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Plaquette resonating valence bond state in a frustrated honeycomb antiferromagnet
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We study the proposed plaquette resonating valence bond (pRVB) state in the honeycomb lattice J1-J2

model with frustration arising from next-nearest-neighbor interactions. Starting with the limit of decoupled
hexagons, we develop a plaquette operator approach to describe the pRVB state and its low-energy excitations.
Our calculation clarifies that the putative pRVB state necessarily has f -wave symmetry: the plaquette wave
function is an antisymmetric combination of the Kekulé structures. We estimate the plaquette ordering amplitude,
ground-state energy, and spin gap as a function of J2/J1. The pRVB state is most stable around J2/J1 ∼ 0.25.
We identify the wave vectors of the lowest triplet excitations, which can be verified using exact diagonalization
or density-matrix renormalization group (DMRG) studies. When J2 is reduced, we can have either a deconfined
quantum phase transition (QPT) or a first-order transition into a Néel state. When J2 is increased, we
surmise that the system will undergo a first-order phase transition into a state which breaks lattice rotational
symmetry.
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I. INTRODUCTION

Magnetic systems with frustrating interactions serve as
an excellent route to generating novel quantum states with
various degrees of entanglement. They often give rise to
many-body ground states in which many constituents become
entangled, from which new collective degrees of freedom
emerge. Examples include valence bond solid (VBS) phases,1

decoupled chains,2 and spin liquids. At each level of entan-
glement, a new effective theory is needed to describe the
low-energy properties of the system. In this light, we study
a plaquette-ordered phase proposed as a ground state for
the honeycomb lattice spin-1/2 J1-J2 model, with frustration
arising from next-nearest-neighbor couplings. This plaquette
resonating valence bond (pRVB) phase comprises entangled
hexagons, arranged in a

√
3 × √

3 pattern.
Recently, the J1-J2 model on the honeycomb lattice has

generated tremendous interest as an effective model for
the intermediate-U physics of the Hubbard model on the
honeycomb lattice.3 It may also be relevant to the material
Bi3Mn4O12(NO3) which shows no long-range order down
to the lowest temperatures.4–6 Being the simplest model of
frustration on the honeycomb lattice, the J1-J2 model has
been extensively studied. In the semiclassical limit of large
S, this model is very well understood: for small J2, the ground
state has Néel order. At a critical value J2 = 1/6 (we set
J1 = 1), there is a Lifshitz transition into a spiral state with
extensive ground-state degeneracy. Order-by-disorder effects
mediated by quantum/thermal fluctuations select three spiral
states which are related by lattice rotations. The ground
state thus breaks lattice rotational symmetry. By contrast, the
extreme quantum limit of S = 1/2 is not well understood.
In spite of many recent studies, the phase diagram has not
yet been conclusively established. In particular, many studies
point to an interesting intermediate phase for 0.2 � J2 � 0.4
which interpolates between Néel order and a state which breaks
lattice rotational symmetry.

While all studies in the literature agree upon the existence
of an intermediate phase, its precise nature has not been

established. Some proposals indicate that the intermediate
state may be a Z2 spin liquid.7–9 Others give support to
a pRVB state which breaks translational symmetry.10–12 A
functional renormalization group study shows weak tendency
to pRVB order,13 while a recent variational calculation does not
find plaquette order.14 In the closely related J1-J2-J3 model,
coupled cluster calculations support pRVB order.15 In the light
of such conflicting studies, we study the proposed pRVB state
and suggest more precise tests to confirm its existence. It is
worthwhile to devise such tests as most of the evidence for
a pRVB ground state comes from calculations restricted to
small system sizes. In addition, our study sheds light on the
properties of this putative state, its low-energy excitations,
and the nature of phase transitions into and out of this
phase.

In this paper, we build an effective theory for the candidate
pRVB state using a plaquette-operator approach. We estimate
its ground-state energy and spin gap and determine the nature
of low-energy excitations. Our goals are threefold: (i) to
understand the nature of the pRVB state, (ii) to clarify the
nature of phase transitions into and out of this state, and (iii)
to suggest tests which can be carried out using numerical
techniques such as the density-matrix renormalization group
(DMRG). Such tests might conclusively reveal whether the
pRVB state indeed arises in the J1-J2model.

