second term in the right-hand side of

Eq. (36) is due to the uniform rf heating where Tm(H ) at z = 0
is determined by Eq. (29). The integral term describes a hotspot
caused by the localized power source P (x,y).

We now calculate the temperature disturbances δTm(ρ) =
T (ρ,0) − Tm and δTs(ρ) = T (ρ,1) − Ts at the inner and outer
surfaces, respectively. Consider first δTs(ρ) from a heat source
much smaller than the film thickness for which δTs(ρ) is axially
symmetric and Pk can be replaced with the total power P0 =∫

dx dy P (x,y). Integration over the polar angle in Eq. (36)
yields

δTs(ρ) = P0β

2παK

∫ ∞

0

k2J0(kρ)dk

kβ(1 − γ ) cosh k + (k2β2 − γ ) sinh k
,

(38)

where J0(x) is the Bessel function. For ρ = r/d � 1, the
integral in Eq. (38) converges at k � 1 so we can expand
the denominator in k and obtain (see Appendix B)

δTs(r) = P0

2πκ̃d
K0

(
r

L̃

)
, r � d (39)

L = (dκ̃/α̃K )1/2 , (40)

κ̃ = κ

[
1 + 1 − γ

2β
− γ

6β2

]
, (41)

α̃K = αK − H 2
p

2

(
1 + 1

β

) [
∂Rs

∂T

]
Tm

, (42)

where K0(x) is the modified Bessel function. Here, δTs(r)
decreases exponentially over the thermal length L which is
typically larger than the film thickness in Nb. For a slab
with d = 2 mm, Hp = 0, κ = 10 W/mK at 2 K, we obtain
β = 1 and L = d

√
β = 2 mm if δTs is small enough so

that the superfluid He remains below Tλ = 2.17 K and αK =
5 kW/m2K. Stronger overheating, δTs > Tλ − T0, drives the
liquid He above the λ point and the Kapitza conductance
drops to αK � 650 W/m2K (Refs. 80 and 81) giving β = 7.7
and L = 5.5 mm. For a 1-μm-thick Nb film and the same
materials parameters, we obtain β = 500, L � 22 μm, and
β � 4 × 103, L � 63 μm, respectively.

Equations (40)–(42) show that L depends on the rf field am-
plitude because of the effect of uniform rf heating on κ̃(Hp) and
α̃K (Hp). Here, L(Hp) increases as Hp increases and diverges
like L ∝ (H 2

b − H 2
p)−1/2 at the uniform breakdown field Hb

at which α̃K (H ) vanishes. The expansion of hotspots as Hp

increases was observed in temperature-map measurements.88

The rf field-induced widening of δT (x,y,z) along the surface
will be discussed below in more detail. Here, we just illustrate
how the expansion of hotspots can be understood from a
balance of lateral thermal diffusion, rf dissipated power, and
the heat flux to the coolant in the region ∼L:

dκ δT /L2 ∼ [
αK − (

H 2
p

/
2
)
(∂Rs/∂T )

]
δT .

Hence, L2 ∼ dκ/[αK − (H 2
p/2)(∂Rs/∂T )] reduces to Eq. (40)

in the limit of β � 1 for which heat transfer is limited by the
Kapitza conductance. The length L(Hp) can be regarded as a
thermal correlation length in the Meissner state under the rf
field.

For β � 1, the peak value δTs(0) at the outer surface can
be calculated analytically (see Appendix B):

δTs(0) = P0

4πκd
ln

(
4κ

dα̃K

)
. (43)

Equation (43) overlaps with Eq. (39) at r ∼ d in which K(x) �
ln(1/x) at x � 1. Notice that δTs(0) depends only weakly on
the Kapitza thermal resistance.

