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Free energy of mean-field spin-glass models: Evolution operator and perturbation expansion
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The full mean-field solution of spin glass models with a continuous order-parameter function is not directly
available and approximate schemes must be used to assess its properties. One of the authors recently proposed
a representation of the free energy generating this solution via an evolution operator parametrized by attainable
values of overlap of magnetizations between different states. Here, we introduce a perturbation expansion for the
evolution operator that we use to derive all thermodynamic characteristics via the standard methods of statistical
mechanics. We obtain a generic scheme for an approximate calculation of physical quantities of different
mean-field spin-glass models at all temperatures. The small expansion parameter is a difference between the
continuous order-parameter function and the corresponding order parameter from the solution with one level of
replica-symmetry breaking. The first correction beyond the approximation with one level of replica-symmetry
breaking is explicitly evaluated in the glassy phase of the Sherrington-Kirkpatrick model.
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I. INTRODUCTION

Strongly disordered and frustrated spin systems, the promi-
nent examples of which are spin glasses, display a complicated
low-temperature behavior. Due to frustration, the standard
homogeneous long-range orders are precluded and replaced
by orderings with peculiar properties. First of all, the low-
temperature phase shows everywhere ergodicity breaking that
cannot be removed or circumvented by the application of
external fields or measurable sources.1 The free energy of such
systems manifests in low temperatures a complex landscape
with almost degenerate metastable states the description of
which demands advanced mathematical tools.2 The usual way
to handle the low-temperature behavior of spin glasses and
other frustrated systems is the replica trick transforming static,
quenched averaging to a dynamical, annealed one.3 The limit to
zero of the replication index (number of replicas) in physical
quantities does not, however, work as a simple perturbation
(loop) expansion as initially introduced. One has to use
nonperturbative techniques to reach a thermodynamically
consistent solution in the limit of zero replicas. Parisi found
a way how to break the symmetry of the order parameters in
the replicated space of a mean-field Sherrington-Kirkpatrick
model.4 The dependence of the thermodynamic equilibrium
state of spin glasses on the replication index and the structure
of the order parameters in the replicated phase space reflects
volatility of the thermodynamic limit to boundary conditions
or the initial state used for the equilibration process. This is
demonstrated by the concept of real replicas used to reconstruct
homogeneity of the free energy in mean-field spin-glass
models.5

A thermodynamically consistent mean-field solution of
spin glass models with the full, continuous replica-symmetry
breaking (RSB) cannot be reached directly but only via
either an iterative scheme or a perturbation expansion. The
most direct way to approach the solution with a continuous
replica-symmetry breaking is to use discrete hierarchies of
mathematical replicas. It is, however, almost impossible
to go quantitatively beyond a two-level (2RSB) solution.4

Moreover, approximations with finite numbers of replica
hierarchies replace the continuous order-parameter function

by a set of delta functions from which one cannot deduce a
detailed structure of the distribution of the equilibrium order
parameters. Alternatively, one can expand the full solution near
the critical transition point to the spin-glass phase.6–8 Presently,
the most advanced construction of the solution with continuous
RSB is a high-order perturbation expansion of a solution of
the Parisi nonlinear differential equation resolved numerically
by means of a pseudospectral code and Padé approximants.9

These expansions are applicable only to continuous transitions
and to temperatures not too far below the critical point.

Only a few attempts have been undertaken to determine the
structure of the solution with full continuous RSB at very low
temperatures of the Sherrington-Kirkpatrick model. Iterative
solutions with a high number of replica hierarchies were
proposed either with the aid of the renormalization group10

or an expansion around the spherical model,11 or the replica-
symmetric solution.12 They all try to assess the impact of the
continuous order-parameter function and make conclusions
on low-temperature properties of the Sherrington-Kirkpatrick
model. These approaches rely on the replica trick and a smooth
transition from the replica-symmetric to the full RSB solution.

There are generalized spin-glass models with a structure
of the phase space of the order parameters differing from that
of the Ising spin glass. The mean-field solutions of the Potts
glass,13 p-spin glass,14 or quadrupolar glass15 show intervals
of temperature where a first step toward the Parisi solution
in the replica trick, the so-called one-level replica symmetry
breaking (1RSB), is locally stable and for some parameters,
the transition to the glassy phase is discontinuous. Except
for an asymptotic expansion near the continuous transition
to the glassy phase of the Potts model,16 there are no other
approaches that could describe the coexistence and transitions
between the 1RSB and continuous RSB solutions in these
models, particularly at low temperatures.

The aim of this paper is to develop an approximate scheme
that would be able to interpolate between the 1RSB and the
full continuous RSB solutions in general mean-field spin-glass
models. We start with an explicit representation of the free
energy with a continuous order-parameter function via an
evolution operator from Ref. 17 where we rescale its variables
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so that the zero-temperature limit is directly accessible. To
allow for the limit to zero temperature, we will have to
peel off the part corresponding to the 1RSB solution from
the full free energy. We then obtain a suitable form of free
energy that will allow us to introduce a perturbation expansion
around the 1RSB solution in powers of the continuous
order-parameter function, or better, of its correction to the
respective order parameter from the 1RSB solution. The
expansion of the free energy from Ref. 17 in powers of
the continuous order-parameter function leads to a series of
approximate free energies from which we derive directly
approximate expressions for all thermodynamic quantities
such as entropy, specific heat, or magnetic susceptibility
without the necessity to refer to the replica representation.
Such a succession of approximations can be viewed upon as
an alternative to the hierarchy of free energies with finite-
many hierarchies of replica-symmetry breaking (KRSB).
We evaluate the expansion explicitly in the first order and
determine thermodynamic properties of the solution of the
Ising spin glass without external magnetic field. We assess
reliability and accuracy of the approximation by comparing
its results with the high-order expansion around the critical
temperature to the glassy phase of Ref. 9 and with Monte Carlo
simulations.

We show in Sec. II how a free-energy functional containing
the 1RSB order parameters together with a continuous order-
parameter function can be derived from the limit of free
energies with finite-many hierarchies of replica generations
breaking the replica symmetry. We introduce the appropriate
scaling so that the limit to zero temperature can explicitly be
performed. Stationarity equations for the limiting free energy
without replicas are derived in Sec. III. The idea and relations
needed to construct a perturbation expansion around the 1RSB
solution in powers of the continuous order-parameter function
are presented in Sec. IV. The lowest-order approximation in
closed form is derived in Sec. V. Numerical results from the
first order of the perturbation expansion are presented and
compared with other methods in Sec. VI. We summarize the
salient properties of the approximate construction in the final
Sec. VII.