This paper is organized as follows. In Sec. II, we begin with
the S = 1/2 J1-J2 model on a single hexagon. We classify all
its eigenstates as a function of J2/J1. Section III introduces the
plaquette operator representation and lays out the formalism
sequentially, by first considering two coupled hexagons and
then tiling hexagons to form a honeycomb lattice. We argue
that the pRVB state has f -wave character, rather than s-wave.
We arrive at a simplified effective Hamiltonian that only
involves triplet excitations. Section IV gives the results of the
pRVB mean-field theory with spin gap, ground-state energy,
and pRVB amplitude. Finally, Sec. V discusses the nature of
phase transitions into and out of this phase and implications
for the J1-J2 model.
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FIG. 1. (Color online) Top: Exchange couplings in the single-
hexagon Hamiltonian. The following operations commute with the
Hamiltonian: (bottom left) rotation by 60 ◦, and (bottom right)
inversion about an axis passing through opposite sites.

II. THE SINGLE HEXAGON PROBLEM

On a single hexagon, the spin-1/2 J1-J2model is easily
diagonalized, with a Hilbert space of 64 (=26) states. The
Hamiltonian is given by (we set J1 = 1)

Hsingle-hex =
∑
〈ij〉

Si · Sj + J2

∑
〈〈ij〉〉

Si · Sj . (1)

We take the exchange couplings J1 and J2 to be positive. The
J1 and J2bonds are shown in Fig. 1.

As the Hamiltonian is invariant under global spin rota-
tions, its eigenstates have well defined magnetic quantum
numbers. Diagonalizing the Hamiltonian numerically, we ob-
tain the spectrum consisting of 5 singlets (Stot = 0), 27 triplets
(Stot = 1), 25 quintets (Stot = 2), and 7 heptets (Stot = 3).
In the next section, we will argue that only one singlet and
the 27 triplet states are relevant for understanding the pRVB
phase.

The Hamiltonian is invariant under two spatial operations:
(i) rotation by 60◦, and (ii) mirror inversion about a line (see
Fig. 1). As the two operations do not commute with each
other, the eigenstates of the Hamiltonian cannot always be
chosen to be simultaneously the eigenstates of both. For later
convenience, we choose the eigenstates to be simultaneously
eigenstates of rotation. Defining R̂ to be the rotation operator,
we note that R̂6 is the identity operation. Therefore, the
eigenvalues of R̂ are the sixth roots of unity.

We denote the states obtained by diagonalization as |u〉,
with u = 1, . . . ,64 with the energy eigenvalues εu. Each
state is assigned three quantum numbers (lu,mu,ru), where
lu and mu are the usual magnetic quantum numbers, and ru

is the eigenvalue under rotation. For example, (lu,mu,ru) =
(1,0,−1) indicates that the state |u〉 is a triplet with Sz = 0 and
it changes sign under rotation by 60◦. Note that these three
quantum numbers do not uniquely identify a state.

FIG. 2. The proposed pRVB state on the honeycomb lattice. The
shaded hexagons are in an antisymmetric combination of the two
singlet covers

As J2 is varied, some of the the low energy states of the
single hexagon problem are

(i) “ + ” singlet: this state is the symmetric combination of
the two Kekulé structures proposed for benzene. With quantum
numbers (0,0,1), it is invariant under rotation by 60◦.

(ii) “−” singlet: this is the ground state for J2 < 0.5. It is
predominantly (∼98.5%; the precise fraction depends weakly
on J2) an antisymmetric combination of the Kekulé structures
(see Fig. 2). With quantum numbers (0,0,−1), it is even under
inversion and odd under rotation.

(iii) t1 triplets: these are the triplet states with the quantum
numbers (1,m,1), with m = −1,0,1. They are invariant under
rotation.
Figure 3 shows the low-energy spectrum of the single-hexagon
problem as a function of J2. We only indicate the ground state
and the first two excited states. The “−” singlet is the ground
state for J2 < 0.5. There is a level crossing at J2 = 0.5 beyond
which the “ + ” singlet becomes the ground state.

On the full honeycomb lattice, previous studies have
suggested a plaquette-ordered ground state for 0.2 � J2 �
0.4.10–12 In this parameter regime, the ground state of the
single hexagon problem is the “−” singlet. We argue that the
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FIG. 3. Energy spectrum of the single hexagon problem; for
brevity, we only show the lowest three states. The ground state is
the “−” singlet for J2 < 0.5. For J2 > 0.5, the “ + ” singlet becomes
the ground state. For J2 < 0.25, the first excited states are the t1
triplets. For J2 > 0.25, the t1 go higher in energy.
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suggested plaquette-ordered state is composed of a
√

3 × √
3

ordering of hexagons in the “−” state as shown in Fig. 2. The
choice of the “−” state corresponds to f -wave pRVB order: the
plaquette wave function changes sign upon rotation by 60◦. In
the next section, we describe the plaquette-operator method
which provides a consistent scheme to include quantum
fluctuations around this state.

