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We consider a simple integrable model of a spin chain exhibiting the magnetoelectric effect (MEE). Starting
from the periodic S = 1/2 XXZ chain with Dzyaloshinskii-Moriya terms, which we consider as a local electric
polarization in the spirit of the Katsura-Nagaosa-Baladsky (KNB) mechanism, we perform the mapping onto the
conventional XXZ chain with twisted boundary conditions. Using the techniques of quantum transfer matrix and
nonlinear integral equations we obtain the magnetization, electric polarization, and magnetoelectric tensor as
functions of magnetic and electric field for arbitrary temperatures. We investigate these dependencies as well as
the thermal behavior of the above-mentioned physical quantities, especially in the low-temperature regime. We
found several regimes of polarization. Adjusting the magnetic field one can switch the system from one regime
to another. The features of the critical properties connected with the MEE are also illustrated.
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I. INTRODUCTION

The strong interest in multiferroic materials (materials
exhibiting simultaneously several primary ferroic order pa-
rameters), which occurred recently,1–3 also triggered intensive
investigations in the field of magnetoelectric effects (MEE)
and magnetoelectric materials.4 In general, MEE denominates
the mutual influence of the electric and magnetic properties
in matter. In its most prominent form, MEE can be defined as
the magnetic field dependence of (ferro)electric polarization
and the electric field dependence of magnetization. In linear
approximation, one can introduce the linear magnetoelec-
tric tensor (isothermic), which quantifies the induction of
(ferro)electric polarization by a magnetic field and of mag-
netization by an electric field:

αij =
(

∂Pi

∂Hj

)
T , E

=
(

∂Mj

∂Ei

)
T , H

, (1.1)

where T is the temperature, i,j = (x,y,z), P (M) the
(ferro)electric polarization (magnetization), and E (H) the
electric (magnetic) field, respectively. The efficient control
of magnetic properties of solids by means of the electric field
has a lot of potential applications, for instance, in spintronics.5

At the moment, the number of known materials exhibiting the
MEE exceeds 100.2 One of the microscopic mechanisms of
the MEE was theoretically described by Katsura, Nagaosa,
and Baladsky in 2005 (KNB mechanism)6 and connects the
appearance of the local (ferro)electric polarization with the
noncollinear ordering of the neighboring spins, i.e., with the
spin current:6–8

Pi ∼ eij × (Si × Sj ), (1.2)

where eij is the unit vector connecting two neighboring spins
Si and Sj . The general phenomenological arguments of the
Ginzburg-Landau theory9 as well as symmetry arguments10

showed that this coupling between (ferro)electric polarization
and magnetization always exists in certain classes of materials

independent of the crystal symmetry. The MEE has been
successfully described within the KNB mechanism for many
classes of ferroelectric materials.11–14 In turn, the discovery
of the deep relationship between magnetic structure and
ferroelectricity in several spin-chain materials stimulated
further research of multiferroics and paved a way between
the physics of multiferroics and quantum spin systems. The
simplest system exhibiting the MEE by means of KNB
mechanism, considered so far, is the S = 1/2 J1-J2-spin
chain, which is believed to be a more or less adequate
model for several multiferroic materials such as LiCu2O2,15–17

LiCuVO4,18–20 CuCl2,21 and others. The expression for the
electric polarization becomes particularly simple in the case
of a one-dimensional linear chain, say, in the x direction. In
this case, all eij = ei,i+1 = ex , and one gets for the electric
polarization according to the KNB mechanism,

Px = 0, (1.3a)

Py = γ
1

N

N∑
n=1

(
Sy

nSx
n+1 − Sx

nS
y

n+1

)
, (1.3b)

Pz = γ
1

N

N∑
n=1

(
Sz

nS
x
n+1 − Sx

nSz
n+1

)
, (1.3c)

where γ is a material-dependent constant. Thus, considering
one of the simplest lattice spin models exhibiting some
interplay between magnetic and (ferro)electric properties, one
arrives at the Hamiltonian of a J1-J2 chain in a magnetic field
with additional Dzyaloshinskii-Moriya (DM) interaction.11–21

Supposing the magnetic field to be in the z direction and the
electric field in the y direction, one gets

H=J1

N∑
n=1

SnSn+1 + J2

N∑
n=1

SnSn+2

+ γEy

N∑
n=1

(
Sx

nS
y

n+1 − Sy
nSx

n+1

)− gμBHz

N∑
n=1

Sz
n. (1.4)
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Although the frustrated S = 1/2 spin chain with ferro-
magnetic nearest-neighbor and antiferromagnetic next-to-
nearest-neighbor interactions has recently received consider-
able amount of attention,22–28 only few theoretical (mainly
numerical) works have been devoted to MEE-connected issues
and to the interaction with an electric field by means of DM
terms. The full Hamiltonian (1.4) is not integrable, whereas
our aim is to develop an exact analysis of the MEE. Therefore,
we look at a slightly simpler model with only nearest-neighbor
interactions. Thus, we consider the S = 1/2 XXZ chain with
DM terms. We also suppose the potential ability of the system
to generate an electric polarization due to the KNB mechanism.
The integrability of the S = 1/2 XXZ chain with DM terms
is based on a gauge transformation to the ordinary XXZ
chain. For the latter we apply the method of the quantum
transfer matrix (QTM) leading to nonlinear integral equations
(NLIE)30–35 which determine the exact free energy of the
system, and thus, we are able to obtain exact thermodynamic
functions.

