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Change of the optical conductivity spectra with orbital and spin ordering in spinel MnV2O4

T. Katsufuji,1,2,* T. Takubo,1,† and T. Suzuki1,‡
1Department of Physics, Waseda University, Tokyo 169-8555, Japan

2Kagami Memorial Laboratory for Material Science and Technology, Waseda University, Tokyo 169-0051, Japan
(Received 27 November 2012; published 19 February 2013)

Spinel MnV2O4 exhibits orbital ordering at Tc = 57 K accompanied by a structural phase transition from cubic
to tetragonal and ferrimagnetic ordering. We measured the temperature dependence of the optical reflectivity spec-
tra on the cleaved surface of a MnV2O4 single crystal with controlled twin structures below Tc. We found that there
are two peaks at 1.6 and 2.3 eV, corresponding to the Mott excitations, in the optical conductivity spectra obtained
by the Kramers-Kronig transformation of the reflectivity, and that the two peaks exhibit a similar anisotropic
change below Tc. Furthermore, we found that these two peaks exhibit a different temperature dependence above
Tc. We analyzed these results by a model in which the multiplet structures of the d state for the Mott excitation are
fully taken into account, and discussed the occupation of the triply degenerate t2g orbitals both below and above Tc.

DOI: 10.1103/PhysRevB.87.054424 PACS number(s): 75.25.Dk, 78.40.Ha, 71.70.Gm

I. INTRODUCTION

It is widely recognized that orbital ordering is a phe-
nomenon observed in various transition-metal oxides. A
typical example is seen in perovskite manganites,1,2 where
the degree of freedom arising from the twofold degeneracy
in the eg states of the Mn 3d orbitals orders in an antiferroic
manner, namely, an electron occupies one of the two eg states
alternately in the Mn lattice. Several compounds are known to
show the orbital ordering in the t2g states of the d orbital with
threefold degeneracy, for example, perovskite vanadates3,4 and
spinel vanadates.5–13

Various experimental techniques have been employed to
study the orbital ordering in transition-metal oxides. Since
orbital ordering is coupled with a lattice distortion, diffraction
measurements are useful to detect the orbital ordering. It is
known that resonant x-ray scattering can give more direct
evidence of orbital ordering.2 However, there have not been
many studies so far about the electronic structure of the
orbital ordered phase. One of the useful techniques to study
the electronic structure is optical reflectivity measurement.
In particular, the spectrum for the Mott excitation, i.e., the
transition of an electron from one transition-metal site to
another, can give the important information about the orbital
states in transition metals.14–25 For example, optical reflectivity
measurements have been performed for perovskite RVO3 (R
is a rare earth) that exhibits the orbital ordering of V3+ (3d2)
at low temperatures.15–18 Several peaks were observed in the
optical conductivity spectra obtained by the Kramers-Kronig
transformation of the reflectivity spectra, which arise from the
Mott excitations with the multiplet structure of the final states.
Drastic changes of these peaks are observed at the transition
temperature of the orbital ordering, and the way of the spectral
change depends on the types of orbital ordering, which are
dominated by the size of the R ion.

It should be noted that the transition of the V electrons in
the t2g states to a different V ion occurs via the oxygen 2p state
in perovskite RVO3, and, thus, not only the orbital ordering
but also the anisotropy of the transfer integrals arising from the
so-called GdFeO3-type distortion affects the Mott excitation
in the optical conductivity spectra. In this regard, the orbital
ordering in spinel vanadates AV2O4 (A is a divalent alkali
earth) with V3+ (3d2) is more suitable to the investigation of

the electronic structure by the optical measurement since in this
series of compounds, where VO6 octahedra are edge sharing
with each other, the transfer of the t2g electrons occurs through
the direct d-d transfer without the help of the O 2p state.

It is known that AV2O4 with various A2+ ions exhibits
a structural phase transition into a tetragonal phase at low
temperatures.5–13 As to this phase transition, several theoretical
models for the orbital ordering have been proposed: One is
an antiferro-orbital (AFO) model proposed by Tsunetsugu
and Motome,26 where the first electron of 3d2 occupies the
dxy orbital and the second electron occupies the dyz and dzx

orbital alternately along the c direction. Another model was
proposed by Tchernyshyov,27 which is a ferro-orbital (FO)
model, where the first electron occupies the dxy state and
the second electron occupies the dyz + idzx state at all the
V ions. Experimentally, it was found by the x-ray diffraction
measurement of a MnV2O4 single crystal, which exhibits a
simultaneous ordering of spin and orbital (crystal structure) at
57 K, that the space group of the low-T phase is consistent with
the Tsunetsugu-Motome–type orbital ordering.8 It should be
noted, however, that such an experimental result gives only the
information of the symmetry in the orbital ordered state, but
the number of electrons occupying each orbital is not known
for the low-T phase of MnV2O4. Theoretically, the important
role of the trigonal distortion in VO6 octahedra was pointed
out,28,29 and it leads to the partial occupation of all the three
t2g states in the orbital ordered phase.

In this paper, we performed optical reflectivity measure-
ments of MnV2O4. We found two peaks at 1.6 and 2.3 eV
in the optical conductivity spectra, corresponding to the
multiplet structures for the Mott excitation. We also found that
these peaks exhibit anisotropic changes below the structural
transition temperature (Tc = 57 K). The result was analyzed
by the model that fully takes account of the multiplet structures
in the final state of the Mott excitation.

II. EXPERIMENT

A single crystal of MnV2O4 was grown by the floating-zone
method. We measured the reflectivity spectra both for the
cleaved and the polished surfaces, and found that the results
are discernibly different between the two. It is known that
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the remnant stress in the polished surface affects the optical
spectra, and often suppresses the spectral change associated
with a phase transition that is strongly coupled with lattice
distortion.30 Therefore, we show the optical reflectivity spectra
for the cleaved surface along the (001) plane, which was
confirmed by the Laue method, in the following. The size
of the sample was ∼5 × 5 mm along the surface and ∼1 mm
in thickness.

One of the problems when measuring the polarization
dependence of the optical spectra for the sample that exhibits
a structural phase transition with symmetry lowering is the
formation of twin structures. This is the case for the present
MnV2O4, which exhibits a structural phase transition from
cubic to tetragonal. We found that, because of the difference in
the thermal contraction, the ab plane of the crystal is preferably
oriented when it was attached to the glass plate, whereas the ac

plane is when attached to the copper plate. Thus, by measuring
the spectra for the sample on both plates, we can obtain both
the spectra with the polarization along the a and c axes in the
tetragonal phase.