III. PLAQUETTE OPERATOR THEORY

We obtain an effective theory of the pRVB state in analogy
with the bond operator formalism of Sachdev and Bhatt.16

Developed in the context of dimer states in spin-1/2 systems,
the bond operator method starts from the limit of isolated
bonds; the ground state is then composed of disconnected
dimers (singlets). A bosonic representation is introduced for
the states of each bond in the singlet-triplet basis, with a
constraint of unit boson occupancy to preserve the Hilbert
space. The dimer state can now be elegantly described as a
Bose condensate of singlet bosons. Moving away from the
limit of isolated bonds, interbond coupling can be naturally
interpreted as four-particle interactions between bosons. As-
suming that dimer order is strong, one arrives at a mean-field
prescription to treat the interaction terms which gives rise to a
quadratic theory of “triplons”. Corrections beyond mean-field
theory, viz., interactions between triplons, can be ignored as
the triplons are present in dilute concentrations. This theory
has been very succesful in obtaining the spectrum of triplon
excitations above the dimer state. The dimer-Néel phase
transition is easily understood as the Bose-condensation of
triplons with the bond-operator mean-field theory providing
excellent quantitative estimates for the transition point (e.g.,
see Refs. 17 and 18).

This approach has been adapted to study plaquette order,
albeit in a simple system with four-site plaquettes.19,20 Here,
we develop a plaquette operator approach to describe six-site
plaquette order in the honeycomb pRVB state.

Having obtained all eigenstates of the single hexagon
problem in the previous section, we now introduce a bosonic
representation for these states. We associate a boson with each
of the 64 states in the Hilbert space. We call these “plaquette
bosons”. To preserve the Hilbert space, we impose a constraint
of unit boson occupany. On a single hexagon, we may write

|u〉 = b†u|0〉. (2)

Here, the operator b
†
u creates a u boson when it acts upon the

vacuum. The vacuum itself is an unphysical state, as it does
not respect the unit occupancy constraint. Operators can also
be translated into the new representation, e.g., |v〉〈u| ≡ b†vbu.

Having solved the single hexagon problem exactly, we tile
hexagons to form a two-dimensional honeycomb lattice, as
shown in Fig. 2. The shaded hexagons serve as sites upon
which plaquette bosons reside. As a starting point, we consider
the limit of isolated plaquettes. Turning off all interplaquette
couplings, we obtain a quadratic theory of bosons given by

Hintraplaq. =
∑

i

∑
u

εub
†
i,ubi,u, (3)

where the index i sums over all shaded plaquettes in Fig. 2; note
that the shaded hexagons form a triangular lattice. The index

u sums over the 64 eigenstates of the single hexagon problem.
The operator b

†
i,u creates a u boson at the site (plaquette) i.

The pRVB state can now be identified as a Bose condensate
of the “−” bosons; i.e., we may set

bi,− ≡ b
†
i,− ≡ p̄, (4)

where p̄ is the Bose-condensation amplitude. Physically, the
quantity p̄2 gives the probability of finding a shaded plaquette
in the “−” state. We take p̄ to be real as its phase is not relevant
in the present context. In the isolated plaquette limit, p̄2 is unity
as every hexagon is entirely in the “−” state.

To preserve the Hilbert space, the total occupancy of bosons
per plaquette should be unity. In the spirit of mean-field
theory, we enforce this constraint on average using a chemical
potential μ:

H → H − μ

[
Np̄2 +

∑
i,u=2,...,64

b
†
i,ubi,u − N

]
, (5)

where N is the total number of shaded plaquettes in Fig. 2.
Eventually, we will set μ by demanding

∂〈H 〉
∂μ

= 0, (6)

which will tune the average boson occupancy to unity.
The next step towards obtaining a consistent theory is

to introduce interplaquette terms. We deduce the form of
these terms by considering two coupled hexagons in the
following section. Before giving details of our plaquette-
operator theory, we illustrate the approach by an analogy to
spin-wave theory. Consider a spin-S system that has Neel order
at zero temperature. To zeroth order, this is described as a
classical system of antialigned spins with each spin of length
S. This is analogous to our isolated plaquette limit with p̄ = 1
which has perfect plaquette ordering. Standard linear spin-
wave theory takes into account quantum fluctuations about the
Néel state and gives the spectrum of low-lying excitations.
Spin waves reduce the length of the ordered moment and
give rise to zero-point energy corrections. Analogously, our
plaquette-operator theory captures the low-lying excitations
about the pRVB state. These corrections will reduce the value
of p̄ and modify the ground-state energy in a self-consistent
manner.