II. THE MODEL

A. Hamiltonian and MEE parameters

Let us consider the S = 1/2 XXZ chain in a longitudinal
magnetic field and with Dzyaloshinskii-Moriya interaction:

H = J

N∑
n=1

(
Sx

nSx
n+1 + Sy

nS
y

n+1 + �Sz
nS

z
n+1

)
+ JE

N∑
n=1

(
Sx

nS
y

n+1 − Sy
nSx

n+1

) − H

N∑
n=1

Sz
n. (2.1)

Here, periodic boundary conditions are assumed, Sα
N+1 = Sα

1 ,
and the material-dependent constants γ and gμB are absorbed
into the electric field strength JE = Eyγ and the magnetic
field strength H = gμBHz, respectively. The operators Sα

n

obey the standard SU (2) algebra,[
Sα

m,Sβ
n

] = iεαβγ Sγ
mδmn. (2.2)

Implementing the rotation of all spins about the z axis by
angles proportional to the number of lattice sites,

S±
n → e±inφS±

n , φ = tan−1(E), (2.3)

one obtains the Hamiltonian of the ordinary XXZ chain
with certain changes in J and � and with twisted bound-
ary conditions. In other words, the gauge transformation
corresponding to the site-dependent rotations of spins is
equivalent to the following canonical transformation of the
initial Hamiltonian:36–39

H̃ = UHU

= J̃

N∑
n=1

(
Sx

nSx
n+1 + Sy

nS
y

n+1 + �̃Sz
nS

z
n+1

) − H

N∑
n=1

Sz
n,

(2.4)

U = exp

⎧⎨⎩−iφ

N∑
j=1

jSz
j

⎫⎬⎭ , (2.5)

where

J̃ = J
√

1 + E2, �̃ = �√
1 + E2

. (2.6)

As the Hamiltonian of Eq. (2.4) is integrable and the
methods of QTM and NLIE provide a very efficient formalism
to calculate finite-temperature properties of the model, we are
able to describe the MEE by the influence of magnetic and
electric fields on thermodynamic functions. We are especially
interested in the magnetization and the electric polarization
which are defined as follows:

M = 1

N

N∑
n=1

〈
Sz

n

〉
, (2.7a)

P = 1

N

N∑
n=1

〈
Sy

nSx
n+1 − Sx

nS
y

n+1

〉
, (2.7b)

where the angle brackets denote the thermal average with
respect to the statistical operator ρ = e−H/T /Z. These quan-
tities can be derived from the canonical partition function
Z = Tr(e−H/T ) of the system. Taking the connection between
the Hamiltonians (2.1) and (2.4) into account, one can write
down the following relations:

M(T ,H,E) = −
(

∂f

∂H

)
T ,E

= −
(

∂f̃

∂H

)
T ,J̃ ,�̃

, (2.8a)

P (T ,H,E) = − 1

J

(
∂f

∂E

)
T ,H

= − 1

J

dJ̃

dE

(
∂f̃

∂J̃

)
T ,H,J̃ ·�̃

= − E√
1 + E2

Gxy(T ,H,J̃ ,�̃), (2.8b)

α(T ,H,E) = 1

J

(
∂M

∂E

)
T ,H

=
(

∂P

∂H

)
T ,E

, (2.8c)

where f̃ and f are the free energies per lattice site for
the conventional XXZ chain [Eq. (2.4)] with E-dependent
coupling constant and anisotropy [Eq. (2.6)] and for the
XXZ chain with DM interaction [Eq. (2.1)], respectively.
Note that the derivative in Eq. (2.8b) with respect to J̃

has to be performed at constant value of the product J̃ · �̃.
Alternatively, we may apply the canonical transformation (2.5)
to the definition (2.7b) to obtain the result (2.8b), where Gxy

is the nearest-neighbor transverse correlation function:

Gxy(T ,H,J̃ ,�̃) = 1

N

N∑
n=1

〈
Sx

nSx
n+1 + Sy

nS
y

n+1

〉
. (2.9)

Here, angle brackets denote thermal averaging with respect to
the statistical operator ρ̃ = e−H̃/T /tr(e−H̃/T ).

B. Phase diagram

The correspondence between S = 1/2 XXZ chains with
and without DM interaction allows one to map the well-
known ground-state phase diagram of the XXZ chain onto
the (E,H/J ) plane (see Fig. 1). The region between the two
curves corresponds to the massless polarized (antiferromag-
netic) ground states, and the region below the lower curve
corresponds to the Néel ordering of the spins. The following
equations describe the E dependence of the upper and lower
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FIG. 1. (Color online) Ground-state phase diagram of the S =
1/2 XXZ chain (2.1) for � = 4.5 in the (E,H/J ) plane. For E = 0
the phase transitions occur at Hl/J = 2.637 . . . and Hu/J = � +
1 = 5.5. For E > El there does not exist any Néel ordering.

critical fields:

Hu/J = � +
√

1 + E2, (2.10a)

Hl/J = sh η

∞∑
k=−∞

(−1)k

ch (kη)
, (2.10b)

where ch η = �̃ = �/
√

1 + E2 is an appropriate
parametrization of the anisotropy �̃ � 1, i.e.,
E � El = √

�2 − 1. For E > El the electric field is
too large for Néel ordering.