II. GENERATING FREE-ENERGY FUNCTIONAL

We cannot avoid introducing replicas and hierarchies of the
replicated phase space if we want to describe thermodynamic
equilibrium of glassy systems. Independently, whether we do
it via the replica trick and the replica symmetry breaking
scheme or via a successive use of real replicas of the phase
space to enforce thermodynamic homogeneity, we end up
with the same result when the replication index is analytically
continued to real numbers. The result is a series of free energy
densities labeled by a number K of replica hierarchies used.
Free energy with K replica hierarchies uses 2K + 1 order
parameters. We have �χl,ml with l = 1, . . . ,K , where �χl

stands for the overlap susceptibility between the original spins
and those from the lth hierarchical level and ml is a replication
index connected with the lth replica hierarchy. The remaining
parameter q is the averaged square of the local magnetization
after K replications. This free energy can be represented

explicitly as5

f K (q,�χ1, . . . ,�χK ; m1, . . . ,mK )

= − 1

β
ln 2 + β

4

K∑
l=1

ml�χl

[
2

(
q +

K∑
i=l+1

�χi

)
+ �χl

]

− β

4

(
1 − q −

K∑
l=1

�χl

)2

− 1

β

∫ ∞

−∞
Dη ln ZK, (1a)

where we used a sequence of partition functions

Zl =
(∫ ∞

−∞
Dλl Z

ml

l−1

)1/ml

. (1b)

The initial partition sum for the Ising spin glass reads Z0 =
cosh[β(h + η

√
q + ∑K

l=1 λl

√
�χl)]. It is the partition sum of

the original spin model affected by the interaction with the
replicated spins represented via fluctuating Gaussian fields
λ1, . . . ,λK . We denote the Gaussian normalized differential
Dλ ≡ dλ e−λ2/2/

√
2π .

The physical interpretation of free energy f K as discussed
in Ref. 17 is as follows. We take the partition sum of the
original model Z0, replicate it m1 times and average over the
spins from the first replica hierarchy. We downscale the result
by a power 1/m1 to keep the correct spin normalization. The
new effective partition function Z1 is replicated m2 times and
averaged over the spins from the second level of the replicated
spins. After downscaling, we go on with higher replica levels.
If a partition sum Zl is thermodynamically homogeneous, it
becomes independent of the scaling parameter ml+1. This just
happens if �χl+1 = 0. When not, we have to go to a higher
level of replica-symmetry breaking. Stationarity conditions
then only minimize deviations from the global homogeneity
and make free energy fK at least locally homogenous, that
is, with respect to infinitesimal variations of the replication
indices. The full RSB solution with a continuous order-
parameter function is then obtained in the limit K → ∞ with
�χl ∼ 1/K .

Before we proceed to the continuous limit, K → ∞, we
rescale the order parameters so that to simplify the explicit
temperature dependence and to allow for a straightforward
limit to low and eventually zero temperature. The explicit
limit to zero temperature can be performed if we rescale
the replication indices ml → μl = βml and set apart the first
overlap susceptibility and the replication index that we denote
χ0,μ0, respectively. The rescaled hierarchical free energy is

f K+1(q0,χ0,μ0; �χ1, . . . ,�χK ; μ1, . . . ,μK )

= − 1

β
ln 2 − β

4

(
1 − q0 − χ0 −

K∑
l=1

�χl

)2

+ 1

4
μ0χ0

[
2

(
q0 +

K∑
l=1

�χl

)
+ χ0

]

+ 1

4

K∑
l=1

μl�χl

[
2

(
q0 +

K∑
i=l+1

�χi

)
+ �χl

]
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− 1

μK

〈
ln

[〈
. . . 〈Z0(hη + λ

√
χ0

+�K )μ0/β〉μ1/μ0
λ . . .

〉μK/μK−1

λK

]〉
η
, (2)

where we denote hη ≡ h + η
√

q0, �K = ∑K
l=1 λl

√
�χl ,

〈X(λl)〉λl
= ∫ ∞

−∞ DλlX(λl), and relabel q → q0.
The asymptotic expansion near the critical temperature in

Refs. 6 and 7 proves that in the continuous limit K → ∞ we in-
deed have �χl = O(K−1) and �μl = μl − μl+1 = O(K−1).
We denote X = K−1 ∑K

l=1 �χl and x = K−1 ∑n
l=1 �χl for

x ∈ [n/K,(n + 1)/K]. Then the overlap susceptibilities �χl

are no longer order parameters in the continuous limit.
They only form an index set for the continuously distributed
replication indices μ(x). The generating free-energy functional
for the solution with continuous RSB can be represented as a
functional:17

f (q0,χ0,μ0; X,μ(x))

= − 1

β
ln 2 − β

4
(1 − q0 − χ0 − X)2

+ 1

4
μ0χ0 [2 (q0 + X) + χ0] + 1

2

∫ X

0
dxμ(x)

× [q0 + X − x] − 〈gμ(X,hη)〉η. (3)

The interacting part of the energy gμ(x,h) obeys a Parisi-like
nonlinear differential equation,

∂gμ(x,h)

∂x
= 1

2

[
∂2gμ(x,h)

∂h2
+ μ(x)

(
∂gμ(x,h)

∂h

)2 ]
, (4)

as can be determined from the limit K → ∞ in the same
manner as in Ref. 18. Its solution can conveniently be
represented as17

gμ(x,h) = E0(h; x,0) ◦ [gμ(h)]

≡ Ty exp

{
1

2

∫ x

0
dy

[
∂2
h̄

+ μ(y)g′
μ(y; h + h̄)∂h̄

]}
× gμ(h + h̄)|h̄=0, (5)

where we used prime to denote the derivative with respect to
the magnetic field h, g′

μ(y,h) ≡ ∂hgμ(y,h) and introduced a
“time-ordering” operatorTy ordering products of y-dependent
noncommuting operators from left to right in the y-decreasing
succession. The time-ordered exponential is then defined as a
power series of multiple integrals:

Ty exp

[∫ b

a

dyÔ(y)

]
≡ 1 +

∞∑
n=1

∫ b

a

dy1

∫ y1

a

dy2 . . .

∫ yn−1

0
dynÔ(y1) . . . Ô(yn).

Time-ordering operators are a standard tool in representing
quantum many-body perturbation expansions.

The initial interacting free energy being propagated by the
evolution operator E0(h; X,0) is the interacting part of the

1RSB free energy:

gμ(h) = 1

μ 0
ln

∫ ∞

−∞

dφ√
2π

e−φ2/2{cosh[β(h + φ
√

χ0)]}μ0/β .