A. Coupling two hexagons

Figure 4 shows two nearest-neighbor hexagons, A and B,
and the five bonds which couple them. The five Heisenberg-
like bonds act as a perturbation, which we denote as HAB ,
coupling the single-hexagon states of A and B. In the absence
of this perturbation, any eigenstate is a direct product of single-
hexagon states centered on A and B, |AuBv〉, signifying that
the A hexagon is in the |u〉 state and B is in the |v〉 state.

The matrix element of HAB between two direct product
states, |AuBv〉 and |ApBq〉, is given by

〈AuBv|HAB |ApBq〉
=

∑
b

∑
α=x,y,z

Jb〈AuBv|Sib,A,αSjb,B,α|ApBq〉. (7)
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FIG. 4. Coupling between two nearest-neighbor hexagons, A and
B. The dotted lines denoted Heisenberg-like exchange terms which
couple A and B.

The index b sums over the interhexagon bonds which connect
site ib of hexagon A and site jb of hexagon B (see Fig. 4).
Each bond has an exchange coupling strength Jb (given by J1

for one bond and J2 for four other bonds).
This quantity reduces to a product of matrix elements of

single-hexagon operators,

〈AuBv|HAB |ApBq〉 =
∑

b

∑
α=x,y,z

Jb〈Au|Sib,A,α|Ap〉

×〈Bv|Sjb,B,α|Bq〉. (8)

Using Eq. (8), we arrive at the following lemma. Note
that our motivation is to study the pRVB state in which each
hexagon is predominantly in the “−” state.

Lemma. If hexagon A is initially in a singlet state, the
coupling hamiltonian HAB will take it to a triplet state. In
particular, if A is initially in the the “−” state, then the coupling
matrix element in Eq. (8) can be nonzero only if Au—the
final state—is a triplet. This is a consequence of the rotation
properties of the spin operator Sib,A,α which acts as a triplet
under rotation.

We make the following assertions using this lemma.
(i) 〈A−B−|HAB |A−B−〉 = 0. Thus, the strict plaquette

RVB state which has both hexagons in the pure “−” state is
not preserved under the coupling Hamiltonian. In the bosonic
representation, the interplaquette coupling does not lead to
terms of the form b

†
A,−b

†
B,−bA,−bB,− (equivalently, p̄4). In the

condensed state, after taking interplaquette terms into account,
there is no term proportional to p̄4 in the Hamiltonian.

(ii) Similarly, 〈A−B−|HAB |A−Bu〉 = 0. There are no terms
proportional to p̄3 in the Hamiltonian.

(iii) 〈AuBv|HAB |A−B−〉 can be nonzero only when u and
v are triplet states. Furthermore, from conservation of z

component of spin, we should have mu + mv = 0. These
matrix elements lead to O(p̄2) terms which involve cre-
ation/annihilation of pairs of triplets, i.e., we have terms of
the form p̄2{b†A,ub

†
B,v} and p̄2{bB,vbA,v}.

(iv) 〈A−Bv|HAB |AuB−〉 can be nonzero only when u and v

are triplet states. This gives rise to O(p̄2) terms which involve
hopping of triplet operators, i.e., p̄2{b†B,vbA,u}.

(v) We can have nonzero matrix elements of the form
〈A−Bu|HAB |AvBq〉, leading to O(p̄1) terms. However, these
processes are highly unlikely and can be ignored. This is
justified when the pRVB order is strong and each plaquette
is predominantly in the “−” state. While the “−” boson is
condensed, all other bosons will be present in very dilute
concentrations. Thus, interactions between such bosons are
unlikely.

(vi) We also have terms independent of p̄ which do not
involve the “−” state, but these can again be ignored using the
above argument.
The above statements drastically simplify the effective cou-
pling between adjacent plaquettes A and B. Our scheme can
be justified in two different ways. In the first approach, we
expand the Hamiltonian in powers of p̄. Arguing from (i)
through (iv) above, we see that the leading terms are O(p̄2).
These terms are quadratic in triplet operators and involve
hopping-like and pairing-like terms discussed in (iii) and
(iv) respectively. We retain these leading terms alone and
ignore O(p̄),O(1) corrections as discussed in (v) and (vi)
above.