III. RESULTS

A. Free-fermion case

As known, in case of zero anisotropy � = 0, the S = 1/2
XXZ chain reduces to the much simpler XX chain which, in
turn, can be solved exactly by mapping it onto a free-fermion
system by means of the Jordan-Wigner transformation.40 The
XX chain with the DM term is also exactly solvable within
this context.41–44 Thus, starting with the Hamiltonian (2.1)
with � = 0 and performing a Jordan-Wigner transformation
to free fermions,

S+
n =

n−1∏
j=1

(1 − 2c+
j cj )c+

n , (3.1a)

S−
n =

n−1∏
j=1

(1 − 2c+
j cj )cn, (3.1b)

Sz
n = c+

n cn − 1/2, (3.1c)

where c+
n and cn are creation and annihilation operators

of spinless fermions obeying the standard anticommutation
relations, {cn,cm} = 0, {c+

n ,cm} = δnm; one arrives at the
following free-fermion Hamiltonian:

HXX-DM = NH

2
− H

N∑
n=1

c+
n cn + J

2

N∑
n=1

((1 + iE)c+
n cn+1

+ (1 − iE)c+
n+1cn). (3.2)

Here, as usual, periodic boundary conditions are assumed.
Then, the Fourier transform diagonalizes the Hamiltonian and
yields

HXX-DM =
∑

k

εk(c+
k ck − 1/2), (3.3a)

εk = −H + J (cos k + E sin k). (3.3b)

For the free-fermion picture of the model under consideration,
one can easily obtain all thermodynamic functions in the
thermodynamic limit in the form of integrals over the one-
dimensional Brillouin zone, k ∈ [−π,π ] (see, for example,
Ref. 45). So, one gets for the free energy f per spin, the
magnetization M , the polarization P , and the magnetoelectric
tensor α:

f (T ,H,E) = 1

2π

∫ π

−π

(
εk

2
+ T log(nk)

)
dk, (3.4a)

M(T ,H,E) = 1

2π

∫ π

−π

(nk − 1/2) dk, (3.4b)

P (T ,H,E) = − 1

2π

∫ π

−π

(nk − 1/2) sin k dk, (3.4c)

α(T ,H,E) = − 1

2πT

∫ π

−π

nk(1 − nk) sin k dk, (3.4d)

where nk = 1/(1 + eεk/T ) are the occupation numbers of
spinless fermions.

Figure 2 shows the dependence of the magnetization M

and the polarization P on the magnetic field H for different
values of the electric field E in units of J and for very
low temperature. The phase transitions at the corresponding
values of H = Hu = √

1 + E2 can be observed. All critical
exponents are 1/2. The curves in Fig. 2 are obtained by the
method described in the next section and in Appendix A; see,
for instance, Eqs. (3.5) and (3.7). Similarly, direct numerical
calculation of the same quantities by computing the integrals
on the right- hand side of Eq. (3.4) produce data with
deviations smaller than 10−6.
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FIG. 2. (Color online) Magnetization M and polarization P as
functions of the magnetic field H for anisotropy � = 0, temperature
T/J = 0.01, and different values of the electric field E = 0,1,2,3.
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B. General case

It is convenient to express the magnetization and the
polarization in terms of static short-range correlation functions
of the XXZ chain. Using Eqs. (2.7a), (2.8b), and (2.9) as well
as the translational invariance of the Hamiltonian (2.4) one
obtains

M(T ,H,E) = 〈
Sz

1

〉
, (3.5a)

P (T ,H,E) = − E√
1 + E2

〈
Sx

1 Sx
2 + S

y

1 S
y

2

〉
. (3.5b)

Due to recent progress in the theory of integrable models,
static short-range correlation functions of the XXZ chain can
be calculated exactly. It can be shown that all static correlation
functions of the one-dimensional XXZ model can be expressed
as polynomials in the derivatives of three functions46 ϕ, ω, and
ω′ which are determined by solutions of certain numerically
well-behaved linear and nonlinear integral equations.47 In
Appendix A we give the definitions of these functions in
the massive case �̃ > 1.48 In the critical case 0 � �̃ < 1 the
definitions are quite similar.49

Employing the short-hand notations,

ϕ(n) = ∂n
x ϕ(x)|x=0, (3.6a)

f(m,n) = ∂m
x ∂n

y f (x,y)|x=y=0 for f = ω,ω′, (3.6b)

we obtain48 〈
Sz

1

〉 = −1

2
ϕ(0), (3.7a)

〈
Sx

1 Sx
2

〉 = 〈
S

y

1 S
y

2

〉 = − ω(0,0)

8 sh η
− ch η ω′

(1,0)

8η
, (3.7b)

where the parameter η is defined by �̃ = ch η for �̃ > 1, i.e.,
E <

√
�2 − 1. Similar expressions can be obtained for the

case 0 � �̃ < 1,49 i.e., E >
√

�2 − 1.
Combining Eqs. (3.7), (3.5), and (2.8c) the magnetization,

the polarization, and thereby the magnetoelectric tensor can be
calculated exactly for all temperatures over the whole range of
the phase diagram Fig. 1.

By solving the linear and nonlinear integral equations of
Appendix A, the MEE parameters M , P , and α of Eqs. (3.5a),
(3.5b), and (2.8c), respectively, can be calculated with high
numerical accuracy.