Optical reflectivity measurements were performed with a
grating spectrometer (Bunkoukeiki M25) between 0.7 and 5 eV
for the temperature range between 300 and 5 K using a He-
gas-flow cryostat. For the Kramers-Kronig transformation, we
assume a constant reflectivity above 5 eV up to 8 eV, and the
ω−4 extrapolation was used above 8 eV. The reflectivity below
0.7 eV was extrapolated by a constant reflectivity.

III. EXPERIMENTAL RESULTS

Figures 1(a) and 1(b) show the reflectivity spectra at various
temperatures (T ) for (a) T > Tc and (b) T < Tc. As can be
seen, a large peak at ∼1.5 eV and a smaller peak at 2.2 eV
are observed in the reflectivity spectra between 1 and 3 eV.
The peak at 1.5 eV grows with decreasing T above Tc = 57 K,
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FIG. 1. (Color online) Optical reflectivity spectra for MnV2O4

(a) above Tc = 57 K and (b) at 60 K (>Tc) and 5 K (<Tc) on a glass
plate (Rglass = Ra) and copper plate [Rcopper = (Ra + Rc)/2]. Rc at
5 K obtained as 2Rcopper − Rglass is also plotted by a dashed line in
(b).

whereas the peak at 2.2 eV is suppressed with decreasing
T [Fig. 1(a)]. Below Tc in the tetragonal phase, both peaks
further grow for the sample attached to a copper plate, whereas
both are suppressed for the sample attached to a glass plate
[Fig. 1(b)]. As discussed above, the spectrum for the sample on
the glass plate (Rglass) corresponds to the reflectivity with the
polarization along the a axis of the tetragonal phase (Ra),
whereas the spectrum for the sample on the copper plate
(Rcopper) is the sum of that with the polarization along the
a axis (Ra) and c axis (Rc).

We measured the polarization dependence of the reflectivity
spectra for the sample on the copper plate, but barely found
the difference for the different directions of the polarization.
This means that the domain size of the tetragonal phase is
smaller than the spot size of the incident light (φ ∼ 1 mm),
and the c and a axes are randomly oriented along the surface
of the sample attached to a copper plate. Thus, by measuring
the reflectivity spectra without a polarizer, and assuming that
the domain size of the tetragonal phase is much larger than the
wavelength of the light (∼1 μm), Rcopper is given by (Ra +
Rc)/2. Accordingly, Rc is given by 2Rcopper − Rglass, which is
plotted by a dashed line in Fig. 1(b).

Figures 2(a) and 2(b) show the optical conductivity spectra
[σ (ω)] obtained from the Kramers-Kronig transformation
of the reflectivity spectra Ra(ω) and Rc(ω). There are two
structures at 1.6 and 2.3 eV. The 1.6-eV peak grows with
decreasing T above Tc, and below Tc, both the 1.6 and 2.3 eV
peaks grow in the optical conductivity along the c axis [σc(ω)],
whereas they are suppressed in that along the a axis [σa(ω)].
To see the T dependence more clearly, we take the difference
of the σ (ω) spectra at two different temperatures, as shown
in Fig. 3. The 2.3-eV peak seems to be suppressed with
decreasing T above Tc.

To obtain the spectral weight for the two peaks in the σ (ω)
spectra, we fit the σ (ω) spectra with five Lorentzians, as shown
in Fig. 4(a). The sum of the two Lorentzians with the lowest
frequencies I0 + I1 corresponds to the 1.6-eV peak31 and the
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FIG. 2. (Color online) Optical conductivity spectra for MnV2O4

(a) above Tc = 57 K and (b) at 60 K (>Tc) and 5 K (<Tc) along the
a and c axis [σa(ω) and σc(ω)].
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FIG. 3. (Color online) The difference of the optical conductivity
spectra for MnV2O4 (a) between two temperatures above Tc = 57 K
and (b) between 5 K [<Tc, σa(ω) and σc(ω)] and 60 K (>Tc).

third one I2 to the 2.3-eV peak. The remaining two correspond
to the structures at higher frequencies. Figure 4(b) shows the
T dependence of the spectral weight for I0 + I1 and I2. As
can be seen, the spectral weight for the 1.6-eV peak (I0 + I1)
gradually increases with decreasing T above Tc, and below
Tc, the spectral weight for σc sharply increases whereas that
for σa decreases. The spectral weight for the 2.3-eV peak
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FIG. 4. (Color online) (a) An example of the fitting for the σc(ω)
spectrum at 5 K. The dotted line is the experimentally obtained σc(ω)
and the solid line is the fitting curve. Dashed lines correspond to each
Lorentzian. (b) Temperature dependence of the spectral weight for
I0 + I1 (1.6-eV peak) and that for I2 (2.3-eV peak). Closed symbols
correspond to that for σc(ω) and open symbols to that for σa(ω) below
Tc = 57 K.

(I2) gradually decreases with decreasing T above Tc, and the
behavior below Tc is similar to that for the 1.6-eV peak.

Similar structures were observed in the σ (ω) spectra for
perovskite RVO3 with V3+ (3d2) around 2 eV.15–18 For
example, three peaks at 1.8, 2.4, and 3.3 eV were observed
in YVO3, which exhibits a peculiar dependence on the orbital
and spin ordering, and those peaks were assigned to Mott
excitations with multiplet structures.16 Thus, it is reasonable to
assign the two peaks at 1.6 and 2.3 eV in the present compound
to the same origin. To understand the T dependence of them
both below and above Tc, we need to consider how the spectral
weight of each multiplet structure for the Mott excitation is
dominated by the orbital and spin ordering. We discuss this
issue in the following section.