C. Reconstruction of heat sources from temperature maps

The results presented above enable one to reconstruct the
distribution of local power sources P (r) from the temperature
maps of δT (r), using Eq. (36) which links the Fourier
components Pk and δTk:

Pk = αK

[
(1 − γ ) cosh k +

(
kβ − γ

kβ

)
sinh k

]
δTk. (44)

The formally exact Eq. (44) can not be directly applied
to reconstruct P (r) using the fast Fourier transform of the
measured δT (r) because the hyperbolic functions in Eq. (44)
greatly amplify the contribution of short-wavelength harmon-
ics of inevitable noise in the measured signal. This problem is
resolved using the standard methods of reducing the signal-to-
noise ratio in which the measured δT (x,y) distribution should
be first coarse grained to remove all Fourier components of
fictitious temperature fluctuations with the periods shorter than
the spatial resolution of the thermal-map measurements.89,90

The spatial resolution of our thermal maps �m � 1 cm
does not allow probing the length scales ∼d � 2–3 mm,
so Eq. (44) should be expanded in small k up to terms ∼k2.
Restoring the normal units yields

P k = α̃K (1 + L2k2)δT k, (45)

where L and α̃K are defined by Eqs. (40) and (42). The wave
vector k is restricted by the condition k < k0 � �−1

m and the
overbar implies spatial averaging of the measured δT (x,y),
which eliminates all harmonics with k > k0. In the coordinate
space, Eq. (45) takes the form

P (r) = α̃K [δT (r) − L2∇2δT (r)]. (46)

This equation can be used to reconstruct the distribution of
power sources P v(x,y) from the smoothed thermal maps
δT (x,y). For instance, the observed δT (x,y), which can be
approximated by Eq. (39) up to r � �m, suggests a small heat
source of size r0 � L for which the total power P0 but not r0

can be measured.
Now, we estimate the number of trapped vortices which

can produce the observed peaks in δTs � 0.2–0.5 K shown
in Fig. 3. For intermediate frequencies ω > ω� relevant to
our experiment, Eq. (19) yields P � 0.07 μW per vortex
at Bp = 74 mT and 2 GHz. To see how many vortices can
produce δT � 0.2–0.5 K in the Nb plate of thickness 2 mm,
we consider two limits of a localized vortex bundle with
r0 � L and a distributed bundle with r0 � L. For a localized
bundle, we use Eq. (43) with κ = 10 W/mK, d = 2 mm,
and αK = 650 W/m2K. Then, we obtain that P0 =
4πκdδTs(0)/ ln(4κ/dαK ) � 15–37 mW for δTs(0) = 0.2–
0.5 K. This requires N = P0/P ∼ (2–5) × 105 vortices. If
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they are spaced by distances ∼λ = 40 nm, the size of the
vortex bundle ∼λN1/2 ∼ 20–30 μm is much smaller than d.

To estimate the density nv of trapped vortices which can
produce δTs � 0.2–0.5 K in a distributed bundle, we use the
uniform heat balance condition δTsκαK/(κ + dαK ) � nvP .
Hence, nv ∼ αKκδTs/P (κ + dαK ) ∼ (2–5) × 109 m−2 corre-
sponds to the mean distance between vortices lv = n

−1/2
v ∼

14–20 μm, and the effective magnetic induction Bv = φ0nv �
4–10 μT, smaller than 25–60 μT of the unscreened Earth
magnetic field. Such local variations of the vortex density may
result from mesoscopic fluctuations of random pinning forces.

D. Temperature distribution at the inner surface

The distribution of δTm(r) at the inner surface follows from
Eq. (36) at ζ = 0:

δTm(ρ) = 1

2παK

∫ ∞

0

(kβ + tanh k)PkJ0(kρ)k dk

kβ(1 − γ ) + (k2β2 − γ ) tanh k
. (47)

For a point heat source, this integral diverges at ρ = 0, so
we consider a more realistic Gaussian distribution P (r) =
(P0/2πr2

0 ) exp(−r2/2r2
0 ) (in real units) and the Fourier trans-

form P (p) = P0 exp(−p2r2
0 /2) where k = pd, and P0 and

r0 < d are the total power and the radius of the source,
respectively. Such P (r) can model both a trapped vortex bundle
or a laser beam.