Figure 3 shows these three quantities as functions of
the magnetic field for very low temperatures and different
values of the electric field. The phase transitions at the
corresponding values of the magnetic field (see Fig. 1) can
be easily observed. Interestingly, in the Tomonaga-Luttinger
liquid phase, the electric polarization P is a nonmonotonic
function of the magnetic field H whereas it is constant,
P �= 0, in the Néel-ordered phase and vanishing in the fully
polarized ferromagnetic phase. Here, the critical exponents
characterizing the magnetic field dependence of the electric
polarization in the vicinity of critical values of the magnetic
field, H = Hl(E) and H = Hu(E), are all equal to 1/2,

P ∼ (H − Hl)
1/2 , (3.8a)

P ∼ (Hu − H )1/2 . (3.8b)

This can be also observed by the van Hove–like singular-
ities of the magnetoelectric tensor α(H ). We evaluated the

0.0

0.1

0.2

0.3

0.4

0.5

M
(H

)

Δ = 4.5
T/J = 0.001
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FIG. 3. (Color online) Magnetization M , polarization P , and
magnetoelectric tensor α as functions of the magnetic field H for
anisotropy � = 4.5, temperature T/J = 0.001, and different values
E = 0.1,1,2,3,4. In the inset of the third panel the two data sets
J∂H P and ∂EM are compared, both obtained numerically using the
five-point stencil algorithm of the first derivative.

magnetoelectric tensor α(T ,H,E) by numerical derivatives of
P and M with respect to H and E, respectively [see Eqs. (1.1)
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FIG. 4. (Color online) Temperature dependence of the magneto-
electric tensor α for E = 1 and � = 4.5 close to the critical point
H ≈ 1.95J . The square-root singularity for T = 0 decays rapidly
with increasing temperature.

or (2.8c)]. In the inset of Fig. 3 it is shown that both data sets
coincide.

Figure 4 illustrates the temperature-driven melting of the
singularity of the magnetoelectric tensor as a function of the
magnetic field. The values E = 1 of the electric field and
T = 0.001 J of the temperature belong to the red curve of the
third panel of Fig. 3. With increasing temperature the curve
becomes more and more flat. Note that the temperature in Fig. 4
is only slightly increased. For T = 0.03 J 
 J , for instance,
there is no longer any indication of singular behavior. The two
curves J∂HP and ∂EM would overlay exactly such that only
one of them is shown.

In Fig. 5 the temperature dependence of the electric
polarization and the magnetoelectric tensor are displayed. The
values of the electric and magnetic field are chosen in a way
such that the different ground-state phases are represented
(see Fig. 1), just below and above the critical lines. All
curves show nonmonotonic behavior and go to zero in the
infinite-temperature limit. In the zero-temperature limit the
magnetoelectric tensor vanishes in the Néel-ordered and in
the fully polarized ferromagnetic phase, whereas it remains
constant in the Tomonaga-Luttinger liquid.

Figure 6 shows the dependence of the magnetization M

and the polarization P on the electric field E for fixed values
of the magnetic field H , again for very low temperatures. For
higher temperatures the cusps smooth out. Phase transitions
only occur in the regimes (see Fig. 1 with � = 4.5):

H/J < Hl(E = 0)/J = 2.637 . . . , (3.9a)

H/J > Hu(E = 0)/J = � + 1 = 5.5. (3.9b)

Here, the singularities are described by three different expo-
nents. In most cases one can observe square-root behavior.
This is always the case for the magnetization. However, for
the special value of magnetic field H/J = 1 + �, which
corresponds to the transition from the Tomonaga-Luttinger
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0.0

0.2

10−3 10−2 10−1 100 101

T/J

J
α
(T

)

Δ = 4.5
E = 1

H/J = 2.0
H/J = 1.9
H/J = 5.9
H/J = 6.0
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H/J = 5.9

FIG. 5. (Color online) Temperature dependence of the electric
polarization P and the magnetoelectric tensor α close to the critical
points H/J ≈ 1.95 and H/J = 4.5 + √

2 (see Fig. 1).

liquid phase to the fully polarized ferromagnetic phase at zero
electric field, the electric polarization grows quadratically in E.

This can be explained as follows. The critical behavior of
the correlation function 〈Sx

1 Sx
2 〉 for fixed E as function of the

magnetic field H is 〈Sx
1 Sx

2 〉 ∼ √
Hu − H for H � Hu. The

gap between the fixed value H = � + 1 and Hu(E) = � +√
1 + E2 is quadratic in E. Therefore, the critical behavior

is
√

Hu − H ∼ E. Due to the prefactor in Eq. (3.5b) one
eventually obtains

P (E)|H=�+1 = − 2E√
1 + E2

〈
Sx

1 Sx
2

〉∣∣
H=�+1 ∼ E2. (3.10)

In addition to that, the polarization as a function of the
external electric field can also exhibit linear behavior with
further transition to the square-root form, at the values of E

corresponding to the transition from the Néel-ordered phase
to the Tomonaga-Luttiger liquid phase. Thus, one can define
the critical exponent δE which characterizes the behavior of
the polarization on its corresponding conjugate field (electric
field),

P ∼ |E − Ec|δE , δE = 1/2,1,2. (3.11)
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FIG. 6. (Color online) Electric field dependence of the magne-
tization M and the polarization P for different fixed values of the
magnetic field H at very low temperature T/J = 0.001. The values
H/J = 2.637 and H/J = 5.5 correspond to the phase transitions
from the Néel-ordered ground state to the Tomonaga-Luttinger
liquid and from the Tomonaga-Luttinger liquid to the fully polarized
ferromagnetic state, respectively (see Fig. 1).