A second approach is to start with the assumption of strong
pRVB order. Every hexagon is predominantly occupied by
the “−” boson. All other bosons are present in very dilute
quantities. Thus, beginning with (v) and (vi) above, we neglect
unlikely interactions between these dilute bosons. Using (i)–
(iii), we find that the most likely processes are O(p̄2) terms
which are quadratic in triplet operators.

The above arguments apply to any pair of nearest-neighbor
plaquettes in the honeycomb lattice of Fig. 2. They lead to an
effective hamiltonian for the pRVB state which only involves
the “−” singlet and all triplet bosons. The quintets, heptets,
and other singlets simply drop out of the problem. Interaction
corrections arising from O(p̄) terms that we have ignored can
populate these states. However, we expect these corrections to
be small. In the rest of this paper, we ignore the other bosons
as they play no role.

B. Effective Hamiltonian for the pRVB state

We have examined the nature of the coupling between
nearest-neighbor plaquettes, and deduced that they lead to
hopping-like and pairing-like terms in triplet operators. There
are no couplings between further neighbors as the microsopic
spin Hamiltonian has only short-range interactions. A cursory
inspection of Fig. 2 shows that J1 and J2 interactions do not
couple further neighbors.

The effective theory of the pRVB state can be written as

H =
∑

i

∑
u=triplets

(εu − μ)b†i,ubi,u + Np̄2(ε− − μ) + Nμ

+ p̄2
∑
〈ij〉

∑
u,v=triplets

[ (
hij

uv

)
b
†
i,ubj,v + (

dij
uv

)
b
†
i,ub

†
j,v + H.c.

]
.

(9)

The first line includes the intraplaquette terms, the index i

summing over all shaded plaquettes in Fig. 2. The chemical
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FIG. 5. (Color online) The plaquette Brillouin zone (BZ): The
dashed line indicates the BZ of the underlying honeycomb lattice.
The pRVB state occurs on a triangular lattice of plaquettes; the
corresponding BZ is shown by solid lines using the extended zone
scheme. The M points of the plaquette-triangular BZ are highlighted
by blue/red circles; these are the wave vectors at which the lowest
triplet excitations occur.

potential μ can be tuned to enforce single boson occupancy
(on average). N denotes the number of shaded plaquettes in
the system.

The second line involves interplaquette terms; the indices
u and v sum over all 27 triplet states in the single-hexagon
spectrum. As argued at the end of the previous section,
the quintets, heptets, and singlets other than the “−” state
drop out of the problem. The coefficients (hij

uv) and (dij
uv)

are the amplitudes for triplet hopping and triplet pairing
processes. The evaluation of these amplitudes is discussed
in the Appendix.

We rewrite the Hamiltonian of Eq. (9) by going to
momentum space.21 As the plaquettes form a triangular lattice,
we obtain a hexagonal Brillouin zone. Figure 5 shows the
plaquette Brillouin zone in relation to the hexagonal Brillouin
zone of the underlying honeycomb lattice. The Hamiltonian
takes the form

H =
∑

k

′

⎛
⎜⎜⎜⎜⎜⎜⎝

b
†
1,k
. . .

b
†
27,k

b1,−k
. . .

b27,−k

⎞
⎟⎟⎟⎟⎟⎟⎠

T

(
Ĥε,μ,h(k) Ĥd (k)

Ĥ
†
d (k) Ĥ T

ε,μ,h(−k)

)
⎛
⎜⎜⎜⎜⎜⎜⎝

b1,k
. . .

b27,k

b
†
1,−k
. . .

b
†
27,−k

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(10)

The matrix Ĥε,μ,h involves triplet energies of the single
hexagon problem, the chemical potential μ, and hopping terms
h

ij
uv . The off-diagonal blocks Ĥd involve pairing amplitudes

d
ij
uv . The primed sum indicates that if k is included, −k is to

be excluded.
The eigenvalue spectrum of this Hamiltonian can be

obtained by a bosonic Bogoliubov transformation. These give
the energies of “triplon” excitations above the pRVB state.
The ground-state energy acquires zero-point energy contri-
butions from these triplon modes. The Hamiltonian has two
parameters p̄ and μ which are determined self-consistently,

by demanding
∂〈H 〉
∂μ

= 0, (11)

∂〈H 〉
∂p̄

= 0. (12)

Equation (11) tunes the average boson density. We treat p̄ as
a variational parameter; Eq. (12) minimizes the ground state
with respect to p̄.