(6)

To complete the expression for the free energy with
continuous RSB, we have to add an equation for function
g′

μ(x,h). From the definition of the evolution operator E0, we
obtain directly

∂gμ(x,h)

∂h
= E0(h; x,0) ◦ [g′

μ(h)] + 1

2

∫ x

0
dy μ(y)E0(h; x,y)

◦ [g′
μ(y,h)∂hg

′
μ(y,h)]. (7a)

The solution to this integral equation can be represented via the
fundamental evolution operator for this theory with a shifted
T -ordered exponential:

g′
μ(x,h) = E(h; x,0) ◦ [g′

μ(h)]

≡ Ty exp

{ ∫ x

0
dy

[
1

2
∂2
h̄

+μ(y)g′
μ(x,h + h̄)∂h̄

]}
g′

μ(h + h̄)|h̄=0. (7b)

The equilibrium state is a stationary solution of free energy
f (q0,χ0,μ0; X,μ(x)) from Eq. (3). It is invariant with respect
to infinitesimal variations of the scalar order parameters
q0,χ0,μ0,X and the continuous order-parameter function μ(x)
for x ∈ [0,X]. We can relate our variables with the standard
Parisi representation of the continuous order-parameter func-
tion qP (xP ) via a transformation xP → β−1[μ0 + μ(X − x)]
and qP (xP ) → q0 + χ0 + x.

III. STATIONARITY EQUATIONS

The advantage of the representation of the free energy with
a continuous RSB from Eqs. (3)–(7) is that we can derive the
stationarity equations in the standard way used in statistical
mechanics. Evaluating first the derivatives with respect to q0,
χ0, and μ0, we obtain

q0 = 〈g′
μ(X,hη)2〉η, (8a)

(μ0 − β)χ0 + β = 〈E(hη; X,0) ◦ [g′′
μ(h)]〉η

+β〈E(hη; X,0) ◦ [g′
μ(hη)2]〉η, (8b)

μ0

4
χ0[2(q0 + X) + χ0]

= 1

β
〈E(hη; X,0) ◦ [〈ρμ(hη,λ

√
χ0) ln cosh[β(hη

+ λ
√

χ0)]〉λ]〉η − 1

μ 0
〈E(hη; X,0)

◦ [ln〈coshμ0/β[β(hη + λ
√

χ0)]〉λ]〉η, (8c)

where we denote

ρμ(h,λ
√

χ0) = cosh[β(h + λ
√

χ0)]μ0/β

〈cosh[β(h + λ
√

χ0)]μ0/β〉λ . (9)

We already mentioned that the individual overlap susceptibili-
ties �χl are no longer variational parameters in the free energy
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with continuous RSB. But their sum X = K−1 ∑
l �χl is. A

stationarity equation for this parameter reads

X = 〈E(hη; X,0) ◦ [g′
μ(hη)2]〉η − 〈g′

μ(X,hη)2〉η. (10)

Finally, we have to use the stationarity condition for the free
energy from Eq. (3) with respect to infinitesimal variations of
the order-parameter function μ(x). It is easy to find that it can
be expressed as

x = 〈E(hη; X,0) ◦ [g′
μ(hη)2]〉η− 〈E(hη; X,x) ◦ [g′

μ(x,hη)2]〉η,
(11)

valid for any x ∈ [0,X]. Note that Eq. (11) for x = 0 is trivial
and for x = X coincides with Eq. (10). Hence only equations
for 0 < x < X bring new information for the determination of
μ(x).

There is no explicit dependence on μ(x) in Eq. (11). It
is hence difficult to use it for the determination of this order-
parameter function. Since this equation holds for any x, also its
derivative with respect to x must equally hold. The derivative
reads

1 = 〈E(hη; X,x) ◦ [g′′
μ(x,hη)2]〉η, (12)

which is just a condition for marginal stability of the solution
with continuous RSB.17 We recall that the prime stands for the
derivative with respect to the magnetic field.

Still, we did not yet obtain an explicit expression for the
function μ(x). Yet another differentiation is needed to obtain
an explicit expression for the order-parameter function being

μ(x) = 〈E(hη; X,x) ◦ [g′′′
μ (x,hη)2]〉η

2〈E(hη; X,x) ◦ [g′′
μ(x,hη)3]〉η . (13)

This equation will prove suitable for approximate evaluations.
It is also possible to use another derivative and to obtain an
explicit equation for μ̇(x) = dμ(x)/dx that corresponds to
−dxP /dqP in the Parisi notation and is interpreted as the
probability distribution of pure states.19 We obtain for this
derivative,

2μ̇(x)〈E(hη; X,x) ◦ [g′′
μ(x,hη)3]〉η

= −〈
E(hη; X,x) ◦ [

g(iv)
μ (x,hη)2]〉

η
+ 12μ(x)〈E(hη; X,x)

◦ [g′′
μ(x,hη)g′′′

μ (x,hη)2]〉η − 6μ(x)2〈E(hη; X,x)

◦ [g′′
μ(x,hη)4]〉η. (14)

We see that the second term on the right-hand side has the
opposite sign from the others and hence we cannot generally
guarantee negativity of μ̇(x).

To complete the stationarity equations, we add explicit
expressions for the derivatives of the initial interacting free

energy gμ(h). With the above introduced notation we have

g′
μ(h) = 〈ρμ(h,λ

√
χ0)t(hλ)〉λ, (15a)

g′′
μ(h) = β〈ρμ(h,λ

√
χ0)[1 − t(hλ)2]〉λ

+μ0
[〈ρμ(h,λ

√
χ0)t(hλ)2〉λ − 〈ρμ(h,λ

√
χ0)t(hλ)〉2

λ

]
,

(15b)

g′′′
μ (h) = 2〈ρμ(h,λ

√
χ0)t(hλ)〉λ

[
μ2

0〈ρμ(h,λ
√

χ0)t(hλ)〉2
λ − β2

]
+ (2β2 − 3βμ0 + μ2

0)〈ρμ(h,λ
√

χ0)t(hλ)3〉λ + 3μ0(β

−μ0)〈ρμ(h,λ
√

χ0)t(hλ)〉λ〈ρμ(h,λ
√

χ0)t(hλ)2〉λ.
(15c)

We denote t(hλ) ≡ tanh[β(h + λ
√

χ0)]. Combining the above
equations and the definitions for the derivatives of free energy
gμ, we can transform the equation for the overlap susceptibility
χ0 to

χ0 = 〈E(hη; X,0) ◦ [〈ρμ(hη,λ
√

χ0)t(hλ,η)2〉λ]〉η
− 〈

E(hη; X,0) ◦ [〈ρμ(hη,λ
√

χ0)t(hλ,η)〉2
λ

]〉
η
, (16)

where we abbreviate hη,λ = h + η
√

q0 + λ
√

χ0.
The stationarity equations fully determine the equilibrium

states of the mean-field free energy with a continuous order-
parameter function. These equations are not solvable in their
full exact form, being a consequence of inability to solve the
Parisi nonlinear partial differential equation (4). Before we
resort to approximations, we can use the above representation
of the free energy and derive exact representations for the
equilibrium values of interesting physical quantities. We can
do that in the standard way of statistical mechanics without
referring to replicas and the discrete representations used in the
derivation of the final form of the free energy with a continuous
order-parameter function.