The limiting value of P (E) for E → ∞ can also be
understood. Due to Eqs. (2.4) and (2.6) the model reduces in
this limit to a free-fermion model with H → 0. The rescaling
J̃ → J yields

H → J

N∑
n=1

(
Sx

nSx
n+1 + Sy

nS
y

n+1

)
. (3.12)

Then, the free energy per lattice site follows from Eq. (3.4a)
and is given by

f (T ,H,E) = −T

π

∫ π

0
log

[
2 cosh

(
J cos k

2T

)]
dk. (3.13)

Hence, the partition function Z = Tr(e−H/T ) = e−F/T with
f = F/N and the nearest-neighbor correlation functions can

be calculated in the low-temperature limit,〈
Sx

1 Sx
2

〉 = − T

2N

∂ log (Z)

∂J
= 1

2

∂f

∂J

= − 1

4π

∫ π

0
tanh

(
J cos k

2T

)
cos k dk,

T →0−−→ − 1

4π

∫ π

0
| cos k| dk = − 1

2π
. (3.14)

Therefore, P (E) → 1/π for E → ∞ and T → 0.

IV. DISCUSSIONS AND CONCLUSION

The system considered in the present paper, being an
integrable one, allowed us to obtain an exact description of the
MEE by means of QTM and NLIE techniques. We considered
a microscopic dielectric polarization to be proportional to
the antisymmetric product of x and y components of the
spins from two adjacent sites, i.e., to a spin current jz.
This mechanism, which is known as a KNB mechanism,6 is
realized in several one-dimensional magnetic materials.11–21

In our model, however, we have to impose a restriction in
order to preserve integrability. While the standard model to
describe the MEE in one-dimensional magnetic materials
with the KNB mechanism is the J1-J2 chain, Eq. (1.4), we
consider an ordinary XXZ chain in a magnetic field with DM
terms, Eq. (2.1). The DM terms describe a local dielectric
polarization where the corresponding coefficient is the electric
field magnitude E in appropriate units.

The main objects of our investigation are the magnetization
M and the dielectric polarization P , which are the thermal av-
erages of the operators

∑N
n=1 Sz

n and
∑N

n=1(Sy
nSx

n+1 − Sx
nS

y

n+1),
respectively. As a main result the exact finite-temperature plots
of M(T ,H,E) and P (T ,H,E) have been obtained, especially
in the low-temperature regime. Below we summarize the most
interesting features of these plots.

As we mapped the system with DM interaction onto the
ordinary XXZ chain, where E enters the effective coupling
constant J̃ (E) and effective anisotropy �̃(E), the magneti-
zation curves M(H ) at fixed values of T and E (see Fig. 3,
upper panel) do not show any great difference from those of
the conventional XXZ chain.29 The polarization as a function
of magnetic field at constant values of temperature and electric
field exhibits nonmonotonic behavior (see Fig. 3, middle
panel).

Since we chose a large anisotropy � = 4.5, one can
distinguish three possible parts of the polarization curve
corresponding to the Néel-ordered phase, Tomonaga-Luttinger
massless regime, and fully polarized spin configuration of the
effective XXZ chain, respectively. All these three regimes
are easily recognizable in the middle panel of Fig. 3. At
low values of H , when the system is in the Néel-ordered
ground state, the polarization P (H ) is constant and thus
starts with a plateau. One can also observe the effect of the
electric field on the polarization P (H ). With increasing value
of E the plateau becomes shorter and higher. In the limit
E → ∞ the effective anisotropy parameter �̃ = 1/

√
1 + E2

becomes zero, which means M = 0 and P = Pmax = 1/π for
H = 0. The second segment of the magnetic field-dependent
polarization corresponds to the Tomonaga-Luttinger regime of
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the effective XXZ chain. This part of the polarization curve is
a dome which starts at the plateau and ends at the value P = 0
corresponding to the fully polarized ground state of the spin
system. The values of the critical exponents corresponding to
the two critical values of H (transitions from the Néel-ordered
ground state to the Tomonaga-Luttinger regime and from the
Tomonaga-Luttinger regime to the fully polarized spin state)
are equal to 1/2.

A feature of the model under consideration is the vanish-
ing polarization P (H ) at E = 0. There only exists mutual
influence of electric and magnetic properties of the model
for E �= 0. With respect to the electric properties the system
does not show ferroic order, but is a conventional “dielectric”
system which acquires polarization in an external electric field.
However, this dielectric polarization is strongly affected by
the external magnetic field as well, which is the MEE one can
observe in our system.

Looking at the dependence of the magnetoelectric tensor
α on the magnetic field H (see Fig. 3, lower panel) one can
easily identify the zero-temperature phase transitions between
Néel, Tomonaga-Luttinger, and fully polarized ground states
by the singular peaks. For sufficiently large H the polarization
is zero due to the transition to the fully polarized ferromagnetic
state. The magnetoelectric tensor has a negative peak at this
transition point. In addition to that, the absolute magnitude of
this peak is larger than that of the positive peak corresponding
to the transition from the Néel-ordered to the Tomonaga-
Luttinger liquid state. This indicates a more dramatic drop
of polarization for upper critical magnetic fields compared
to its rise for the lower critical fields. However, the type of
singularity in both cases is the same with critical exponent
equal to 1/2, i.e., α ∼ |H − Hc|−1/2.