For r < d, the main contribution to the integral in
Eq. (47) comes from the region of k > 1 where tanh k ≈ 1.
Then, δTm(r) can be calculated analytically if β � 1:

δTm(r) = P0

2πκ

∫ ∞

0
exp

(−p2r2
0

/
2
)
J0(pr)dp

= P0

2
√

2πκr0

exp

(
− r2

4r2
0

)
I0

(
r2

4r2
0

)
, r < d (48)

where I0(x) is the modified Bessel function. The peak value
δTm(0) is given by

δTm(0) = P0

2
√

2πκr0

. (49)

For r > 2r0, the asymptotic expansion of I0(x) =
exp(x)/

√
2πx in Eq. (49) yields the temperature distribution

from a point source in semi-infinite media:

δTm(r) = P0

2πκr
, r > 2r0. (50)

The maximum temperature gradient

|∇δT |max = 0.071P0/κr2
0 (51)

occurs at r = 1.194r0. Using Eqs. (43) and (51), we obtain the
relation between the peak values of δT on the inner and outer
surfaces:

δTm(0) =
√

2πdδTs(0)

r0 ln(4κ/dα̃K )
, (52)

|∇δT |c � 0.36Tm(0)/r0. (53)

For r0 = 0.25 mm, d = 2 mm, αK = 650 W/m3K, κ =
10 W/mK, and δTs(0) = 0.3 K, Eqs. (52) and (53) yield
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FIG. 18. Lateral distributions of δTm(r) and δTs(r) normalized to
their respective peak values calculated from Eqs. (38) and (47) for the
Gaussian power source Pk = P0 exp(−a2k2), a = 0.2d , and β = 5.
The lower and the upper curves in both (a) and (b) correspond to
γ = 0 and 0.75, respectively.

δTm(0) � 1.8 K and |∇δT |c � 2.6 K/mm. Equations (50) and
(51) can be used to evaluate the temperature gradient produced
by scanning laser beam for which P0 = αωW , W is the
laser power, and αω is the absorption coefficient. Substituting
Eq. (51) into (3) then gives the minimum beam power Wc to
move trapped vortices:

Wc ∼ 232κμ0Jcr
2
0 λ2

0T
2
c /αωφ0T . (54)

The critical power Wc can be reduced by focusing the laser
beam to diminish r0 in Eq. (54).

Shown in Fig. 18 are the features of δTs(r) and δTm(r)
calculated numerically from Eqs. (38) and (47) for a Gaussian
heat source with r0 � d and different values of the uniform
heating parameter γ (Hp). One can clearly see the widening of
the hotspot as Hp increases, as was mentioned above. Another
feature is the distinctly different behavior of δTm(r) and δTs(r)
at small distances r < d from the power source: δTm(r) has a
sharp peak at r < d described by Eqs. (48)–(50), but δTs(r)
is rounded by thermal diffusion across a thick sample. For
large distances r � d, the temperature across the film becomes
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nearly uniform in the limit of strong thermal diffusion β =
κ/dαK � 1, and δTm(ρ) becomes equal to δTs(ρ). However,
near the heat source, the local overheating at the inner surface
δTm(r) can be much higher than its “image” δTs(r) at the outer
surface.

E. Scanning laser microscopy of hotspots

Scanning laser can be used to probe local inhomogeneity of
the surface resistance Rs(r). If the laser beam locally increases
the temperature by δTm(x,y) < T 2

0 /Tc, the surface resistance
changes by δR(r) = [∂Rs(r,T )/∂T ]T0δTm(r − r0), where r0 is
the position of the beam at the surface. As a result, the quality
factor at low rf fields decreases by

δQ(r0) = Q

ARs

∫ [
∂Rs(r,T )

∂T

]
T0

δTm(r − r0)d2r, (55)

where A is the total surface area, Rs is the averaged surface
resistance, and δTm(r) given by Eqs. (47) and (48) decreases
as 1/r for r < d and as exp(−r/L) for r > L. If Rs(r)
varies slowly over the thermal length L, the derivative
[∂Rs(r,T )/∂T ]T0 can be taken out of the integral in Eq. (55)
which then reduces to the zero-k Fourier component δTm(k =
0) = (1/αK + d/κ)P0, as follows from Eq. (47). Thus,
Eq. (55) becomes

δQ(r0) = QP0

ARs

(
1

αK

+ d

κ

)[
∂Rs(r0,T )

∂T

]
T0

. (56)

Now, we estimate δQ/Q due to trapped vortex bundles which
locally increase Ri(r0). Evaluating ∂Rs/∂T � 2T Ri(r0)/T 2

c

from Eq. (26) with Bc(T ) = Bc(0)(1 − T 2/T 2
c ) yields

δQ(r0)

Q
�

(
2T0P0

AT 2
c

) (
1

αK

+ d

κ

)[
Ri(r0)

Rs

]
. (57)

For the parameters of our experiment, P0 � 1 W, A �
10−2 m2, αK � 650 W/m2K, d = 2 mm, κ = 10 W/mK, T0 =
2 K, and Tc = 9.2 K, Eq. (57) shows that, if vortex hotspots
locally increase the residual resistance to Ri(r0) ∼ 102Rs ,
the global quality factor would change by δQ ∼ Q. Thus,
laser scanning of comparatively weak vortex hotspots with
Ri(r0) ∼ (1 − 10)Rs can result in detectable (a few percent)
change in the global Q.