We first evaluate the homogeneous magnetic susceptibility.
If we use the condition for marginal stability, Eq. (12), we
obtain

χT = 〈g′′(X,hη)〉η
= β(1 − q0 − χ0 − X) + μ0χ0 +

∫ X

0
dxμ(x). (17)

It was argued that χT = 1 in the glassy phase.20 This cannot
be deduced from this exact representation without further
reasoning.

As a next interesting thermodynamic quantity we evaluate
entropy. For this purpose, we have to calculate the temperature
derivative of the initial free energy gμ. With the above notation,
we easily derive

∂gμ(hη)

∂T
= 〈ρμ(hη,,λ

√
χ0) ln cosh[β(hη,λ)]〉λ − βχ0[β + (μ0 − β)〈ρμ(hη,λ

√
χ0)t(hη,λ)2〉λ] − βhη〈ρμ(hη,λ

√
χ0)t(hη,λ)〉λ. (18)

Using again the condition for marginal stability and the equations for the equilibrium values of the scalar order parameters
we end up with an expression for entropy:

S(h,T ) = −∂f (h,T )

∂T
= ln 2 + βχ0(β − μ0)(X + q0 + χ0) + 〈E(hη; X,0) ◦ [〈ρμ(hη,λ

√
χ0) ln cosh[β(hη,λ)]〉λ]〉η

−β〈E(hη; X,0) ◦ [h〈ρμ(hη,λ
√

χ)t(hη,λ)〉λ]〉η − β2χ0 − βq0χT − β2

4
(1 − q0 − χ0 − X)2. (19)
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The last four terms on the right-hand side of Eq. (19) have
negative sign and are potentially dangerous for turning the
entropy negative at low temperatures.

IV. PERTURBATION EXPANSION

Since we cannot solve the stationarity equations for the
order parameters of the free energy with continuous RSB,
we resort to approximations. We decomposed the full free
energy into the zeroth order, corresponding to the 1RSB state,
and a correction depending on the continuous order-parameter
function μ(x). It is natural to formulate a perturbation expan-
sion around the 1RSB solution in powers of function μ(x).
We can do it either directly by using functional derivatives
and functionals of μ(x) or by introducing an interpolation
parameter ξ ∈ (0,1) with which we rescale function μ(x) and
expand all quantities in ξ . We choose the first way.

The fundamental quantity to be expanded is the evolution
operator

E(hη; X,0)

= Tx exp

{∫ X

0
dx

[
1

2
∂2
h̄

+ μ(x)g′
μ(x,hη + h̄)∂h̄

]} ∣∣∣∣
h̄=0

.

(20)

We have an explicit dependence of this operator on function
μ(x) and an indirect one via the scalar order parameters
q0,χ0,μ0,X, and function g′

μ(x,hη). To determine the complete
dependence of the evolution operator on μ(x), we must first
evaluate the derivatives with respect to these parameters.

Dependence on the upper bound X is specific and leads to

∂E(h; X,0)

∂X
=

[
1

2
∂2
h̄

+ μ(X)g′
μ(X,h)∂h̄

]
E(h; X,0). (21)

Partial derivatives with respect to all other scalar parameters
have the same generic representation

∂E(h; a,b)

∂p
=

∫ a

b

dxμ(x)E(h; a,x)

× ∂g′
μ(x,h + h̄)

∂p
∂h̄E(h; x,b). (22a)

From the defining equation for function g′
μ, Eq. (7b), we obtain

∂g′
μ(x,h)

∂p
= E(h; x,0) ◦

[
∂g′

μ(h)

∂p

]
+

∫ x

0
dyμ(y)E(h; x,y)

◦
[
g′′

μ(y,h)
∂g′

μ(y,h)

∂p

]
. (22b)

We do the same with the functional derivative with respect
to μ(x),

δE(h; a,b)

δμ(x)
= E(h; a,x) ◦ [g′

μ(x,h)∂hE(h; x,b)] +
∫ a

x

dyμ(y)

×E(h; a,y) ◦
[
δg′

μ(y,h)

δμ(x)
∂hE(h; y,b)

]
(23a)

and

δg′
μ(x,h)

δμ(y)
= E(h; x,y) ◦ [g′

μ(y,h)g′′
μ(y,h)] +

∫ x

y

duμ(u)

×E(h; x,u) ◦
[
δg′

μ(u,h)

δμ(y)
g′′

μ(y,h)

]
. (23b)

Putting all the derivatives together we can set a basic equa-
tion for an iterative determination of the next approximation
to the full evolution operator. Knowing the nth and (n − 1)th
orders of this operator E(n)(h; a,b) and E(n−1)(h; a,b), the next
approximation then is

E(n+1)(h; a,b) = E(n)(h; a,b) +
∫ a

b

dxμ(x)

{
E(n)(h; a,x)g′

μ(x,h + h̄)∂h̄E
(n)(h; x,b) + δa,X

δX

δμ(x)

(
1

2
∂2
h̄

+ μ(X)g′
μ(X,h)∂h̄

)

×E(n)(h; X,b) +
∫ X

0
dyμ(y)E(n−1)(h; a,x)

[ ∑
i

δpi

δμ(y)

∂g′
μ(x,h + h̄)

∂pi

+ θ (x − y)
δg′

μ(x,h + h̄)

δμ(y)

]
∂h̄

×E(n−1)(h; x,b)

}(n)

, (24)

where pi ∈ {q0,χ0,μ0} and [F [μ(x)]](n) means that only the
nth power of function μ(x) from functional F [μ(x)] is taken
into account. That is

[F [μ(x)]](n) =
∫

dx1 . . . dxnμ(x1) . . . μ(xn)

× δnF [μ(x)]

δμ(x1) . . . δμ(xn)

∣∣∣∣
μ(x)=0

.

The initial evolution operator is

E(0)(h; a,b) = exp
[

1
2 (a − b)∂2

h

]
(25)

and we set E(−1) = 0 to comply with Eq. (24) for n = 0. In
this way, a formal power expansion in the continuous order-
parameter function is exhaustively defined.