For any value of J2 < 0.5, the Hamiltonian in Eq. (9) can
be derived and diagonalized. (For J2 > 0.5, our plaquette
operator theory is not justified as the ‘‘−” state is not the
ground state of the single hexagon problem.) Equations (11)
and (12) can then be used to obtain the self-consistent solution.
In the self-consistent solution, the eigenvalue of the lowest
triplon mode gives the spin gap above the pRVB state.

IV. RESULTS

The plaquette-operator mean-field theory is a novel method
to study plaquette-ordered phases. Our plaquette-operator
calculation is valid in the limit of strong plaquette order, i.e.,
when p̄2 is close to unity, as p̄2 is the probability of finding a
plaquette in the “−” state. As a consistency check, we plot the
self-consistently obtained value of p̄2 as a function of J2/J1 in
Fig. 6. We find that pRVB order is strongest around J2 ∼ 0.25,
where p̄2 ∼ 96%. As seen in the figure, we find p̄2 > 90% for
0.15 � J2 � 0.43. This puts our plaquette-operator approach
on a solid basis.

In Fig. 7, we plot the ground state energy obtained from
plaquette-operator theory as a function of J2/J1. This is
obtained as the zero-temperature expectation value of the
Hamiltonian in Eq. (10). To see if the pRVB state is a plausible
ground state, we compare its energy with the following
estimates:

(i) Néel/spiral state from large-S spin-wave theory: In the
semiclassical large-S limit, the ground state has Néel order for
J2 < J1/6 and spiral order for J2 > J1/6. Linear spin-wave
theory gives the energy of low-lying excitations.22 Figure 7
plots the energy of the large-S ground state including zero-
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0.95

0.96

0.15 0.20 0.25 0.30 0.35 0.40 0.45
J2

FIG. 6. (Color online) The probability of finding a shaded
plaquette in the “−” state. p̄2 as a function of J2/J1. pRVB order
is strongest around J2 ∼ 0.25.
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FIG. 7. (Color online) The energy of the pRVB state obtained
from plaquette-operator theory. We compare energy per unit cell with
other candidate states (see text).

point contributions from spin-wave excitations. To obtain the
energy for the spin-1/2 case, we set S = 1/2 in the spin-wave
calculation. For 0.22 � J2 � 0.4, the pRVB state is lower in
energy than the large-S estimate.

(ii) “Nematic valence bond solid”: A dimer state which
breaks lattice rotational symmetry has been proposed as the
ground state for J2 � 0.4.23,22 This state can also be viewed as
the staggered dimer state on the honeycomb lattice. We plot the
energy of this state obtained using bond operator mean-field
theory keeping only quadratic terms in triplet operators.22 For
J2 � 0.4, the pRVB state is lower energy than this dimer state.

(iii) Variational Monte Carlo (VMC): Recently, a VMC
scheme using entangled-plaquette wave functions has esti-
mated the ground-state energy for the J1-J2 model.14 Around
J2 ∼ 0.3, our energy estimate for the pRVB state compares
well with the variational result. In fact, the pRVB energy is
lower than the VMC result at J2 = 0.3; this may be an artifact
of our mean-field theory. Corrections such as triplet-triplet
interactions, coupling to quintet states, etc., may of course
change the energy of the pRVB state. While the VMC study
does not find pRVB order, energy comparison indicates that
pRVB is a plausible ground state.

Comparing the energy of the pRVB state with the above
candidates, we conclude that the ground state may have pRVB
order for 0.25 � J2 � 0.4. Next, we plot the spin gap as a
function of J2/J1; this is the energy of the lowest triplon
state. We find that this lowest triplon state always occurs at
the M points of the plaquette Brillouin zone (see Fig. 5). The
spin gap reaches a maximum value of ∼0.7J1 at J2 ∼ 0.225.
Surprisingly, the spin gap does not close as J2 is varied. We
discuss its implications in the next section.

V. DISCUSSION

We have developed an effective theory for the proposed
pRVB state in the spin-1/2 J1-J2 model on the honeycomb
lattice. Using plaquette-operator mean-field theory, we have
calculated the properties of this state and the spectrum of
low-lying excitations above it.

An important outcome of our calculation is to clarify the
nature of the pRVB state. The low-energy state is composed
of a

√
3 × √

3 ordering of plaquettes in the “−” state. We
begin our calculation from the limit of decoupled hexagons,
wherein the “−” state is clearly lower in energy for J2 < 0.5.
After including interhexagon coupling, we get a consistent
theory of the pRVB state. Thus, our plaquette wave function
changes sign upon rotation by 60◦. Under rotation by angle φ,
the plaquette wave function transforms as ei3φ , having f -wave
symmetry.