The behavior of the polarization as a function of electric
field is strongly affected by the magnetic field (see Fig. 6,
lower panel). Even at vanishing magnetic field it exhibits
nontrivial behavior during the whole process of polarization.
The polarization increases linearly for small values of E

followed by a smooth curve approaching its saturated value
1/π in the limit E → ∞. Switching on a magnetic field causes
essential changes in the course of the polarization curve. For
low magnetic fields the polarization starts linearly as in the
H = 0 case, but changes to a square-root behavior at the value
of E corresponding to the transition from Néel-ordered ground
state to Tomonaga-Luttinger liquid phase. At this point the
polarization curve has a cusp. For intermediate values of the
magnetic field the system starts with a Tomonaga-Luttinger
liquid phase, and the increase of E does not drive the
system to another ground state. One can observe monotonic
increase of the polarization with linear behavior at small
E. At the special value of H corresponding to the critical
value of the transition between the Tomonaga-Luttinger liquid
phase and fully polarized spin configuration at E = 0, i.e.,
H = (� + 1)J , one gets quadratic behavior for small E.
Finally, for sufficiently large magnetic fields, when the system
starts at the fully polarized magnetic configuration, the electric
polarization vanishes. This changes dramatically to a square-
root increase at the point of quantum phase transition to
the Tomonaga-Luttinger liquid state. To summarize one can
distinguish four different behaviors of the polarization P (E):
linear followed by a cusp for 0 < H < Hl , linear with a smooth

increase for H = 0 or Hl � H < Hu, quadratic for H = Hu,
and vanishing followed by a cusp for H > Hl .

Finally, the temperature dependencies of the polarization
P and of the magnetoelectric tensor α illustrate another
interesting feature (see Fig. 5). In the vicinity of quantum
critical points the temperature dependence of the polarization
is nonmonotonic. The most intriguing feature shows the curve
for H = 6J and E = 1, where at low temperatures polariza-
tion is absent (P = 0). Then, at intermediate temperatures the
polarization curve rises up to values of about 0.065. Eventually,
it drops to zero for high temperatures. Thus, starting from
zero temperature and increasing it continuously, the system
exhibits a broad polarization peak over almost five orders of
magnitude. Here, the values of magnetic and electric fields
correspond to the fully polarized ferromagnetic phase just
above the critical line. The temperature dependence of the
magnetoelectric tensor, which is presented in the lower panel
of Fig. 5, is also nonmonotonic and indicates the different
regimes of the system response.

Although the system considered in the present paper
exhibits MEE and also demonstrates a number of interesting
features like many regimes of polarization and a thermally
activated peak, it does not exhibit ferroelectric polarization,
which means that P is always zero, unless E �= 0. In order to
obtain more interesting and richer features like double ferroic
order or induction of polarization only by the magnetization
and/or by the magnetic field within the KNB mechanism, one
should consider more sophisticated models. One way which
seems straightforward to us is to include microscopic interac-
tions between local order parameters, e.g., local magnetization
and local polarization. One example is

Hint ∼
N∑

n=1

(
Sx

nS
y

n+2 − Sy
nSx

n+2

)
Sz

n+1. (4.1)

The local polarization is composed according to the KNB
mechanism and includes next-to-nearest-neighbor spin inter-
actions. Three-site interactions recently received considerable
attention in a bit diverse context.45,50–54 It was shown by
Suzuki in Ref. 50 that there is a series of spin chains with
multiple-site interactions of a special kind, which can be
mapped onto free spinless fermions via the Jordan-Wigner
transformation. Unfortunately, the S = 1/2 XXZ chain with
three-site spin-interaction terms given by Eq. (4.1) is no
longer integrable. One has to restrict oneself to the XY
chain with corresponding terms45,50–54 or has to implement
numerical simulations. Another obvious nontrivial choice of
local interaction between magnetization and polarization is∑N

n=1 pnmn+1. However, in this case even the corresponding
XX model is not exactly solvable.

Another possibility to construct the model exhibiting the
double ferroic order and MEE within the integrable systems
is to consider rather sophisticated spin chains with special
three-spin interaction discussed in Ref. 55. These models seem
to be very promising by means of the MEE because of the
local interaction between microscopic magnetic and dipole
moments presented in their Hamiltonians (if one supposes that
the KNB mechanism is realized in the system). This argument
allows us to hope that the models could possess a ferroelectric
phase generated by the magnetic field solely. All these ideas
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conveyed above could be the guide line to further developments
in the MEE and multiferroics of integrable systems.
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APPENDIX: EXACT DETERMINATION OF
CORRELATION FUNCTIONS

The functions ϕ, ω, and ω′ that determine all static
correlation functions of the XXZ chain are defined in terms of
solutions of linear and nonlinear integral equations. They were
termed the physical part of the problem,47 since the physical
parameters like temperature or magnetic field enter solely
through these functions. We provide their definitions only for
the case �̃ > 1. The definitions for the case −1 < �̃ < 1 can
be found in Ref. 49.