IV. ANALYSIS OF THE OPTICAL SPECTRA

There are several papers so far published that discuss the
Mott excitation in the optical spectra based on the electronic
structure of the dn state for the transition-metal oxides.14–18,20

However, the multiplet structure of the dn+1 state is not fully
taken into account there. Namely, if one electron moves from
one site to another site and it becomes a dn+1 state, the state
is usually not an eigenstate (multiplet) of the dn+1 state but a
superposition of them. Furthermore, the present compound
exhibits a noncollinear spin structure below Tc,9 and that
needs to be considered in the analysis of the optical spectra.
In the following and Appendixes, the correct treatment of
the multiplets and spin structures for the Mott excitation in
the optical spectra is discussed based on the theory of the
multiplets in transition-metal ions.32

Here, we take account of the t2g states and the Coulomb
interaction between the two electrons in the t2g states on the
same site. The transfer of the electrons to a different site is
ignored except for (1) as a second-order perturbation when
considering the orbital-orbital interaction, and (2) as a current
operator when considering the optical excitation process (see
Appendix A). The ground state is thus given by the multiplet
of the d2 configuration in the t2g state with the lowest energy
3T1 with the ninefold degeneracy (3 by the orbital and 3 by
the spin).32 For example, the 3 states with Sz = 1 of 3T1 are
|dxydyz|, |dyzdzx |, and |dzxdxy |, where dxy means that the dxy

state is occupied by an up-spin electron, and | . . . | indicates
the Slater determinant.

Associated with the Mott excitation, one site (the A site)
becomes the d1 configuration, whereas another site (the B site)
becomes the d3 configuration. The eigenstates of the d3 config-
uration in the t2g states are classified into four multiplets with
the following irreducible representation 4A2 (fourfold degener-
acy, the energy is 3U ′ − 3J ), 2E (fourfold, 3U ′), 2T1 (sixfold,
U + 2U ′ − 2J ), and 2T2 (sixfold, U + 2U ′). U and U ′ are the
Coulomb integral between the same and different orbitals in
the t2g states, respectively, and J is the exchange integral for
the t2g states. It should be noted that the energy of the 3T1 state
for the d2 configuration is given by U ′ − J in this notation.

The frequency of the peak in the optical spectrum is given by
the difference in the energy of the final and initial states εf −
ε0. ε0 is twice the energy of the 3T1 state in the d2 configuration,
whereas εf is the energy of the d3 state (since the interaction
of the d1 state is zero). Thus, h̄ω = εf − ε0 for 4A2, 2E, 2T1,
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FIG. 5. (Color online) (a) Arrangement of the V ions in MnV2O4.
(b) Three t2g orbitals, each of which is represented by a square parallel
to the orbital plane. The arrow represents an xy bond. (c) Example of
the P-type orbital relation. (d) Example of the Q-type orbital relation.

and 2T2 is U ′ − J , U ′ + 2J , U , and U + 2J , respectively. In
the atomic d orbitals, there is a relation U ′ = U − 2J , and h̄ω

becomes U − 3J , U , U , U + 2J .
In MnV2O4 with a spinel structure, V ions are located on

the corner of a tetrahedron, as shown in Fig. 5(a). We take
account of only a direct d-d transfer between the neighboring
V sites for the optical excitation. In this case, any bond AB is
on the edge of the tetrahedron, and if a bond AB is specified,
only the electrons in one specific orbital at the A site can move
to the B site. For example, if a bond AB is on the xy plane, 45◦
away from the x axis (“xy bond”), as illustrated in Fig. 5(b),
only the dxy electron at the A site can move to the B site, but
the dyz and dzx electrons can not.

In such a case, the orbital relations for all the bonds can be
classified into three types: One is the case where an electron
at the A site can move to the unoccupied state at the B site; for
example, the orbital state at the A site is dxydyz, that at the B
site is dzxdxy , and AB is connected by the yz bond, as shown
in Fig. 5(c). We call this type as a “P-type” orbital relation.
Second is the case where an electron at the A site can move to
an occupied state at the B site; for example, the orbital state
at the A site is dxydyz, that at the B site is dxydyz, and AB is
connected by the xy bond, as shown in Fig. 5(d), which we call
a “Q-type” relation. The third is the case where no electron at
the A site can move to the B site, which can be ignored in the
calculation of the Mott excitation spectrum.

We define I�e(�) as the intensity of the optical spectrum
corresponding to the excitation to the d3 state given by
the irreducible representation � = 4A2, 2E, 2T1, and 2T2 when
the polarization of the light is �e. With a simple calculation (see
Appendix A), it can be shown that this I�e(�) is given by the
following formula:

I�e(�) =
∑

μ

∑
λ

(�e · �rμ)2p(μ,λ)I λ
θμ

(�), (1)

where μ specifies which V-V bond is, λ specifies the type of
orbital relation (P or Q), and �rμ is the unit vector along the
μ bond. p(μ,λ) corresponds to the probability that the orbital
relation for the bond μ is λ (= P or Q) type. I λ

θμ
(�) is the

transition probability to the � state when the orbital relation
is λ (= P or Q) type, and the relative angles between the spins
on the ends of the bonds (at the A and B sites) is θμ. It should
be noted that we have to count both the A→B transition and
B→A transition in the μ (bond) summation.

Specific formulas of I λ
θμ

(�) do not depend on the orbital-
ordering pattern, and can be calculated based on the electronic
state of each irreducible representation, as discussed in the
Appendix B. The results are as follows:

I P
θ (4A2) = |α(θ )|2 + 2

3 |β(θ )|2 + 1
3 |γ (θ )|2,

I P
θ (2E) = 1

3 |β(θ )|2 + 2
3 |γ (θ )|2,

(2)
I

Q
θ (2T1) = 1

4 |β(θ )|2 + 1
2 |γ (θ )|2,

I
Q
θ (2T2) = 1

4 |β(θ )|2 + 1
2 |γ (θ )|2,

and I P
θ (2T1) = I P

θ (2T2) = I
Q
θ (4A2) = I

Q
θ (2E) = 0. α(θ ), β(θ ),

and γ (θ ) are determined by the following relations:

α(θ ) : β(θ ) : γ (θ ) = 1

1 − cos θ
:

√
2

sin θ
:

1

1 + cos θ
,

(3)
|α(θ )|2 + |β(θ )|2 + |γ (θ )|2 = 1.