VII. EFFECT OF HOTSPOTS ON SURFACE RESISTANCE

Trapped vortices give rise to two different contributions
to Rs . The first one is given by Eqs. (25) and (26), and
another one comes from the increase of Rs(T ) caused by
local overheating in hotspots. Generally, the calculation of
nonisothermal Rs with randomly distributed hotspots requires
solving a highly nonlinear partial differential equation for
T (x,y) with inhomogeneous parameters. We consider here two
simpler limits of sparse weak vortex hotspots, and overlapping
hotspots spaced by distances much smaller than the thermal
length L.

A. Sparse hotspots

The rf power Pt generated by a trapped vortex bundle
consists of two contributions:

Pt = P0 + H 2
p

2

[
∂Rs

∂T

]
Tm

∫
δT̃ (x,y,0)dx dy

= P0 + H 2
p(1 + β)P0

2αK [β − (β + 1)γ (Hp)]

[
∂Rs

∂T

]
Tm

. (58)

Here, P0 is the rf power directly dissipated by a vortex bundle,
and the integral term accounts for the induced increase of
the surface resistance in a surrounding warmed-up area. The
integral is the Fourier component of δT̃ (k) at k = 0 given by
the last term in Eq. (36) at ζ = 0.

For noninteracting hotspots spaced by distances >L,
the global dissipated rf power

∑
n Pt (rn) is just a sum of

contributions of hotspots located at rn. If we associate the
global residual resistance Ri only with vortex hotspots, then
H 2

pRi/2 = ∑
n Pt (rn). Using Eqs. (37) and (58) for β and

γ (Hp), we obtain

Ri = Ri

1 − (
H 2

p

/
2
)
(1/αK + d/κ)[∂Rs/∂T ]Tm

. (59)

The term ∝H 2
p in the denominator of Eq. (59) makes the

residual resistance dependent on the rf field amplitude due
to the field-induced expansion of hotspots, as was discussed
above. Moreover, Eq. (59) predicts that Ri(Hp) ∝ Ri/(1 −
H 2

p/H 2
b ) would diverge as Hp approaches the uniform thermal

breakdown field Hb. In this case, the assumption of nonover-
lapping hotspots fails, and the calculation of Ri should take
thermal interaction of hotspots into account.

Equation (59) shows that the rf heating not only gives rise
to the field dependent Ri(Hp), it also makes the residual
resistance interconnected with the BCS surface resistance
contributing to ∂Rs/∂T = (�/kBT 2)RBCS + 2T Ri/T 2

c in the
denominator of Eq. (59). Here, ∂Ri/∂T � 2T Ri/T 2

c was
evaluated using Eq. (26) with Hc(T ) = Hc(0)(1 − T 2/T 2

c ).
Therefore, separation of Rs into the BCS and the residual
contribution is well defined only at weak fields for which
heating is negligible. The field dependence of Ri(Hp) due
to sparse vortex bundles can significantly reduce the quality
factors of the Nb resonator cavities at intermediate and high rf
fields.88

B. Overlapping hotspots

For overlapping hotspots, we define the local residual
resistance Ri(r) = Ri + δR(r) where Ri is the mean value
resulting from contributions of all vortex hotspots, and the
random variations δR(r) are due to mesoscopic fluctuations of
pinning forces and the cooling prehistory of the sample, as was
described above. Here, the random variable δR(r) ∝ δnv(r)
has zero mean 〈δR〉 = 0 and is proportional to the local
fluctuation of the vortex density δnv(r). Spatial fluctuations of
δR are characterized by the correlation function F (|r − r′|) =
〈δR(r)δR(r′)〉:

F (|r − r′|) = 〈δnv(r)δnv(r′)〉R2
i /n

2
v, (60)
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where 〈· · · 〉 means statistical averaging, nv is the mean
density of trapped vortices, and F (|r − r′|) is proportional
to the correlation function of density fluctuations of randomly
distributed vortex bundles. We assume that fluctuations δR(r)
are isotropic along the surface so that F (|r − r′|) depends
only on r − r′. The following calculation of the global surface
resistance Rs is valid for any form of F (r − r′), but specific
formulas will be obtained for the conventional Gaussian
function

F (|r − r′|) = 〈δR2〉 exp

[
−|r − r′|2

r2
c

]
, (61)

where 〈δR2〉1/2 and the correlation radius rc � L quantify
characteristic magnitudes and spatial scales of local fluctua-
tions of δR. For sparse hotspots, rc is of the order of the mean
spacing between vortex bundles. The global surface resistance
Rs is then

Rs = RBCS(Tm) + Ri + 〈δT 2〉
2

[
∂2Rs

∂T 2

]
Tm

. (62)

Here, ∂2Rs/∂T 2 � (�/kBT )2RBCS(T ) + ∂2Ri/∂T 2, and
δT (r) are random temperature fluctuations around the mean
Tm defined self-consistently by the equation

H 2
pRs(Tm,Hp) = 2καK (Tm − T0)/(dαK + κ). (63)

To obtain 〈δT 2〉 in Eq. (62), we use Eq. (36) in which ζ =
0, and P (k) = H 2

pδR(k)/2 is the fluctuation dissipation and
〈P (k)P (k′)〉 = (H 4

p/4)F (k)δ(k + k′). Hence,

〈δT 2〉 =
[

H 2
p

4παK

]2∫
F (k)(kβ + tanh k)2d2k

[kβ(1 − γ ) + (k2β2 − γ ) tanh k]2
,

(64)

where F (k)δ(k + k′) is the Fourier image of F (|ρ − ρ′|). We
consider here the limit of β � 1 for which 〈δT 2〉 can be
evaluated analytically, using F (k) = π�2〈δR2〉 exp(−�2k2/4)
with � = rc/d � 1 for the Gaussian correlation function. In
this case, the main contribution to the integral in Eq. (64)
comes from the region of k � 1 where tanh k = k and the
upper limit can be extended to ∞, as shown in Appendix B.
This gives 〈δT 2〉 which essentially depends on T0, Hp, and ω:

〈δT 2〉 = H 4
p〈δR2〉r2

c

16dκαK [1 − γ (Hp,ω)]
, β � 1. (65)

At T � Tc, the variance 〈δR2〉 is temperature independent, but
κ ∝ T 3 and αK ∝ T n with n = 3–5 are mostly determined
by the phonon heat transport.80 Thus, 〈δT 2〉 increases as
T decreases. The dependence of 〈δT 2〉 on Hp varies from
〈δT 2〉 ∝ H 4

p at Hp � Hb to a much stronger increase at
Hp � Hb as the factor 1 − γ (Hp) in the denominator of
Eq. (64) diminishes. The latter reflects the divergence of
temperature fluctuations as Hp approaches the field of uni-
form thermal instability at which 1 = γ (Hp). Equations (62)

and (65) yield

Rs = Rs(Tm) + H 4
p〈δR2〉r2

c

32dκαK [1 − γ (Hp)]

[
∂2Rs

∂T 2

]
Tm

, (66)

Rs = RBCS + Ri, γ = H 2
p

2αK

[
∂Rs

∂T

]
Tm

. (67)

Here, both RBCS(Tm) and Ri(Tm) depend on the mean surface
temperature Tm defined self-consistently by Eqs. (63), (66),
and (67).

If RBCS(T ) � (T/Tc)3Ri , Eqs. (63) and (66) can be written
in the following dimensionless form:

θ = h2

[
eθ + r + sh4eθ

1 − h2eθ

]
, (68)

Rs = R0θ/h2, s = 〈δR2〉r2
c /32R2

0L
2, (69)

where h = Hp/H0, H0 = 2αKkBT 2
0 /�R0, r = Ri/R0, and

θ = (Tm − T0)�/kBT 2
0 . Equation (68) is a cubic equation for

h2(θ ) from which the breakdown field is determined by the
condition ∂h/∂θ = 0.