V. LOWEST-ORDER APPROXIMATION

The zeroth-order approximation is the 1RSB free energy
with the evolution operator approximated by Eq. (25). This
operator can be transformed to a Gaussian integral. To make
the expressions for the equations within this approximation
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as compact as possible we introduce the following generic
notation:

Ex[f (h)] =
∫ ∞

−∞

dφ√
2π

e−φ2/2f (β(h + φ
√

x)) , (26a)

〈ρμ(h)f (h)〉χ0 = Eχ0 [cosh(h)μ0/βf (h)]

Eχ0 [cosh(h)μ0/β]
. (26b)

The zeroth-order approximation leads to equations where it
is convenient to replace the parameter q0 with a new variable
Y = X + q0. Replacing the exact evolution operator E by the
approximate one from Eq. (25) in Eq. (8), we obtain

Y = EY

[〈
ρμ(h)t(h)

〉2
χ0

]
, (27a)

χ0 = EY

[〈
ρμ(h)t(h)2

〉
χ0

] − EY

[〈
ρμ(h)t(h)

〉2
χ0

]
. (27b)

Replication index μ0 is determined from

1

4
βχ0μ0(2Y + χ0) = EY [〈ρμ(h) ln cosh(h)〉χ0 ]

− β

μ0
EY [ln Eχ0 [cosh(h)μ0/β]]. (27c)

The equation for parameter X follows from Eqs. (8a) and
(27):

X = EY

[〈ρμ(h)t(h)〉2
χ0

] − E(Y−X)[EX[〈ρμ(h)t(h)〉χ0 ]2].

(28)

Finally, the continuous order-parameter function from
Eq. (13) in the lowest-order approximation is

μ(x) = E(Y−x)[Ex[g′′′
μ (h)]2]

2E(Y−x)[Ex[g′′
μ(h)]3]

. (29)

Equations (27) determine the order parameters χ0,μ0,Y of
a 1RSB state. It can be seen from a generating free energy

f0(χ0,μ0,Y ) = −β

4
(1 − χ0 − Y )2 + 1

4
μ0χ0(2Y + χ0)

− 1

β
ln 2 − 1

μ0
EY [ln Eχ0 [cosh(h)μ0/β]]

(30)

to which these equations define stationarity points. Free energy
f0 is just the free energy from Eq. (3) with the evolution
operator from Eq. (25).

The parameter X, which does not appear in the free energy,
Eq. (30), is the first iteration for the length of the interval on
which the continuous order-parameter function lives. If X > 0,
then a solution with a continuous RSB exists. Note that Eq. (28)
has two solutions: X = 0 and X = Y for h = 0. We can always
take the latter one as the starting point for the perturbation
expansion in which the Sherrington-Kirkpatrick (SK) solution

is then completely circumvented (qSK = 0). It means that
we always can construct a solution with continuous replica-
symmetry breaking for h = 0 independently of whether an
equilibrium state with finite-many replica hierarchies is locally
stable or not. In an applied magnetic field, a nonzero parameter
X generally exists if an instability condition is satisfied:

EY [g′′
μ(h)2] > 1 (31)

with g′′
μ(h) from Eq. (15b) and parameters Y , χ0, and μ0

being solutions of Eqs. (27). It is sufficient if condition
(31) is satisfied for any of the solutions of Eq. (27), that
is, either the paramagnetic, replica-symmetric, or one-level
replica-symmetry-breaking solution.

Parameters Y,χ0,μ0 determined from Eq. (27) define a
stationarity point of the free energy from Eq. (30) with
one level of replica symmetry breaking. Parameter X from
Eq. (28) and function μ(x) from Eq. (29) go beyond the
1RSB solution and represent the leading-order correction to
the 1RSB approximation towards a solution with continuous
RSB. Parameter X determines an interval [0,X] on which
the continuous order-parameter function μ(x) is defined. Both
quantities are determined within the 1RSB approximation.

We must go to the next iteration E(1) of the evolution
operator to obtain corrections to the 1RSB results. We find
from Eq. (24),

〈E(1)(hη; X,0) ◦ f (hη)〉η
= EY [f (h)] +

∫ X

0
dxμ(x)

{
1

2

δX

δμ(x)
EY [f ′′(h)]

+E(Y−x)[Ex[g′
μ(h)][Ex[f ′(h)]]

}
. (32)

To make the representation in Eq. (32) explicit, we need to
determine the functional derivative δX/δμ(x). To this purpose
we add a first-order correction to the 1RSB free energy, which
is

�f1 = 1

2

∫ X

0
dxμ(x){Y − x − E(Y−x)[Ex[g′

μ(h)]2]}. (33)

If we now use free energy f1 = f0 + �f1 as a generating
functional for parameters χ0,μ0,Y,X with μ(x) as an external
source, the stationarity equations of this free energy define
the scalar order parameters with their first correction due to
the continuous order-parameter function μ(x) obtained from
Eq. (29) evaluated within the 1RSB approximation.

If we want to evaluate the first correction to function μ(x)
from Eq. (29), we have to go further and to calculate the free
energy to the second order in μ(x). The second correction to
the 1RSB free energy reads

�f2 = −
∫ X

0
dx

∫ x

0
dyμ(x)μ(y)E(Y−x)[Ex[g′

μ(h)]

×E(x−y)[Ey[g′
μ(h)]Ey[g′′

μ(h)]]]. (34)

If we now add both corrections to the 1RSB free energy, we
obtain a new free energy, exact to second order in μ(x), that
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has the following representation:

f2(χ0,μ0,X,Y ; μ(x)) = f0 + �f1 + �f2 = −β

4
(1 − χ0 − Y )2 + 1

4
μ0χ0(2Y + χ0) − 1

μ0
EY [ln Eχ0 [(2 cosh(h))μ0/β]]

+ 1

2

∫ X

0
dxμ(x){Y − x − E(Y−x)[Ex[g′

μ(h)]2]} −
∫ X

0
dxμ(x)

∫ x

0
dyμ(y)E(Y−x)[Ex[g′

μ(h)]E(x−y)

× [Ey[g′
μ(h)]Ey[g′′

μ(h)]]]. (35)

To derive the correction to μ(x) from Eq. (29), we proceed in the same way as in the exact case. Setting zero the first variation
of free energy f2 with respect to μ(x) leads to

1

2
{Y − x − E(Y−x)[Ex[g′

μ(h)]2]} =
∫ x

0
dyμ(y)E(Y−x)[Ex[g′

μ(h)]E(x−y)[Ey[g′
μ(h)]Ey[g′′

μ(h)]]]

+
∫ X

x

dyμ(y)E(Y−y)[Ey[g′
μ(h)]E(y−x)[Ex[g′

μ(h)]Ex[g′′
μ(h)]]]. (36)

Its derivative with respect to x results in

1 = E(Y−x)[Ex[g′′
μ(h)]2] + 2

∫ x

0
dyμ(y)E(Y−x)[Ex[g′′

μ(h)]E(x−y)[Ey[g′′
μ(h)]2 + Ey[g′

μ(h)]Ey[g(′′′)
μ (h)]]]