First of all let us define a basic pair of auxiliary functions
as the solution of the nonlinear integral equations,48

log b(x) = −2J̃ sh(η)

T
d(x) − H

2T
+ κ ∗ log (1 + b) (x)

− κ− ∗ log(1 + b)(x), (A1a)

log b(x) = −2J̃ sh(η)

T
d(x) + H

2T
+ κ ∗ log(1 + b)(x)

− κ+ ∗ log (1 + b) (x), (A1b)

where we denote with ∗ the convolution (f ∗ g)(x) =
1
π

∫ π/2
−π/2 f (x − y)g(y)dy. Here we introduced the parameter

η defined by �̃ = ch(η). Equation (A1) is valid for all η � 0
meaning that �̃ > 1. The driving term d is given by its Fourier
series,

d(x) =
∞∑

k=−∞

e2ikx

ch(ηk)
. (A2)

Note that the physical parameters temperature T , magnetic
field H , and coupling J̃ enter only through the driving terms
of Eq. (A1) into our formulas. The kernels κ and κ± are
given by

κ(x) =
∞∑

k=−∞

e−η|k|+2imkx

2 ch(ηk)
, (A3a)

κ±(x) = κ(x ± iη−), (A3b)

where η− = η − ε with an arbitrary small number ε > 0.
Except for the auxiliary functions b and b we need two

more pairs of functions g(±)
μ and g′(±)

μ in order to define ϕ, ω,
and ω′. Both pairs satisfy linear integral equations involving b

and b,

g+
ν (x) = −d(x − ν) + κ ∗ g+

ν

1 + b−1
(x) − κ− ∗ g−

ν

1 + b
−1 (x),

(A4a)

g−
ν (x) = −d(x − ν) + κ ∗ g−

ν

1 + b
−1 (x) − κ+ ∗ g+

ν

1 + b−1
(x),

(A4b)

g′+
ν (x) = −c+(x − ν) + κ ∗ g′+

ν

1 + b−1
(x) − κ− ∗ g′−

ν

1 + b
−1 (x)

+ l ∗ g+
ν

1 + b−1
(x) − l− ∗ g−

ν

1 + b
−1 (x), (A4c)

g′−
ν (x) = −c−(x − ν) + κ ∗ g′−

ν

1 + b
−1 (x) − κ+ ∗ g′+

ν

1 + b−1
(x)

+ l ∗ g−
ν

1 + b
−1 (x) − l+ ∗ g+

ν

1 + b−1
(x). (A4d)

The functions l and c± are again given by their Fourier series,

l(x) =
∞∑

k=−∞

sign(k)e2ikx

4 ch2(ηk)
, l±(x) = l(x ± iη−),

(A5)

c±(x) = ±
∞∑

k=−∞

e±ηk+2ikx

2 ch2(ηk)
,

where we set sign(0) = 0 for the sign function.
The functions ϕ(μ), ω(μ1,μ2), and ω′(μ1,μ2) that deter-

mine the explicit form of the correlation functions of the XXZ
chain can be written as integrals involving b, b, g(±)

μ , and g′(±)
μ .

The function,

ϕ(ν) = 1

2π

∫ π/2

−π/2

(
g−

ν̃ (x)

1 + b(x)−1
− g+

ν̃ (x)

1 + b(x)−1

)
dx, (A6a)

determines the magnetization M(T ,H ) = − 1
2ϕ(0) which is

the only independent one-point function of the XXZ chain.
The function,

ω(ν1,ν2) = −4κ (̃ν2 − ν̃1) + K̃η (̃ν2 − ν̃1)

− d ∗
(

g+
ν̃1

1 + b−1
+ g−

ν̃1

1 + b
−1

)
(̃ν2), (A6b)

also determines the energy per lattice site of the XXZ chain,
〈sx

j−1s
x
j + s

y

j−1s
y

j + �sz
j−1s

z
j 〉 = sh(η)ω(0,0)/4. The function

ω′(μ1,μ2) is defined as

ω′(ν1,ν2)

η
= −4l(̃ν2 − ν̃1) + L̃η (̃ν2 − ν̃1)

− d ∗
(

g′+
ν̃1

1 + b−1
+ g′−

ν̃1

1 + b
−1

)
(̃ν2)

− c− ∗ g+
ν̃1

1 + b−1
(̃ν2) − c+ ∗ g−

ν̃1

1 + b
−1 (̃ν2),

(A6c)
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where we set ν̃ = −iν and ν̃j = −iνj . The functions K̃η and
L̃η are determined by

K̃η(x) = sh(2η)

2 sin(x + iη) sin(x − iη)
, (A7a)

L̃η(x) = i sin(2x)

2 sin(x + iη) sin(x − iη)
. (A7b)

For the calculation of the magnetization and the polariza-
tion, the nonlinear integral equations for b and b as well as their
linear counterparts for g(±)

μ and g′(±)
μ were solved iteratively

in Fourier space utilizing the fast Fourier transformation
algorithm. The derivatives of g(±)

μ and g′(±)
μ with respect to

μ, needed in the computation of the derivative of ω′ satisfy
linear integral equations as well, which were obtained as
derivatives of the equations for g(±)

μ and g′(±)
μ . Taking into

account derivatives is particularly simple in Fourier space.
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A. Weiße, J. Stat. Mech.: Theor. Exp. (2008) P08010.
50M. Suzuki, Prog. Theor. Phys. 46, 1337 (1971).
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H. Frahm and C. Rödenbeck, Eur. Phys. J. B 10, 409 (1999);
H. Frahm, J. Phys. A: Math. Gen. 25, 1417 (1992); N. Muramoto

and M. Takahashi, J. Phys. Soc. Jpn. 68, 2098 (1999).