In order to obtain p(μ,λ) and discuss the spectral weight
I�e(�) in Eq. (1), we need to assume some orbital-ordering
pattern. Here, we consider the orbital ordering where the
probability of the orbital occupancy at each site is given as
shown in Fig. 6, which is consistent with the space group
I41/a experimentally obtained.8 When a = b = 0, this orbital
state becomes the Tsunetsugu-Motome phase (AFO phase).
The orbital state proposed by Tchernyshyov (FO phase)
corresponds to a = 0 and b = 1

2 . When a = b = 1
3 and |α(θ )|2,

|β(θ )|2, and |γ (θ )|2 in Eq. (2) are all set as 1
3 , it becomes a

paramagnetic phase with no orbital ordering.

ba−−1 a b

ba−−1ab

dxydyz dzxdyzdzx dxy

dxydyz dzxdyzdzx dxy

FIG. 6. (Color online) Probability of the orbital occupancy for
the orbital ordering assumed in this study.
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FIG. 7. (Color online) (a) Out-of-plane and (b) in-plane bonds
shown by arrows, which are defined based on the orbital ordering in
Fig. 6.

When we take the μ (bond) summation in this orbital state,
it is enough to consider the bonds shown in Fig. 7; there are 12
bonds in total (counting both back and forth directions), and
those are classified into 8 out-of-plane bonds and 4 in-plane
bonds. It is easy to calculate the probability p(μ,λ) for each
bond. (The details and results are described in the Appendix C.)

According to the neutron scattering measurement below
Tc,9 the relative angle of the V spins on the ends of the out-of-
plane bond is θ = 80◦, and that of the in-plane bond is θ ′ =
130◦. With these discussions, we can calculate the specific
values of Ix(�) and Iz(�), where �e ‖ x and �e ‖ z, respectively.

For the Tsunetsugu-Motome phase (AFO phase, a = b =
0) with the spin structure experimentally obtained (θ = 80◦
and θ ′ = 130◦), the result is as follows: Ix(4A2) ∼ 0.72,
Ix(2E) ∼ 0.28, Ix(2T1) ∼ 0.82, Ix(2T2) ∼ 0.82, and Iz(4A2) ∼
1.45, Iz(2E) ∼ 0.55, Iz(2T1) = Iz(2T2) = 0 (Table I). By
comparing this with the spectral weight of each peak and its
anisotropy in the experimentally obtained optical conductivity
spectra, as illustrated in Fig. 8, it is reasonable to assign that the
peak at 1.6 eV in the experiment corresponds to the excitation
to the 4A2 state (Iz = 1.45 and Ix = 0.72 in the calculation),
2.3 eV to the 2E state (Iz = 0.55 and Ix = 0.28), and the
structures at higher energies to the 2T1 and 2T2 states. Two
issues should be noted in this regard: (1) The charge-transfer
excitation from the oxygen 2p to V 3d state is likely to be
superposed to the higher-energy structures above 3 eV. (2) The
2E and 2T1 states are energetically degenerate with the relation
U ′ = U − 2J , but it is likely that this degeneracy is lifted in
the present compound, probably due to the hybridization of the
t2g states with the 2p states of the neighboring oxygen ions.

For the paramagnetic phase with no orbital ordering [a =
b = 1

3 and |α(θ )|2 = |β(θ )|2 = |γ (θ )|2 = 1
3 ], I (4A2) = 16

27 ∼
0.59, I (2E) = 8

27 ∼ 0.30, and I (2T1) = I (2T2) = 4
9 ∼ 0.44

TABLE I. Calculated spectral intensity I�e(�) for the AFO, FO,
and paramagnetic phases with no orbital ordering.

4A2
2E 2T1

2T2

AFO Ix 0.72 0.28 0.82 0.82
Iz 1.45 0.55 0 0

FO Ix 0.36 0.14 0.92 0.92
Iz 0.72 0.28 0.21 0.21

Para I 0.59 0.30 0.44 0.44
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(Table I). Thus, if the system exhibits a phase transition
from the paramagnetic phase with no orbital ordering to the
Tsunetsugu-Motome phase, the spectral weight of the 1.6-eV
peak (4A2) should increase both in the σa(ω) and σc(ω)
spectra below Tc. Experimentally, however, the spectral weight
increases only in σc(ω), but it decreases in σa(ω).

We also consider the FO phase proposed by Tchernyshyov
(a = 0 and b = 1

2 ) with the spin structure experimentally
obtained (θ = 80◦ and θ ′ = 130◦) and the result is as
follows: Ix(4A2) ∼ 0.36, Ix(2E) ∼ 0.14, Ix(2T1) = Ix(2T2) ∼
0.92, and Iz(4A2) ∼ 0.72, Iz(2E) ∼ 0.28, Iz(2T1) = Iz(2T2) =
0.21 (Table I). Thus, if the system exhibits a phase transition
from the paramagnetic phase with no orbital ordering to
the Tchernyshyov phase, the 2.3-eV peak (2E) should be
suppressed both in the σa(ω) and σc(ω) spectra below Tc. This
is not consistent with the experimental result.

To reconcile the experimental result and calculation, we
take account of the orbital state in-between the Tsunetsugu-
Motome and Tchernyshyov phases; namely, the first electron
occupies the dxy state and the second electron occupies the
dyz + iζdzx or dzx + iζdyz (0 � ζ � 1) state alternately along
the c axis. In this case, a = 0 and 0 � b � 1

2 , where b is

0 0.1 0.2 0.3 0.4 0.5
0

1

b

Ie
 (Γ

)

AFO FO

Iz (
4A2)

Ix (
4A2)

Iz (
2E)

Ix (
2E)

I ( 4A2)
in PM

I ( 2E)
in PM→

FIG. 9. (Color online) The value of I�e(�) below Tc (shown by
solid curves) as a function of b. a is fixed to 0. The left end corresponds
to the Tsunetsugu-Motome AFO phase, whereas the right end to the
Tchernyshyov FO phase. The dashed lines indicate the value of I�e(�)
above Tc. The shaded area (0.12 < b < 0.36) corresponds to the one
that is qualitatively consistent with the experimental result.
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FIG. 10. (Color online) Contour map of
I�e(�) in the cubic phase as a function of a and b

for � = (a) 4A2 with θ = 80◦ and θ ′ = 130◦,
(b) 2E with θ = 80◦ and θ ′ = 130◦, (c) 4A2

with θ = θ ′ = 90◦, and (d) 2E with θ = θ ′ =
90◦. For the shaded area in (a) and (b), see text.

given by b = ζ 2/(1 + ζ 2). As seen in Fig. 9, to reproduce
the experimental results, in which both the 1.6- and 2.3-eV
peaks grow in σc(ω) but are suppressed in σa(ω), b needs to
be between 0.12 and 0.36 (the shaded area in Fig. 9).