As we argue below, we have ruled out s-wave pRVB
order involving condensation of the “ + ” state. In the limit
of disconnected hexagons, the “ + ” state is an excited state.
As such, we expect s-wave pRVB order to be unstable for this
reason. However, strong interhexagon coupling could possibly
stabilize this phase by means of a large kinetic gain from
delocalizing the triplet excitations. To rule out this possibility,
we redid the plaquette operator calculation for the s-wave case.
We do not find a consistent s-wave pRVB solution, thus ruling
out strong s-wave ordering.

The earliest study of plaquette order on the honeycomb
lattice describes s-wave plaquette order in a quantum dimer
model. The plaquette wave function is symmetric under
rotation.24 However, for the J1-J2 model at hand, Ref. 12
indicates that the antisymmetric combination is favored; the
authors refer to this order as d-wave, while it is more precisely
called f -wave. We reaffirm this f -wave nature using our
plaquette operator approach.

A. Excitations of pRVB state

This paper presents a systematic study of the pRVB state
and its excitations. As shown in Fig. 8, the spin gap does not
close within our theory. Also, the lowest-lying triplet modes
occur at the M points of the plaquette BZ. In terms of the
underlying honeycomb lattice, the lowest triplet state will
occur at wave vectors shown in Fig. 5. Assuming that pRVB
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FIG. 8. (Color online) The spin gap obtained from plaquette-
operator theory as a function of J2. The gap is in units where J1 is
unity.
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order occurs in the J1-J2 model, numerical methods such as
exact diagonalization or DMRG can see this by calculating
the spin-spin structure factor in the lowest triplet state. The
structure factor should show peaks at the wave vectors shown
in Fig. 5. Indeed, this can serve as a test for pRVB order.

As is familiar from the study of dimer states,25 an applied
magnetic field will lower the energy of triplet modes. At some
critical field, the lowest triplet mode(s) will become gapless
and undergo Bose condensation giving rise to magnetic order.
In our case, the lowest triplet modes are triply degenerate as
they occur at the three M points of the plaquette BZ. Beyond
the critical field, each mode can condense with an independent
amplitude and phase leading to six degrees of freedom. This
makes it difficult to predict the nature of the magnetic ordering
beyond the critical field. At the level of these arguments, we
can rule out field-induced Néel ordering as the lowest triplets
do not occur at the � point. This picture may change once we
account for defects in pRVB order as discussed below.

B. Phase transitions

For the case of dimer-Néel transitions, bond operator theory
is remarkably sucessful in describing the nature of the phase
transition. Starting from the dimer state, bond operator theory
provides a consistent theory of spin-1 triplon excitations which
obey bosonic statistics. The transition to Néel order occurs via
Bose condensation of triplons when the spin gap closes.16,26

In our honeycomb lattice model, our plaquette operator
theory gives a consistent description of the pRVB state which
is most stable around J2 ∼ 0.25. ED calculations suggest that a
pRVB state is sandwiched between a Néel state (for J2 � 0.2)
and a magnetic phase with stripe order (for J2 � 0.4). While
the phase diagram definitely contains Néel order, the existence
of a stripe magnetic phase is still open to question. It has been
suggested that the ground state for J2 � 0.4 has dimer order
which breaks lattice rotational symmetry.22,23

Starting from the pRVB state, as J2 is decreased, we expect
to see a Néel transition near J2 ∼ 0.2. Naı̈vely, we may expect
such a transition to be driven by condensation of triplons
giving rise to a continuous quantum phase transition (QPT)
in the same universality class as the BEC transition in 2 + 1
dimensions. However, the spin gap obtained from plaquette
operator theory does not close as J2 is lowered, thus ruling
out a BEC transition. This leaves us with two possibilities
concerning the pRVB-Néel transition: (i) a first-order phase
transtion, or (ii) a deconfined QPT mediated by topological
defects in pRVB order. In terms of conventional Landau theory,
we generically expect a first-order QPT as the Néel state
and pRVB state break different symmetries. This is always
a possibility and can only be checked using precise numerical
techniques. The second possibility, a deconfined QPT,27,28 is
a very exciting prospect. So far, such a transition has not
been observed in simple models involving Heisenberg-like
couplings.