+ 2
∫ X

x

dyμ(y)E(Y−y)[Ey[g′
μ(h)]E(y−x)[Ex[g′′

μ(h)]Ex[g′′′
μ (h)]]], (37)

and the second derivative leads to an equation from which we obtain the desired correction to the order-parameter function:

2μ(x)E(Y−x)[Ex[g′′
μ(h)]3] = E(Y−x)[Ex[g′′′

μ (h)]2] + 2
∫ x

0
dyμ(y)E(Y−x)[Ex[g′′′

μ (h)]E(x−y)[3Ey[g′′
μ(h)]Ey[g′′′

μ (h)]

+Ey[g′
μ(h)]Ey[g(iv)

μ (h)]]] + 2
∫ X

x

dyμ(y)E(Y−y)[Ey[g′
μ(h)]E(y−x)[Ex[g′′′

μ (h)]Ex[g(iv)
μ (h)]]]. (38)

Knowing the corrections to all the order parameters, free
energy of the 1RSB solution, and to the evolution operator,
we can evaluate corrections also to other physical quantities,
in particular, magnetic susceptibility χT and entropy S(T ) by
applying our approximation to the exact formulas, Eqs. (17)
and (19).

Approximating all physical quantities by expanding the
evolution operator in the power series from Eq. (24) in
the exact equations for their equilibrium values makes the
approximate theory only approximately thermodynamically
consistent. That is, the entropy calculated from Eq. (19) with an
approximate evolution operatorE(1) does not coincide with the
entropy calculated from the temperature derivative of free en-
ergy f1 = f0 + �f1, since function μ(x) is treated in the latter
as an external source that depends via Eq. (29) on temperature
and, consequently, the two definitions do not coincide. It means
that thermodynamic consistency is obeyed by approximate
quantities only to one order lower than that chosen in the
evolution operator. This deficiency can be removed if we had a
free energy being stationary also with respect to infinitesimal
fluctuations of function μ(x). Such a free energy is f2 from
Eq. (35). It can be treated as a generating functional for all
its variables, including μ(x). The continuous order-parameter
function can no longer be treated as a perturbation but is
rather determined self-consistently with other scalar order
parameters from Eq. (36). Such an approximation would be
fully thermodynamically consistent and exact up to the second
order in μ(x) for all physical quantities.

VI. RESULTS

The starting point of the presented perturbation expansion,
the zeroth-order approximation, is a solution with one level
of replica-symmetry breaking (1RSB), the free energy of
which with its order parameters is given in Eq. (30). The
replica symmetric solution is part of this approximation if
we put χ0 = 0 and neglect the stationarity equation for this
parameter. Alternatively, due to degeneracy of the solution,5

we can choose μ0 = β. Then, free energy f0 from Eq. (30)
becomes independent of susceptibility χ0, which also leads to
the replica-symmetric solution. The two ways to reproduce the
replica-symmetric solution correspond to different identifica-
tions of the Sherrington-Kirkpatrick parameter qSK with either
χ0 or Y in our notation. In the former case, we have χ0 = 0
and Y = qSK > 0, while in the latter Y = 0,μ0 = 0, and χ0 =
qSK > 0 for T < Tc = 1. The full 1RSB solution is obtained
so that parameters χ0 and Y are calculated self-consistently for
each value of μ0. The latter parameter is then determined from
the local maximum of free energy f0. Without magnetic field
we have another degeneracy in Eq. (28) allowing us to choose
X = Y . We use the values of parameters Y,χ0, and μ0 from
Eq. (27) to determine the continuous order-parameter function
μ(x) from Eq. (29). In this way, we completed the starting
approximation to which we can evaluate corrections in powers
of μ(x).

We calculated explicitly only linear corrections in function
μ(x) to the 1RSB results. In the perturbation expansion around
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the 1RSB solution for h = 0, we obtain X = Y in all orders.
Corrections to the parameters from the 1RSB solution are
calculated from stationarity equations for free energy f1 =
f0 + �f1 from Eq. (33) with respect to infinitesimal variations
of Y,χ0, and μ0 and with an external source μ(x) determined
from Eq. (29) with its parameters fixed at the 1RSB values.
Or, equivalently, one can use the evolution operator E(1) from
Eq. (32) in the exact equations for the order parameters
from the exact free energy. Although all the formulas can
be evaluated for arbitrary temperature, it is numerically more
demanding to reach temperatures T < 0.2Tc, since compu-
tations beyond double precision are required. The precise
low-temperature asymptotics T → 0 can more effectively
be determined by starting with T = 0 and using a low-
temperature expansion. Such an approach will be presented
in a separate publication.

For comparison, we also applied the expansion in the
continuous order-parameter to the replica-symmetric solution.
Due to the degeneracy in the identification of the SK solution,
we must choose the one that is more unstable. It appears that
the SK solution with χ0 = qSK leads to Y = X = 0 in all
orders and we generate no corrections to the replica-symmetric
solution. The other limit to the SK solution with χ0 = 0 leads to
X = Y > 0, q0 = 0 in all orders of the perturbation expansion.
It means that an expansion around the SK solution coincides
with an expansion around the paramagnetic solution with no
SK order parameter.

Simultaneously with the perturbation expansion, we used
Monte Carlo simulations on fully connected graphs with up to
N = 512 spins with different numbers of Monte Carlo sweeps.
Usually we used 4096 × 256 equilibrating steps followed
by around one million Monte Carlo steps from which we
registered the data for averaging after each 16–256 steps for
each configuration of the exchange couplings out of 6 × 1024
random selections.21

0 0.2 0.4 0.6 0.8 1
x/X

0

0.5

1

1.5

μ(x)
PE (1RSB), T=0.3
PE (SK), T=0.3

μ0

μSK(x)

μ1RSB(x)

0 0.2 0.4 0.6 0.8
T

0

0.2

0.4

0.6

0.8

1qEA

1RSB
PE (1RSB)
SK
PE (SK)

FIG. 1. (Color online) Edwards-Anderson order parameter qEA

(left panel) and the continuous order-parameter function μ(x) (right
panel) calculated using perturbation expansions (PE) around the
1RSB and replica-symmetric (SK) solutions. Parameter μ0 of 1RSB
is plotted for reference.