We also discuss the T dependence of the spectral weight for
each peak above Tc; i.e., experimentally, the spectral weight
of the 1.6-eV peak increases, whereas that of the 2.3-eV peak
decreases with decreasing T . Since the spectral weight in the
present model depends only on the orbital relation and relative
angle of the spins at the ends of the V-V bonds, we can calculate
the peak intensity of the state without long-range ordering
by considering the correlation of the orbitals and spins as
the deviation of a and b from 1

3 , and |α(θ )|2, |β(θ )|2, and
|γ (θ )|2 from 1

3 . Here, we assume the anisotropic correlation
of the orbitals and spins as shown in Fig. 6, and calculate the
intensity in the cubic phase by taking the average of Ix and Iz

as

I (�) = 2
3Ix(�) + 1

3Iz(�). (4)

First, if we keep the spins uncorrelated, i.e., |α(θ )|2 =
|β(θ )|2 = |γ (θ )|2 = 1

3 and only change the orbital correlations
a and b, I (4A2)/I (2E) is always 2, and thus, the different T

dependence of the 1.6- and 2.3-eV peaks can not be explained.
On the contrary, if we keep the orbitals uncorrelated, i.e.,
a = b = 1

3 , and only change the spin correlation θ (the angle
between the spins on the out-of-plane bond) and θ ′ (that on
the in-plane bond), the increase of the 1.6-eV peak and the
decrease of the 2.3-eV peak can be reproduced if both θ

and θ ′ decrease from 90◦, namely, the enhancement of the
ferromagnetic correlation. However, it is unlikely that such an

isotropic ferromagnetic spin correlation is enhanced above Tc

without orbital ordering or correlation.
Therefore, the most likely interpretation for the T depen-

dence of the 1.6- and 2.3-eV peaks above Tc is that both the
spin and orbital correlations are enhanced with decreasing T .
Figure 10 shows the contour map of the spectral intensity for
the 4A2 and 2E peak as a function of a and b when θ = 80◦
and θ ′ = 130◦ [Figs. 10(a) and 10(b)] and θ = θ ′ = 90◦
[Figs. 10(c) and 10(d)]. As can be seen in Figs. 10(a) and 10(b),
where θ = 80◦ and θ ′ = 130◦ are fixed, if we start from the
position a = b = 1

3 (without orbital correlation), the shaded
area corresponds to the direction along which the intensity of
the 4A2 peak increases and that of the 2E peak decreases. When
θ = θ ′ is fixed as 90◦ [Figs. 10(c) and 10(d)], this direction
approximately corresponds to that along which the intensity
of both the 4A2 and 2E peaks remain unchanged.

Thus, let us assume that the orbital occupancy parameters (a
and b) and spin angles (θ and θ ′) are simultaneously changed
as follows:

θ = 90 − 10τ, θ ′ = 90 + 40τ, a = 1

3
(1 − τ ),

(5)

b = 1

3
−

(
1

3
− 0.2

)
τ,

where τ (0 � τ � 1) is a parameter that is supposed to vary
with T . τ = 0 corresponds to the state with no spin and
no orbital correlation, and τ = 1 to the fully correlated spin
(θ = 80◦ and θ ′ = 130◦) and orbital (a = 0 and b = 0.2). The
change of I (4A2) and I (2E) with τ is plotted in Fig. 11. In the
same figure, the value of Ix(4A2), Iz(4A2), Ix(2E), Iz(2E) with
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FIG. 11. (Color online) I�e(�) in the cubic phase for � = I (4A2)
and I (2E) by Eq. (5) as a function of τ . τ increases toward left
in the figure to easily see the correspondence with the experiment
[Fig. 4(b)]. In the left, I�e(�) in the tetragonal phase is plotted.

θ = 80◦, θ ′ = 130◦, a = 0, and b = 0.2 is also plotted in the
left.

On the basis of this result, the T and polarization de-
pendencies of the σ (ω) spectra can be possibly explained
as follows: Above Tc, both the orbital occupancy parameters
(a and b) and spin angles (θ and θ ′) gradually deviate from
the values for no correlation (a = b = 1

3 and θ = θ ′ = 90◦)
and approach the values of the ground state (a = 0, b = 0.2,
θ = 80◦, and θ ′ = 130◦) with decreasing T in the cubic phase
[corresponding to the increase of τ from 0 to 1 in Eq. (5)].
Below Tc, the anisotropy of the crystal appears and the σ (ω)
along the a and c become different. It should be emphasized
that the value b = 0.2 in the ground state, which reproduces
the increase of I (4A2) and decrease of I (2E) with increasing
τ (decreasing T above Tc) best, is within the range of
0.12 < b < 0.36, which was determined independently from
how the anisotropy appears below Tc, as shown in Fig. 9. This
consistency supports the applicability of the present model to
the optical conductivity spectra for MnV2O4.

V. SUMMARY

We measured the optical reflectivity spectra on the cleaved
surface of spinel MnV2O4, which exhibits orbital ordering at
Tc = 57 K. We found that two peaks at 1.6 and 2.3 eV exist
in the optical conductivity spectra obtained by the Kramers-
Kronig transformation of the reflectivity spectra. These can be
assigned to the Mott excitations, where one electron moves
from one V site (3d2 → 3d1) to the next V site (3d2 → 3d3).
We found that the 1.6-eV peak grows, whereas the 2.3-eV
peak is suppressed with decreasing T above Tc. We also found
that both peaks grow in the optical conductivity spectra along
the c axis in the tetragonal phase below Tc, whereas they are
suppressed in those along the a axis. We analyzed the data
by a model in which the multiplet structures of the final state
are fully taken into account, and found that the change of
the two peaks below Tc can be reproduced by assuming that
the ground state below Tc is that between the antiferro-orbital
phase proposed by Tsunetsugu and Motome and the ferro-
orbital phase proposed by Tchernyshyov. We also found that
the change of the two peaks with decreasing T above Tc can be
reproduced by assuming that the orbital and spin correlation
is enhanced as if the system approaches the ground state with
decreasing T even above Tc.
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APPENDIX A: OPTICAL CONDUCTIVITY SPECTRA FOR
MOTT EXCITATIONS

In this Appendix, we discuss the details in the treatment
of the Mott excitation with multiplet structures in the optical
conductivity spectrum. This is a straightforward but a little te-
dious discussion. Still, it can be applied to the Mott excitations
in the optical conductivity spectra for other compounds.