Shown in Fig. 19 are the dependencies of Rs on the rf field
amplitude calculated from Eqs. (68) and (69). If the effect of
local fluctuations δR(r) is negligible (s → 0), Eq. (68) yields
the explicit relation h2 = θ/(r + eθ ) from which Rs(h) can be
calculated for different values of r = Ri/R0 [Fig. 19(a)]. Here,
Rs increases with the rf field amplitude, while the increase of
Ri reduces the thermal breakdown field and flattens the Rs(H )
curves. For instance, the ratio of Rs(Hb)/Rs(0) decreases from
e = 2.718 at r = 0 to ≈1.9 at r = 4. Figure 19(b) shows the
effect of spatial correlations of fluctuations of vortex density
on Rs(Hp) as the parameter s increases from 0 to 0.4.

VIII. DISCUSSION

The results of this work show that the hotspots in the Nb
plate observed in our temperature-map measurements are due
to trapped vortex bundles which can be moved and broken in
pieces by the scanning laser beam. The scanning laser can be
used both to reveal the 2D map of the vortex hotspots in the
LSM mode and as a “thermal broom” pushing trapped vortices
out of the sample to increase the quality factor. Moving vortices
out of resonator cavities would require displacing them over
long distances (∼1–10) cm, all the way to the cavity orifices,
or annihilating trapped vortex loops at the surface by strong
local overheating and temperature gradient produced by the
laser beam. The scanning laser may remove trapped vortices
more effectively in thin-film structures where it can push much
shorter ∼10−2–1 μm perpendicular vortices toward the film
edges.

Vortices can significantly contribute to the residual surface
resistance: As was shown above, even a very low density of
trapped vortices corresponding to ∼1% of the Earth magnetic
field can result in Ri ∼ 1 n� at 2 K and 2 GHz in magnetically
screened high-purity Nb. This conclusion is consistent with the
fact that some of the hotspots observed by thermal maps are
indeed due to trapped vortices. Our calculations of the power
dissipated by trapped vortex segments show that P (ω,li) is a
complicated function of the rf frequency ω and the mean-free
path li , suggesting that reducing vortex dissipation can require
making the either material cleaner or dirtier, depending on
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FIG. 19. (Color online) (a) Surface resistance calculated from
Eqs. (63) and (64) disregarding spatial variations of the vortex density
for Ri/R0 = 0.2, 1, 4. The endpoints of all Rs(H ) curves correspond
to the rf field amplitudes at which thermal instability occurs and
the slopes of ∂Rs/∂H diverge. (b) Effect of spatial variations of
the hotspot distribution on the field dependence of Rs described by
Eqs. (68) and (69) for Ri = 0.25R0 and two different parameters
s = 0 and 0.4. The field is normalized to H0 = (2αKkBT 2

0 /�R0)1/2.

the particular frequency range. At the same time, increasing
the density of pinning centers reduces Ri at low fields
Hp � Hc.

Trapped vortices, along with intrinsic mechanisms of the rf
pair-breaking and nonequilibrium kinetics of quasiparticles,85

can contribute to the nonlinearity of the electromagnetic
response. One of the mechanisms is due to local overheat-
ing in vortex hotspots, reducing the breakdown field of
low-dissipative Meissner state and igniting thermal quench
propagation along the sample surface. Vortex contribution can
become even more essential in the rf resonator structures using
superconductors with Tc and Hc higher than Nb, for example,
Nb3Sn, MgB2, or iron pnictides. Because such materials

have much lower thermal conductivities74,86 and smaller Hc1,
reducing local overheating of trapped vortex bundles may
require surface multilayer nanostructuring of Nb cavities to
increase Hc1 without impeding heat transfer.3,71

At higher fields Hp > Hpin, the Meissner currents can tear
vortex segments off defects at the surface so that the tips of the
vortices shown in Figs. 1 and 14 get depinned, while the rest
of the threading vortices remain pinned. For a nanoprecipitate
spaced by � < λ from the surface, the depinning field Hpin

estimated from Eq. (23) is much smaller than Hc. As a result,
trapped vortex bundles can cause microwave nonlinearities
at the fields Hp � Hc much smaller than the rf fields Hp �
Hc which have been reached in the Nb resonator cavities.1–3