054407-9

http://dx.doi.org/10.1070/RC2011v080n12ABEH004239
http://dx.doi.org/10.1080/00018730902920554
http://dx.doi.org/10.1038/nmat1804
http://dx.doi.org/10.1088/0022-3727/38/8/R01
http://dx.doi.org/10.1063/1.3173203
http://dx.doi.org/10.1103/PhysRevLett.95.057205
http://dx.doi.org/10.1103/PhysRevLett.95.057205
http://dx.doi.org/10.1103/PhysRevB.73.094434
http://dx.doi.org/10.1103/PhysRevB.76.144424
http://dx.doi.org/10.1103/PhysRevB.76.144424
http://dx.doi.org/10.1103/PhysRevLett.96.067601
http://dx.doi.org/10.1103/PhysRevB.83.174432
http://dx.doi.org/10.1038/nature02018
http://dx.doi.org/10.1103/PhysRevLett.92.257201
http://dx.doi.org/10.1103/PhysRevLett.92.257201
http://dx.doi.org/10.1103/PhysRevLett.95.087205
http://dx.doi.org/10.1103/PhysRevLett.97.097203
http://dx.doi.org/10.1103/PhysRevLett.97.097203
http://dx.doi.org/10.1103/PhysRevLett.100.127201
http://dx.doi.org/10.1103/PhysRevLett.98.057601
http://dx.doi.org/10.1103/PhysRevLett.98.057601
http://dx.doi.org/10.1103/PhysRevB.85.054421
http://dx.doi.org/10.1143/JPSJ.77.023712
http://dx.doi.org/10.1143/JPSJ.76.023708
http://dx.doi.org/10.1103/PhysRevB.77.144101
http://dx.doi.org/10.1103/PhysRevB.77.144101
http://dx.doi.org/10.1103/PhysRevB.82.064424
http://dx.doi.org/10.1103/PhysRevB.82.064424
http://dx.doi.org/10.1103/PhysRevB.84.224409
http://dx.doi.org/10.1103/PhysRevB.84.214438
http://dx.doi.org/10.1103/PhysRevB.84.214438
http://dx.doi.org/10.1103/PhysRevB.85.014407
http://dx.doi.org/10.1103/PhysRevB.85.064420
http://dx.doi.org/10.1103/PhysRevB.85.140410
http://dx.doi.org/10.1103/PhysRevB.81.014419
http://arXiv.org/abs/arXiv:1101.2067
http://dx.doi.org/10.1007/s100510050491
http://dx.doi.org/10.1007/BFb0119598
http://dx.doi.org/10.1088/1742-5468/2006/12/P12014
http://dx.doi.org/10.1088/1742-5468/2006/12/P12014
http://dx.doi.org/10.1088/1742-5468/2007/08/P08030
http://dx.doi.org/10.1088/1742-5468/2007/08/P08030
http://dx.doi.org/10.1063/1.2747066
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.012
http://dx.doi.org/10.1103/PhysRevB.81.054402
http://dx.doi.org/10.1103/PhysRevB.81.054402
http://dx.doi.org/10.1007/BF01020284
http://dx.doi.org/10.1103/PhysRevB.62.R751
http://arXiv.org/abs/arXiv:0812.1862
http://dx.doi.org/10.1103/PhysRevB.84.174420
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1143/JPSJ.75.104711
http://dx.doi.org/10.1103/PhysRevB.73.214407
http://dx.doi.org/10.1103/PhysRevB.73.214407
http://dx.doi.org/10.1088/0953-8984/12/40/310
http://dx.doi.org/10.1088/0953-8984/12/40/310
http://dx.doi.org/10.1103/PhysRevB.59.100
http://dx.doi.org/10.1140/epjb/e2012-30359-8
http://dx.doi.org/10.1140/epjb/e2012-30359-8
http://dx.doi.org/10.1088/1751-8113/42/30/304018
http://dx.doi.org/10.1088/1751-8113/42/31/315001
http://dx.doi.org/10.1140/epjb/e2009-00417-7
http://dx.doi.org/10.1140/epjb/e2009-00417-7
http://dx.doi.org/10.1088/1742-5468/2008/08/P08010
http://dx.doi.org/10.1143/PTP.46.1337
http://dx.doi.org/10.1103/PhysRevB.60.9232
http://dx.doi.org/10.1103/PhysRevB.70.064405
http://dx.doi.org/10.1103/PhysRevB.70.064405
http://dx.doi.org/10.1103/PhysRevB.77.174404
http://dx.doi.org/10.1103/PhysRevB.77.174404
http://dx.doi.org/10.1103/PhysRevB.79.094410
http://dx.doi.org/10.1103/PhysRevB.79.094410
http://dx.doi.org/10.1103/PhysRevB.68.144426
http://dx.doi.org/10.1007/s100510050870
http://dx.doi.org/10.1007/s100510050870
http://dx.doi.org/10.1088/0305-4470/25/6/005
http://dx.doi.org/10.1143/JPSJ.68.2098