In general, the optical conductivity spectrum is given by the
following formula33:

S�e(ω) =
∑
f

|〈f |�e · �J |0〉|2δ[h̄ω − (εf − ε0)], (A1)

where �e is the polarization of the light. In the case of the Mott
excitations between the t2g states, the current operator �J is
given by

�J =
∑

m,n,φ,ψ

itmφnψ �rmn(c†mφcnψ − c
†
nψcmφ), (A2)

where tmφnψ is the transfer integral between the φ orbital of
the t2g states on the mth site and the ψ orbital on the nth site,
and �rmn is the unit vector along the mth and nth sites. φ and ψ

are dxy , dyz, or dzx .
In the present model, we only consider the V t2g states

and the Coulomb interaction between the two electrons on the
same V site but ignore the transfer of the electrons between
the different V sites for considering the eigenstate of the d

state. [We take account of the transfer in the current operator
in Eq. (A2), though.] The final state 〈f | is the one where an
electron moves from one site (the A site) to another site (the B
site) Accordingly, it is enough to take account of the “bond”
composed of the A and B sites as 〈f | and |0〉 in Eq. (A1), and
to sum up the contribution of all the bonds to obtain the spectra
for the whole crystal.

The eigenstates at each site are given by the multiplets
of the dn (t n

2g) configuration, and can be represented by
|(dn)2S+1�(Sz)(γ )〉, where S is the total spin, � (an irreducible
representation of the symmetry) gives a set of the degenerate
orbital states, Sz is the z component of the total spin, and γ

specifies one orbital state, which is a basis of the irreducible
presentation �.

Initially, there are two d electrons both at the A and B
sites, and it is enough to consider the multiplets with the
lowest energy for the d2 configuration 3T1 with the ninefold
degeneracy (3 by the orbital and 3 by the spin; see also
Appendix D). The energy of this 3T1 state is U ′ − J , where U ′
is the Coulomb integral between different orbitals of the t2g

states, and J is the exchange integral for the t2g states.
Thus, for the bond μ composed of the A and B sites, the

initial state is given by

|0〉 =
∑
s,k,l

ξ (μ,k,l)αs(θμ)

× |(d2)3T1(Sz = s)(k) : A
⊗

(d2)3T1(Sz = 1)(l) : B〉,
(A3)
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where k and l are the orbital states of the A and B sites,
respectively, and are the basis of the irreducible representation
of T1 (dxydyz, dzydzs , or dzxdxy). Here, we take the principal
axis of the spins along the spin direction on the B site. Thus,
Sz at the B site is fixed as 1. If the spin direction at the A site
is θμ away from that at the B site, the electronic state at the A
site is the superposition of the Sz = 1, 0, and −1 states, and
αs(θμ) (s = 1,0, − 1) gives its coefficient. This αs(θμ) can be
determined by the generalized Pauli matrices for S = 1 spins.

On the other hand, the final states at the A and B sites are in
the d1 and d3 configurations, respectively. The eigenstates of
the d1 configuration are 2T2 with sixfold degeneracy (dxy ,
dyz, dzx , dxy , dyz, and dzx , where dxy means that the dxy

state is occupied by a down-spin electron). The eigenstates
of the d3 configuration are classified into four irreducible
representations 4A2 (fourfold degeneracy, energy 3U ′ − 3J ),
2E (fourfold, 3U ′), 2T1 (sixfold, energy U + 2U ′ − 2J ), 2T2

(sixfold, energy U + 2U ′). Here, U is the Coulomb integral
between the same orbitals of the t2g states. For more details,
see Appendix D.

Thus, the final state is given as follows:

〈f | = 〈(d1)2T2(Sz = s ′)(i) : A⊗
(d3)�(Sz = s + 1 − s ′)(j ) : B|, (A4)

where � is an irreducible representation of the multiplets for
the d3 configuration, and j is the orbital state of d3, i.e.,
the basis for �. i is the orbital state of d1. The sum

∑
f in

Eq. (A1) becomes
∑

�

∑
s ′,i,j for one bond, and the summation

of μ should be taken for the conductivity of the whole
crystal.

The εf and ε0 in Eq. (A1) is

εf = ε((d3)�), (A5)

ε0 = 2ε((d2)3T1). (A6)

Note that the energy of the state for the d1 configuration is
zero.

In the present compound, we take account of only a direct
d-d transfer between the neighboring V sites, as shown in
Fig. 5(b), and the magnitude of the transfer integral is assumed
to be the same for all the possible transfers. Thus, as to the
current operator �J in Eq. (A2), φ should be the same as ψ , and
if the bond μ is specified, only one φ has a nonzero transfer
integral. For example, if the bond is on the xy plane, 45◦
away from the x axis (“xy bond”), only φ = dxy has a nonzero
transfer integral. Thus, �J in Eq. (A1) can be replaced by

�rμc
†
Bφ(μ)cAφ(μ). (A7)

Therefore, the optical conductivity spectrum in the present
compound is given as follows:

S�e(ω) =
∑

�

I�e(�)δ{h̄ω − [ε((d3)�) − 2ε((d2)3T1)]},

(A8)

where I�e(�) is the spectral weight for the transition to the �

state, and is given by

I�e(�) =
∑

μ

∑
s ′,i,j

∑
s,k,l

|ξ (μ,k,l)|2|αs(θμ)|2(�e · �rμ)2

× |M[�,s ′,i,j,s,k,l,φ(μ)]|2. (A9)

Here, M[�,s ′,i,j,s,k,l,φ(μ)] is the matrix element of 〈. . . | in
Eq. (A4) and | . . .〉 in Eq. (A3) and the operator c

†
Bφ(μ)cAφ(μ)

in-between.
The matrix element M[�,s ′,i,j,s,k,l,φ(μ)] becomes the

same for certain combinations of k, l (the orbital states at
the A and B sites, respectively), and φ (the orbital state for the
electronic transition). One is the case when an electron at the A
site can move to the unoccupied state at the B site, for example,
k = dxydyz and l = dzxdxy and φ = dyz. We call this type of
the orbital relation as a “P-type” orbital relation. Second is the
case when an electron at the A site can move to an occupied
state at the B site, for example, k = dxydyz and l = dxydyz and
φ = dxy , which we call a “Q-type” orbital relation. The third
is the case where no electron at the A site can move to the B
site, for example, k = dxydyz and l = dxydyz and φ = dzx . In
this case, the matrix element M is always zero.