The “unzipping” of the trapped vortex tips from the pins can
result in the generation of higher harmonics,91 and jumpwise
instabilities32 of rapidly moving vortex segments at the field
amplitudes of the order of the superheating field Hsh � Hc

(Ref. 92). Thus, even the most effective core pinning can hardly
reduce Ri at Hp � Hc: as follows from Eq. (23), reaching
Hpin � Hc would require such high density of the optimal
pinning defects of radius �ξ spaced by � � ξ that they would
block the Meissner screening currents and reduce � due to the
proximity effect.73 The microstructural surface analysis of the
high-performance Nb resonator cavities shows a much lower
density (� � ξ ) of pinning defects.2
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APPENDIX A: DISSIPATED POWER

The mean power P = 〈∫ �

0 u̇(z,t)F (z,t)dz〉ω dissipated
by a vortex segment can be written in the form P =
−(ω/2)Im

∫ �

0 u(z,ω)F (z, − ω)dz, where F (−ω,z) = Fe−z/λ

is the Lorentz force and F = Hpφ0/λ. Using here u(z,ω) from
Eq. (7), we obtain

P = −Fω

2
Im

∑
n

An

∫ �

0
cos(knz) exp(−x/λ)dz

= 1

4

∑
n

F 2ω2ηI 2
n �

ω2η2 + k4
nε

2(kn)
, (A1)

In = 2

�

∫ �

0
cos(knz)e−x/λdz = π (2n + 1)(−1)ne−a + 2a

a2 + π2(n + 1/2)2
,

(A2)

where a = �/λ. For a long segment � > λ, the main contri-
bution to the sum in Eq. (A1) comes from knλ < 1 for which
we can neglect the k dependence of ε(k) and set e−a → 0 in
Eq. (A2). Then,

P =
∞∑

n=0

P1

[ν2 + π4(n + 1/2)4][a2 + π2(n + 1/2)2]2
, (A3)
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where P1 = F 2�7ω2η/ε2λ2 and ν = ωη�2/ε. The sum in Eq. (A3) is then

S = Re

4a3ν3/2(a4 + ν2)2
[ν7/2 − 2a7

√
i tan

√
iν − 4a5ν

√−i tan
√

iν + 2a3ν2
√

i tan
√

iν + 5a4ν3/2]. (A4)

Using

Re
√±i tan

√
iν = sin

√
2ν ∓ sinh

√
2ν√

2(cosh
√

2ν + cos
√

2ν)
, (A5)

we obtain

S = 5a4 + ν2

4a3(a4 + ν2)2
+ (a4 − 2a2ν − ν2) sinh

√
2ν − (a4 + 2a2ν − ν2) sin

√
2ν

23/2ν3/2(a4 + ν2)2(cosh
√

2ν + cos
√

2ν)
. (A6)

As a result, P = F 2�7ω2ηS/ε2λ2 reduces to Eq. (16) in which
χ = ν/a2. Equation (16) can also be obtained using Eq. (10):

P = H 2
pφ2

0ω

2λε
Im

∫ �

0

[
e−z/λ + 1

qωλ
sinh(qωz)

− cosh(qωz)

cosh(qω�)

(
e−�/λ + 1

qωλ
sinh(qω�)

)]
e−z/λdz

1 − iχ
.

(A7)

Performing integration of Eq. (A7) and neglecting terms
∼e−�/λ � 1, we arrive at Eq. (14) from which Eq. (16) is
obtained using Eq. (A5).

For a film in a parallel field, P can be calculated in the same
way as above, but instead of J (z) = (Hp/λ)e−z/λ in a semi-
infinite sample, we use J (z) = (Hp/λ) sinh(z/λ)/ cosh(d/2λ)
where z = 0 is taken in the middle of the film. If � = d/2
(see Fig. 16), the solution for u(z,ω) which satisfies u(0) = 0
and u′(d/2) = 0 is then u(z,ω) = ∑

n An sin(knz) where kn =
π (2n + 1)/d, and An is given by Eq. (8). Here, the form factor
In which accounts for the spatial distribution of the rf driving
force is replaced with Ĩn, where

Ĩn = 4

d

∫ d/2

0

sinh(z/λ)

cosh(d/2λ)
sin(knz)dz

� 4(−1)nd

π2(2n + 1)2λ
, d � λ. (A8)

This expression was used to obtain Eq. (24).