We plotted in Fig. 1 the Edwards-Anderson (EA) order
parameter, being in our notation qEA = χ0 + Y , calculated
in the replica-symmetric approximation, 1RSB solution and
from the first-order of the perturbation expansion (PE) around
either of these solutions. We can see that the perturbation
expansion in the first order gives almost no correction to
the 1RSB approximation, while there are tangible changes
due to the perturbation expansion when applied to the SK
solution. Further, at lower temperatures (T ≈ 0.4), the first-
order correction to parameter X that equals qSK in the lowest
order starts to decrease and wrongly downturns the slope of
the EA parameter. The reason for this unreliable behavior of
the first correction to the SK solution is the value of the “small
parameter” μ(x) used. The right panel of Fig. 1 displays μ(x)
at T = 0.3 calculated in the 1RSB and SK solutions. The
function from the SK solution is significantly higher, making
thus the perturbation expansion around the SK (paramagnetic)
solution much less reliable than the one around the 1RSB
solution. It is understandable, since the role of the continuous
order-parameter function μ(x) is partly overtaken by the scalar
value μ0 in the 1RSB approximation. Unlike function μ(x),
parameter μ0 is treated nonperturbatively.

To check reliability of the perturbation expansion we
compared the Edwards-Anderson order parameter in Fig. 2,
left panel, with the one obtained from Monte Carlo simulations
and the high-order perturbation expansion (HPE) of Crisanti
and Rizzo.9 We can see that there is not a big difference
between the perturbation expansion around the 1RSB solution
and Monte Carlo simulations and the expansion of Crisanti
and Rizzo for temperatures T > 0.3. As one expects, a better
precision in lower temperatures demands inclusion of higher
orders of the expansion. Out of curiosity, we compared (right
panel) the Edwards-Anderson parameter from Monte Carlo

0 0.2 0.4 0.6 0.8 1
T

0

0.2

0.4

0.6

0.8

1
qEA

PE (1RSB)
HPE, Ref. 9
Monte Carlo

0 0.2 0.4 0.6 0.8 1
T

0

0.2

0.4

0.6

0.8

1
qEA

AE (T ∼ TC)
AE (T ∼ 0)
Monte Carlo

FIG. 2. (Color online) Temperature dependence of the Edwards-
Anderson order parameter resulting from different approximations.
(Left) Edwards-Anderson parameter from the 1RSB solution with
first-order correction [PE (1RSB)], compared with the solution of
Ref. 9 (HPE) and Monte Carlo simulations. (Right) Monte Carlo
result compared with extrapolations of asymptotic expansions around
the transition temperature Tc = 1 (solid line) and zero temperature
(dashed line).
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1.15
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FIG. 3. (Color online) Stability condition, right-hand side of
Eq. (12), denoted by G2, for the expansion around 1RSB (left) and
around SK (right). The curves from top to bottom at x = 0 correspond
to temperatures T = 0.2, 0.4, and 0.6, respectively.

simulations with low orders of two asymptotic expansions,
one, high-temperature, around the transition temperature and
the other, low-temperature, around zero temperature. The
former expansion6,22 is qEA

.= 1 − 2T 2 + T 3, while the latter
to the same order is9 qEA

.= 1 − 1.6T 2 + 0.6T 3. We see that
the Monte Carlo data are surprisingly well reproduced by
the expansions in the respective regions and do not differ
much from them in the whole glassy phase. It is worth
noting that the expansions are only asymptotic and higher
terms destroy this surprising reconstruction of the Monte Carlo
Edwards-Anderson parameter.

An important property of the full Parisi solution is the
condition of (marginal) stability, Eq. (12), that may be used as
one of criteria of reliability and consistency of approximations.
We plotted in Fig. 3 the right-hand side of Eq. (12), denoted
by G2, for the first-order expansion around the 1RSB solution
(left panel) and the SK solution (right panel) and different
temperatures. Both approximate solutions worsen their relia-
bility with lowering the temperature but the one around the
SK solution shows much larger deviations from the stability
value G2 = 1. The expansion around the 1RSB solution, on the
other hand, does not violate the marginal stability significantly
for temperatures T > 0.2 and gives a good estimate of the
behavior of the full solution with continuous replica-symmetry
breaking. At very low temperatures T < 0.2, the deviation
from marginal stability will increase within the lowest-order
approximation. We expect, however, that a self-consistent
theory determined by free energy f2 from Eq. (35), where the
continuous order-parameter function is treated variationally,
will improve significantly towards marginal stability.

Failure of the SK solution to produce physical results at
low temperatures can be demonstrated on entropy. In Fig. 4,
we plotted entropy (left panel) and free energy (right panel)
calculated in the SK, 1RSB, and the first-order expansion
around 1RSB. We can see that even though there is not a big
difference in free energy between the 1RSB and the expansion
around it, an improvement in the entropy at low temperatures is

0.2 0.3 0.4 0.5

T-0.05

0

0.05

0.1

0.15

S(T )
HPE, Ref. 9
1RSB
PE (1RSB)
SK

0.2 0.3 0.4 0.5
T

-0.79

-0.785

-0.78

-0.775

-0.77

-0.765

f (T )
f0
f1
fSK

FIG. 4. (Color online) Temperature dependence of entropy (left)
calculated in 1RSB, with first correction to it, and the replica-
symmetric solution. We also used the data for entropy from Ref. 9.
(Right) Free energy of the SK solution (fSK), 1RSB (f0), and the first
correction to 1RSB (f1).

tangible and goes beyond the high-order expansion of Ref. 9.
We know that the solution with 1RSB leads to a negative
value of entropy S(T ) ∼ −0.01 at T = 0, hence the exact
curve must lie above it. Improvement of the perturbation
expansion upon the 1RSB solution at low temperatures can
also be demonstrated on magnetic susceptibility χT from
Eq. (17) plotted in Fig. 5, left panel. It is expected to stay fixed
at the value χT = 1 in the whole low-temperature phase.20 We
also plotted temperature dependence of the internal energy
u = f − T S and compared the result with Monte Carlo
simulations (right panel).
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PE (1RSB)
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u(T )
1RSB
PE (1RSB)
SK
Monte Carlo

FIG. 5. (Color online) Temperature dependence of magnetic
susceptibility χT (left panel) and internal energy u (right panel)
calculated in 1RSB scheme, with first correction to it and the replica
symmetric solution. Monte Carlo result for the internal energy is
shown for comparison.
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FIG. 6. (Color online) Derivative of the Parisi order parameter
dxP /dqP = P (qP ) corresponding in our scheme to −β−1μ̇(x) is
plotted as a function of qP in the Parisi notation for T = 0.4. We also
added curves from the Monte Carlo calculation and from Ref. 9.

The continuous order-parameter function is not measurable
and one cannot assess the quality of approximations on
this function. According to the interpretation of the deriva-
tive dxP /dqP in the Parisi notation19 [in our approach,
−β−1dμ(x)/dx], we can compare this function with the
probability distribution of overlap magnetizations P (q) =
N−1 ∑

s,s ′ P (s)P (s ′)δ(qss ′ − q) accessible via Monte Carlo
simulations.22 We plotted this function at T = 0.4 in Fig. 6.
We added also the result from Ref. 9 and the perturbation
expansion around the SK solution.