Since any of the orbital relations for the nearest-neighbor
V-V bonds in MnV2O4 that give a finite matrix element are
either the P or Q type, we can replace the combination (k,l,φ)
in the parentheses of M in Eq. (A9) by λ = P or Q. We also
sum up ξ (μ,k,l) in Eq. (A9) as follows:

p(μ,λ) =
∑

[k,l,φ(μ)]∈λ

|ξ (μ,k,l)|2. (A10)

With these, we can rewrite the expression of I�e(�) in Eq. (A9)
as

I�e(�) =
∑

μ

∑
λ

(�e · �rμ)2p(μ,λ)I λ
θμ

(�), (A11)

where

Iλ
θμ

(�) =
∑

s

∑
s ′,i,j

|αs(θμ)|2|M(�,s ′,i,j,s,λ)|2. (A12)

Here, I λ
θμ

(�) gives the transition probability to the � state when
the orbital relation is λ (= P or Q) type and the relative angles
between the spins on the ends of the bonds (at the A and B
sites) is θμ. p(μ,λ) gives the probability that the bond μ has a
λ (= P or Q) type orbital relation.

APPENDIX B: CALCULATION OF THE TRANSITION
PROBABILITY Iλ

θμ
(�)

First, let us calculate I λ
θμ

(�) in Eq. (A12), which is
independent of the orbital ordering pattern. As described
above, αs(θ ) (s = 1,0, − 1) corresponds to the coefficient of
the Sz = s state when the direction of the S = 1 spin is θ

away from the z axis, and is given by the generalized Pauli
matrices for S = 1 spins. Here, by rewriting αs=1(θ ), αs=0(θ ),
and αs=−1(θ ) as α(θ ), β(θ ), and γ (θ ), respectively, the specific
formulas of them are given as shown in Eq. (3).
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TABLE II. The value of M(�,s ′,i,j,s,λ) for λ = P and � = 4A2.

A 1
2 ↑ A 1

2 ↓ A 2
2 ↑ A 2

2 ↓
s = 1 1 0 0 0
s = 0 0 1/

√
2 1/

√
6 0

s = −1 0 0 0 1/
√

3

Next, |M(�,s ′,i,j,s,λ)|2 in Eq. (A12) can be calculated as
follows: As an example of λ = P, let us consider the case where
the dxy and dyz states are occupied at the A site, the dzx and
dxy states are occupied at the B site, and φ = dyz [Fig. 5(c)].
The electron in the dyz state at the A site can move to the B
site, and as a result, the electronic state at the B site becomes
|dxydyzdzx | or |dxydyzdzx | (or the superposition of the two).
This is not an eigenstate of the d3 state but the superposition
of them. The matrix element M(�,s ′,i,j,s,λ) can be obtained
by referencing Eqs. (D1), (D2), (D3), (D4), and (D5) below.

Here, we rewrite the final state, for example, 〈(d1)dxy :
A

⊗
(d3)A 1

2 : B|, as �τσ = A 1
2 ↑, where σ =↑ means that

there is an up-spin electron left at the A site. The explicit
forms of �τ are shown in Appendix D. The table of λ = P for
s (Sz of the A site in the initial state) in the first column versus
�τσ (σ =↑ or ↓) in the first line is shown in Tables II and III.
The matrix elements with 2T1 and 2T2 are zero for λ = P. Note
that �τσ is given by �, s + 1 − s ′ (Sz of the d3 site), and j

(the orbital state of the d3 site), and σ is given by s ′ (Sz of the
d1 site), but i (the orbital state of the d1 site) does not affect
the value of M(�,s ′,i,j,s,λ).

In a similar way, the table for λ = Q can be obtained and is
shown in Table IV. The matrix elements with 4A2 and 2E are
zero for λ =Q. With these tables, Eq. (A12) can be calculated.
The results are shown in Eq. (2).

APPENDIX C: CALCULATION OF THE PROBABILITY
FOR THE P- AND Q-TYPE ORBITAL RELATION p(μ,λ)

AND THE SPECTRAL WEIGHT I�e(�)

p(μ,λ) given by Eq. (A10) is the probability that the bond μ

has the λ-type orbital relation (λ = P or Q), and is dominated
by the orbital-ordering pattern. Here, we discuss the orbital
ordering where the probability of the orbital occupancy at
each site is the one shown in Fig. 6.

As shown in Fig. 7, there are 8 out-of-plane bonds and 4
in-plane bonds (counting both the back and forth transition).
Let us first discuss the 8 out-of-plane bonds. By seeing Figs. 5,
6, and 7, one notices that among 3 × 3 = 9 possible pairs of
the orbital states at the ends, there are 2 that become a P-type
orbital relation both for the A→B transition (“out1” bond) and

TABLE III. The value of M(�,s ′,i,j,s,λ) for λ = P and � =2 E.

E1 ↑ E1 ↓ E2 ↑ E2 ↓
s = 1 0 0 0 0
s = 0 1/2 0 −1/2

√
3 0

s = −1 0 1/
√

2 0 −1/
√

6

TABLE IV. The value of M(�,s ′,i,j,s,λ) for λ = Q.

T 2
1 ↑ T 2

1 ↓ T 2
2 ↑ T 2

2 ↓
s = 1 0 0 0 0
s = 0 −1/2 0 1/2 0
s = −1 0 −1/

√
2 0 1/

√
2

the B→A transition (“out2” bond), and the probability of the
P-type for these two bonds is

p(out1,P) + p(out2,P) = 2b2 + 2ab − a − 2b + 1. (C1)

In a similar manner, we can calculate the probability of the
Q-type orbital relation for the same bonds, which is given by
the four possible pairs of the orbital states for both the A→B
and B→A transitions, and the result is

p(out1,Q) + p(out2,Q) = −2b2 − 2ab + 2a + 2b. (C2)

The remaining −a + 1 gives the probability of the orbital
relation with zero matrix element M .