APPENDIX B: SOLUTION OF THERMAL
DIFFUSION EQUATION

The partial Fourier transform tp(z) = ∫
[T (r,z) −

T0]eiprdx dy of Eqs. (32)–(34) yields

t ′′p − p2tp = 0, (B1)

κt ′p = −P̃p, z = 0 (B2)

κt ′p = −tpαK, z = d (B3)

where the prime denotes differentiation over z, and P̃p = Pp +
(H 2

p/2)(∂Rs/∂T )tp(z). Then, Eq. (B2) becomes

κt ′p + �tp = −Pp, z = 0 (B4)

where � = (H 2
p/2)∂Rs/∂T . The solution of Eq. (B1) is

tp = A cosh p(d − z) + B sinh p(d − z), (B5)

where p = |p|, and A and B are determined from the boundary
conditions (B3) and (B4):

Bpκ = AαK, (B6)

pκ(A sinh pd − B cosh pd)

− (A cosh pd + B sinh pd)� = Pp. (B7)

Hence,

A = Pppκ

pκ(αK − �) cosh pd + (p2κ2 − �αK ) sinh pd
, (B8)

B = PpαK

pκ(αK − �) cosh pd + (p2κ2 − �αK ) sinh pd
. (B9)

Substituting these formulas into Eq. (B5), making the inverse
Fourier transform and introducing the dimensionless parame-
ters k = pd, β and γ yields Eq. (36).

Now, we calculate δTs(ρ) at the outer surface z = d, for
r � d. In this case, the main contribution to the integral in
Eq. (36) comes from k � 1 for which the hyperbolic functions
can be expanded in small k:

δTs(ρ) = P0β

2παK

∫ ∞

0

J0(kρ)k dk

b + ck2
, ρ � 1 (B10)

where b = β − γ (1 + β) and c = β2 + β(1 − γ )/2 − γ /6.
The integral in Eq. (B10) equals K0[ρ

√
b/c]/c (Ref. 93),

which reduces Eq. (B10) to Eqs. (39)–(42). The value of δTs(0)
is obtained from Eq. (38) with ρ = 0:

δTs(0) = P0β

2παK

∫ ∞

0

k2dk

kβ(1 − γ ) cosh k + (k2β2 − γ ) sinh k
.

(B11)

For β � 1, this integral can be done analytically by introduc-
ing an auxiliary parameter k0 such that k0 � 1 but k2

0β � 1.
Then, Eq. (B11) splits into two parts:

δTs(0) ∼= P0

2παK

∫ k0

0

k dk

1 − γ + βk2
+ P0

2πκd

∫ ∞

k0

dk

sinh k

= q

4πκd
ln

[
k2

0β

1 − γ

]
− q

2πκd
ln

[
k0

2

]
. (B12)

Here, the parameter k0 cancels out, resulting in Eq. (43).
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Next, we calculate 〈δT 2〉 in Eq. (64):

〈δT 2〉
T 2

1

=
∫ ∞

0

(kβ + tanh k)2e−k2�2
0 k dk

[kβ(1 − γ ) + (k2β2 − γ ) tanh k]2
, (B13)

where T 2
1 = H 4r2

c 〈δR2〉/8d2α2
K , and �0 = rc/2d. We calcu-

late this integral in the limit of β � 1 for which

〈δT 2〉
T 2

1

=
∫ ∞

0

e−k2�2
0 k dk

[1 − γ + kβ tanh k]2
. (B14)

For the case of �0 � 1 discussed in the text, the main
contribution to the integral in Eq. (B14) comes from k � 1
and k � 1. Denoting the integral determined by the region of

k � 1 as I1, we have

I1 =
∫ ∞

0

k dk

[1 − γ + βk2]2
= 1

2β(1 − γ )
, (B15)

where the upper limit was extended to ∞ to the accuracy
of higher-order terms ∼β−2 � 1. The part of the integral in
Eq. (B14) determined by the region of k > k0 ∼ 1 is

I2 = 1

β2

∫ ∞

k0

dk

k
e−k2�2 ∼ 1

β2
ln

1

k0�0
. (B16)

For β � 1, the contribution of I1 dominates since I2/I1 ∼
(1 − γ ) ln(d/rc)/β � 1. Equations (B14) and (B15) yield
Eq. (65).
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