Each of the approximations shows a maximum at qP = qEA.
Except for the perturbation expansion around the SK solution,
all approximations show the maximum for almost the same
Edwards-Anderson parameter. The function calculated from
the expansion around 1RSB differs from the others in two
aspects. First, it leads to a continuous function only between
χ0 > 0 and qEA. Second, the slope of P (qP ) with which its
maximum is reached at the upper end, qEA, is more shallow.
Function P (qP ) in the expansion around 1RSB is not well
defined at the end points, it has different limiting values
from left and right. The lower end of the defining interval
for P (qP ) is at qP = χ0 ≈ 0.47. There are indications that
higher orders of the expansion around the 1RSB solution push
this initial value χ0 → 0 at all temperatures. Parameter χ0 in
the 1RSB solution decreases also with increasing temperature
and tends to zero when T → Tc = 1 with a constant function
P (qP ) → 2, the exact result of the asymptotic expansion
around the critical temperature.6 A nonzero value of χ0 is,
however, indispensable in approximate treatments if we want
to reach the limit to zero temperature.

A more important feature, rather than the position of
the lower bound of the definition domain of P (qP ), is the
height of its step there. The expansion around 1RSB leads
to P (χ0) ≈ 0.502 and this result is not much affected by
higher orders of the expansion. It reproduces well the value of
Monte Carlo simulations with P (0) ≈ 0.50. The results from

0 0.1 0.2 0.3 0.4 0.5 0.6
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HPE, Ref. 9, T=0.4
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β
−1μ
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−1μ
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FIG. 7. (Color online) Parisi order parameters: qP (xP ) as obtained
in Ref. 9 at two different temperatures, T = 0.4 (upper curves) and
T = 0.6 (lower curves), compared with the first-order correction to
1RSB of the presented perturbation expansion. Parameters χ0, β−1μ0,
and qEA are marked by dotted lines.

the expansions around SK and from Ref. 9, being P (0) ≈ 0.38
and 0.54, respectively, do not do that well. The expansion from
Ref. 9 overshoots the Monte Carlo initial value and P (qP )
then decreases for small values of of qP , displays a shallow
minimum at qm ≈ 0.28 with P (qm) ≈ 0.49 before it starts to
steeply grow up to reach the end point. Such a behavior is
observed neither in the Monte Carlo data nor in the present
perturbation expansion.

The differences in the behavior of distribution function
P (qP ) between the perturbation expansions from Ref. 9 and
around 1RSB are more transparent in Fig. 7 where we plotted
function qP (xP ) for two different temperatures, T = 0.6 and
0.4. Function qP (xP ) in the latter expansion remains zero
up to β−1μ0 at which it jumps to qP = χ0. It means that
the expansion around 1RSB does not allow for metastable
states with averaged squared magnetization smaller than χ0.
Both functions almost linearly increase up to saturation, where
qP = qEA. We can see that although there is not a remarkable
difference in the estimate of the Edwards-Anderson parameter,
the difference between the two approaches in the value of xP

at which qP = qEA increases with lowering the temperature.

VII. CONCLUSIONS

Complexity and low accessibility of reliable mean-field
approximations in spin-glass models lies in the continuous
order-parameter function one has to introduce to reach a ther-
modynamically consistent solution for all temperatures. This
function enters the Parisi nonlinear differential equation (4)
determining the equilibrium interacting free energy. This
equation is unsolvable and one must resort to approximations.
There is, however, no apparent way to systematically iterate
the full solution. The usual way is to use the replica trick
and approximations with finite numbers of replica hierarchies.
Although one improves in this way upon thermodynamic
consistency, one does not learn about the actual ordering in the
equilibrium state and the phase space of the order parameters.
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It is hence important to have an approximate scheme address-
ing directly the continuous order-parameter function in the
whole glassy phase, including zero temperature, where the
thermodynamic inconsistency of discrete approaches is most
pronounced.

Here we proposed a construction of a free energy containing
the order parameters of a solution with one hierarchy of
replica-symmetry breaking together with a continuous order-
parameter function. The continuous function enters the Parisi
nonlinear differential equation determining the interacting
part of the free energy functional. We showed that to reach
explicit formulas in the limit to zero temperature (β → ∞) it
is necessary to use the 1RSB free energy as the starting point
for a perturbation expansion in powers of the continuous order-
parameter function. The 1RSB solution not only allows for the
explicit limit to zero temperature but also justifies reliability of
low-order approximations to rather low temperatures, which
is not the case if we apply the same expansion to the
replica-symmetric solution, being equivalent to an expansion
around the paramagnetic state.

We derived explicit equations for all the variational param-
eters including the continuous variational function of the gen-
erating free-energy functional. We also represented relevant
physical quantities without the necessity to refer to replicas
and the replica trick. We showed how to construct iteratively
systematic approximations to all quantities by expanding them
in powers of the continuous-order parameter function beyond
the 1RSB representations. We presented a closed form of an
approximation containing first corrections in the expansion
parameter to all quantities of interest. Comparison with Monte
Carlo simulations and the high-order asymptotic expansion of
Ref. 9 for the Sherrington-Kirkpatrick model at zero magnetic
field proves that even the lowest approximation produces

reliable results and offers a qualitative picture of the behavior
of the continuous order-parameter function in the whole glassy
phase.

There are two promising directions of the application of
the construction developed here. First, one can investigate
the zero-temperature properties and the behavior of physical
quantities in the asymptotic limit T → 0 such as entropy
and magnetic susceptibility. Zero-temperature limit demands,
however, a different numerical approach to solve the sta-
tionarity equations and will be investigated in a separate
publication. Second, one can use this approximate scheme in
generalized spin-glass models where one expects first-order
phase transitions with regions where a 1RSB solution is
locally stable and coexists with another one with continuous
replica-symmetry breaking. There are presently no approaches
allowing to study quantitatively such situations.

Last but not least, we found an explicit free energy
with a continuous order-parameter function that is fully
thermodynamically consistent and exact to first two orders
of this function. It may replace the Parisi solution for which
there is no explicit or closed-form representation. Free energy
(35) is stationary in the equilibrium state with respect to all its
variational parameters, including the order-parameter function
μ(x). Unlike representation (3) generating the Parisi solution,
the free energy f2 from Eq. (35) determines μ(x) from a
solvable linear integral equation, see Eq. (36). Such a free
energy can be understood as a solvable Landau functional for
the continuous order-parameter function and may shed more
light on the behavior of solutions with continuous replica-
symmetry breaking. It can serve as a viable improvement
upon the 1RSB approximation interpolating between the states
with discrete and continuous replica-symmetry breaking in
mean-field spin-glass models.
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