The angle between the spins on the ends of the out-of-plane
bond is assumed as θ . Among the 8 out-of-plane bonds, 4 are
the out1 bonds and the remaining 4 are the out2 bonds. As
to (�e · �rμ)2, when �e is along the x axis, (�e · �rμ)2 = 1

2 for half
bonds and (�e · �rμ)2 = 0 for the remaining half. When �e is along
the z axis, (�e · �rμ)2 = 1

2 for all the bonds [see Fig. 7(a)].
Next, let us discuss the 4 in-plane bonds. By a similar

discussion for the out-of-plane bonds, the probability of the
P-type orbital relation is

2p(in,P) = −2a2 + 2a, (C3)

and the probability of the Q type is

2p(in,Q) = 2a2 − 4a + 2. (C4)

The remaining 2a corresponds to the probability giving zero
matrix element.

The angle between the spins on the ends of the in-plane
bond is assumed as θ ′. As to (�e · �rμ)2, when �e is along the
x axis, (�e · �rμ)2 is always 1

2 for all the 4 in-plane bonds, and
when �e is along the z axis, (�e · �rμ)2 is always zero [Fig. 7(b)].

Thus, Eq. (A11) with �e ‖ x and �e ‖ z can be written as
follows:

Ix(�) =
∑

λ=P,Q

2 × 1

2
× [p(out1,λ) + p(out2,λ)]I λ

θ (�)

+ 4 × 1

2
× p(in,λ)I λ

θ ′(�), (C5)

Iz(�) =
∑

λ=P,Q

4 × 1

2
× [p(out1,λ) + p(out2,λ)]Iλ

θ (�).

(C6)
Specific formulas for the 4A2 and 2E modes can be obtained

by substituting Eqs. (2), (C1), (C2), (C3), and (C4) for
Eqs. (C5) and (C6):

Ix(4A2) = (2b2 + 2ab − a − 2b + 1)

(
α2 + 2

3
β2 + 1

3
γ 2

)

+ (−2a2 + 2a)

(
α′2 + 2

3
β ′2 + 1

3
γ ′2

)
,
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Ix(2E) = (2b2 + 2ab − a − 2b + 1)

(
1

3
β2 + 2

3
γ 2

)

+ (−2a2 + 2a)

(
1

3
β ′2 + 2

3
γ ′2

)
,

Iz(
4A2) = 2(2b2 + 2ab − a − 2b + 1)

(
α2 + 2

3
β2 + 1

3
γ 2

)
,

Ix(2E) = 2(2b2 + 2ab − a − 2b + 1)

(
1

3
β2 + 2

3
γ 2

)
,

(C7)

where α = α(θ ) and α′ = α(θ ′), etc.

APPENDIX D: ELECTRONIC STATES FOR d2 AND d3

CONFIGURATIONS IN THE t2g STATES

In this section, the explicit form of each multiplet is
shown by a Slater determinant.32 There are 6C2 = 15 states
for the d2 configuration in the t2g states, and those are
classified into four eigenstates (multiplets) with the following
irreducible representations: 3T1 (ninefold degeneracy, energy
U ′ − J ), 1E (twofold, U − J ), 1T2 (fourfold, U ′ + J ), and
1A1 (nondegenerate, U + 2J ). It is enough to take account of
the state with the lowest energy 3T1 here. The nine states for
the 3T1 states can be written as follows:

Sz = 1 Sz = 0 Sz = −1

|dxydyz|, 1√
2

(|dxydyz| + |dxydyz|), |dxydyz|
(D1)

|dyzdzx |, 1√
2

(|dyzdzx | + |dyzdzx |), |dyzdzx |

|dzxdxy |, 1√
2

(|dzxdxy | + |dzxdxy |), |dzxdxy |.

On the other hand, there are 6C3 = 20 states for the d3

configuration in the t2g states, and those are classified into
four eigenstates with the following irreducible representations:
4A2 (fourfold degeneracy, energy 3U ′ − 3J ), 2E (fourfold,
3U ′), 2T1 (sixfold, energy U + 2U ′ − 2J ), and 2T2 (sixfold,
energy U + 2U ′). Each state can be written as follows, where
the state |(dn)2S+1�(Sz)(γ )〉 is rewritten as �τ , where τ

represents (Sz,γ ):
4A2 (3U ′ − 3J )

|dxydyzdzx |, A 1
2

1√
3

(|dxydyzdzx | + |dxydyzdzx | + |dxydyzdzx |), A 2
2

1√
3

(|dxydyzdzx | + |dxydyzdzx | + |dxydyzdzx |), A 3
2

|dxydyzdzx |, A 4
2 (D2)

2E (3U ′)

1√
2

(|dxydyzdzx | − |dxydyzdzx |), E1

1√
6

(2|dxydyzdzx | − |dxydyzdzx | − |dxydyzdzx |), E2

1√
2

(|dxydyzdzx | − |dxydyzdzx |), E3

1√
6

(2|dxydyzdzx | − |dxydyzdzx | − |dxydyzdzx |), E4

(D3)

2T1 (U + 2U ′ − 2J )

1√
2

(|dxydyzdyz| − |dxydzxdzx |), T 1
1

1√
2

(|dyzdzxdzx | − |dyzdxydxy |), T 2
1

1√
2

(|dzxdxydxy | − |dzxdyzdyz|), T 3
1

1√
2

(|dxydyzdyz| − |dxydzxdzx |), T 4
1

1√
2

(|dyzdzxdzx | − |dyzdxydxy |), T 5
1

1√
2

(|dzxdxydxy | − |dzxdyzdyz|), T 6
1 (D4)

2T2 (U + 2U ′)

1√
2

(|dxydyzdyz| + |dxydzxdzx |), T 1
2

1√
2

(|dyzdzxdzx | + |dyzdxydxy |), T 2
2

1√
2

(|dzxdxydxy | + |dzxdyzdyz|), T 3
2

1√
2

(|dxydyzdyz| + |dxydzxdzx |), T 4
2

1√
2

(|dyzdzxdzx | + |dyzdxydxy |), T 5
2

1√
2

(|dzxdxydxy | + |dzxdyzdyz|), T 6
2 (D5)

Note that the A 1
2 , A 2

2 , A 3
2 , and A 4

2 states are the Sz = 3
2 , 1

2 ,
− 1

2 , and − 3
2 states, respectively, and for each of the 2E, T1,

and T2 states, the former half are the Sz = 1
2 states and the

latter half are the Sz = − 1
2 states.
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