A deconfined QPT would be driven by proliferation of
defects in the pRVB order parameter; in this case, Z3 vortices.
As pointed out in Ref. 29, the core of such a vortex will
necessarily bind a dangling spin or a “spinon”. The critical
theory of a continuous pRVB-Néel transition cannot be cast
in terms of Landau-Ginzburg order parameters, but in terms

FIG. 9. A plaquette i and its nearest neighbors. â and b̂ are the
primitive vectors of the

√
3 × √

3 lattice of plaquettes.

of these spinful defects. We expect the theory to be very
similar to the one outlined in Ref. 28; at the critical point, the
vortices become gapless and the Z3 anisotropy may become
irrelevant.

Starting from the pRVB state, when we increase J2, there
must be a transition into a state which breaks lattice rotational
symmetry; a nematic valence bond solid22 or a magnetic phase
with stripe order.12 The spin gap does not close in our plaquette
operator theory. As suggested by ED results,12 we surmise that
this is a first-order transition. Future numerical studies will be
able to test this notion.
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APPENDIX: MATRIX ELEMENTS

Figure 9 shows a plaquette i and its six nearest neighbors.
Let us first consider the nearest-neighbor pair (i,i − b̂). This
pair is identical to that shown in Fig. 4 if we identify (i) as A
and (i − b̂) as B. Interplaquette coupling leads to hopping-like
and pairing-like terms between triplon operators on the two
sites. Below, we evaluate the coefficients hi,i−b̂

uv and di,i−b̂
uv .

The generic inter-plaquette interaction process is indicated
in Eq. (8). The hopping-like term arises the following matrix
element:

hi,i−b̂
uv = 〈(i)u(i − b̂)−|Hi,i−b̂|(i)−(i − b̂)v〉. (A1)

This matrix element can be evaluated numerically using two
pieces of information: (i) the explicit eigenstates of the single
hexagon problem and (ii) the explicit form of the interplaquette
coupling given in Eq. (8). In plaquette operator notation, this
matrix element leads to the process b

†
i,ub

†
i−b̂,−bi,−bi−b̂,v . As

the “−” bosons are condensed with amplitude p̄, we rewrite
this as

Hhopping ∼ hi,i−b̂
uv p̄2b

†
i,ubi−b̂,v. (A2)
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Similarly, the coefficient of the pairing term is given by

di,i−b̂
uv = 〈(i)u(i − b̂)v|Hi,i−b̂|(i)−(i − b̂)−〉. (A3)

This gives rise to b
†
i,ub

†
i−b̂,v

bi,−bi−b̂,−, which can be rewritten
as

Hpairing ∼ di,i−b̂
uv p̄2b

†
i,ub

†
i−b̂,v

. (A4)

Having evaluated these terms for one nearest-neighbor pair,
we can evaluate the matrix elements for all other pairs using the
rotation operator. Let us consider three nearest-neighbor pairs
in Fig. 9: (i,i − b̂), (i,i + â), and (i,i + â + b̂). Clearly, these
three pairs are related by R̂, rotation by 60◦, about the center
of the hexagon i. Formally, in terms of the inter-plaquette
couplings, we may write

Hi,i+â = R̂Hi,i−b̂R̂
†. (A5)

The rotation operator R̂ maps the plaquette (i − b̂) to (i + â).
In addition, it rotates the hexagons by 60◦.

Using this relation, we can obtain the hopping matrix
element hi,i+â

uv :

hi,i+â
uv = 〈(i)u(i + â)−|Hi,i+â|(i)−(i + â)v〉

= 〈(i)u(i + â)−|R̂Hi,i−b̂R̂
†|(i)−(i + â)v〉

= rur
∗
v 〈(i)u(i − b̂)−|Hi,i−b̂|(i)−(i − b̂)v〉

= rur
∗
v hi,i−b̂

uv , (A6)

where ru and rv are the rotation eigenvalues of the single-
hexagon states |u〉 and |v〉 respectively.

The coefficient of the pairing-like term can be found
likewise:

di,i+â
uv = 〈(i)u(i + â)v|Hi,i+â|(i)−(i + â)−〉

= 〈(i)u(i + â)v|R̂Hi,i−b̂R̂
†|(i)−(i + â)−〉

= rurv(r∗
−)2〈(i)u(i − b̂)v|Hi,i−b̂|(i)−(i − b̂)−〉

= rurv(r∗
−)2di,i−b̂

uv . (A7)

Similarly, by applying one more rotation, we can obtain

hi,i+â+b̂
uv = r2

u(r∗
v )2hi,i−b̂

uv , di,i+â+b̂
uv = r2

ur2
v (r∗

−)4di,i−b̂
uv .
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