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Multiscale coupling of a quantum mechanical (QM) domain to a coarser-scale material description in a larger
surrounding domain should yield forces and energies in the QM domain that are the same as would be achieved in
a QM simulation of the entire system. Here, such a coupling is achieved by using constrained density functional
theory (DFT) in which the quantum mechanical interaction between the domains is captured via a constraint
potential arising from an imposed constraint on the charge density in a boundary region between the two domains.
The implementation of the method, including the construction of the constraint charge density and the calculation
of the constraint potential, is presented. The method is applied to problems in three different metals (Al, Fe,
and Pd) and is validated against periodic DFT calculations. The method reproduces the QM charge density and
magnetic moments of bulk materials, produces a reasonable edge dislocation core structure for Fe, and also
gives accurate vacancy formation energy for Al and chemisorption energy on a flat Pd surface. Finally, the
method is used to study the chemisorption energy of CO on a stepped Pd surface. In general, the method can
mitigate fictitious interactions between surface steps and other extended defects, and accommodate long-range
deformation fields, and thus improves upon periodic DFT calculations.
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I. INTRODUCTION

Despite ever increasing computational power, modeling and
simulation of complex materials at the atomic level remains
an enormous challenge.! On one hand, although quantum
mechanical (QM) calculations are indispensable for treating
chemical reactions, charge transfer, electron excitation, and
magnetism in materials, they are often so expensive that no
more than a few hundred atoms can be handled. On the
other hand, atomistic simulations, molecular mechanics, or
linear elasticity, generically all labeled as “MM” throughout
this paper, based on empirical interatomic potentials, force
fields, or elasticity, are usually capable of describing small
deformations and electrostatic interactions at a much lower
computational cost but are unable to deal with general
chemical interactions. Therefore, the development of QM/MM
multiscale computational methodologies has been pursued
to achieve quantum mechanical level accuracy for problems
that are cost prohibitive using conventional approaches.'~
A large number of QM/MM applications exist in chemistry
and biochemistry,>> where the system can be partitioned
into QM and MM parts by cutting the chemical bonds
linking the two domains and then saturating the dangling
bonds at the boundary of the QM region by so-called link
atoms.>™ This type of procedure is justifiable because of the
localized nature of the chemical bonds in molecular systems.
Far fewer QM/MM-like simulations have been attempted in
metallic systems,®' where highly delocalized electrons and
a long-ranged density matrix'! make capturing the QM/MM
interaction energy a challenge.

One emerging concept for accurate coupling in metals is
self-consistent embedding theory.'>'* In this theory, the total
charge density of the QM/MM system is decomposed into
partial charge densities for the QM region and the MM region,
and the QM/MM interaction energy is formulated based on
DFT. An embedding potential veyp, defined as the functional
derivative of the interaction energy with respect to the QM
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partial charge density, is then included in the self-consistent
calculation of the QM region. vey, is intended to capture
the nonadditive kinetic energy'® T"%¢ and the corresponding
nonadditive kinetic potential vé‘ﬁid that have a fundamentally
quantum mechanical origin, but require the approximation
of orbital-free density functional theory (OFDFT),!>-14.16-20
OFDFT is confined, to date, to the few materials, primarily
main group elements, for which the approximate kinetic
energy functionals and local pseudopotentials are sufficiently
accurate. In this paper, we propose a quantum embedding
theory based on constrained DFT that uses standard Kohn-
Sham (KS) DFT and can be applied to a much broader range
of metallic materials.

In general, constrained DFT allows the ground-state energy
to be determined self-consistently with an arbitrary density
constraint by making an appropriate choice of the external
potential. Using a Lagrange multiplier, a constraint potential is
introduced to enforce the desired density constraint.”! Recent
efforts strive to compute the exact vgﬁﬂ,d (and/or vemp)*> 2
by using the constraint concepts’*® but all of these works
require DFT calculations for the entire system, and so do not
achieve the advantages of a multiscale QM/MM simulation.
The essence of the QM/MM method proposed here is to
constrain the charge density in the QM/MM boundary region
to an accurate target charge density that reflects the state
of the material in the MM domain, and then determine the
corresponding constraint potential to be applied to the QM
region. This constraint method automatically includes the
nonadditive kinetic potential while avoiding any artificial
interface that leads an incorrect charge density and spurious
ionic forces permeating into the QM region. The previous
QM/MM method”!? of two of the authors cannot include
the nonadditive kinetic energy within a standard Kohn-Sham
DFT method. The previous QM-CADD method?® of another of
the authors uses a relatively thick boundary region to prevent
unwanted surface electronic relaxations from generating forces
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in the interior region, and is thus far more costly. The present
QM/MM approach based on the constrained DFT is the first
step toward eliminating the problems with these prior methods,
leading to an efficient but robust multiscale method.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the general QM/MM method cou-
pling formalism by defining the key concepts and physical
quantities. In Sec. III, we discuss computational algorithms
that allow the method to be implemented within standard
Kohn-Sham DFT. In Sec. IV, we provide validations of
the QM/MM method by applying it to three different types
of metals including the main group (Al), nobel (Pd), and
magnetic transition (Fe) metals. We examine the vacancy
formation energy in Al, the magnetic properties of bulk Fe,
and the dislocation structure of Fe, in each case comparing
to the results of standard periodic DFT calculations. We also
calculate the chemisorption energy of a CO molecule on flat
and stepped Pd surfaces as examples of potential applications
of the method. Finally, we summarize our work in Sec. V.

II. CONSTRAINED DFT QM/MM METHODOLOGY

A. Energies and forces

The basic assumption of the QM/MM method is that the
MM region is defect free and has small elastic deformations;
strong lattice deformations and significant electron redistribu-
tion are contained only in the QM region. More specifically, the
entire QM/MM system is partitioned into three spatial domains
labeled I, I, III, respectively, as shown schematically in Fig. 1.
The inner QM Region I involves bond breaking/formation,
chemical reaction, charge transfer phenomena, or other defects
with topological changes in charge density, thus requiring
quantum treatment. The outer MM Region III involves small
deformations away from perfect crystallinity and so can be
treated using atomistic interatomic potentials (or continuum
mechanics via finite elements). QM Region II exists between
the Regions I and III, and serves as a boundary region that
couples Regions I and II; it must be similar to Region III with
no defects and relatively small deformations. The selection
of Region II must ensure that (i) there is no direct electronic
bonding between Regions I and III, and (ii) the separation
between Region I and Region IIl is greater than the interatomic
potential cutoff distance. Hence, Regions I and Il only interact
through Region II. Typically, Region II includes two atomic
layers of ions as shown in Fig. 1.

The total energy of the entire system can be formally written
as

E I+ 114 1I] = E[I] 4+ E[I] 4 E[I]
+ EinLII] + Ein[ILI], (1)

where the interaction energies are expressed as
EnLI] = E[1+ 1] — E[1] — E[11]
Ein[ILIII] = E[II + III] — E[II] — E[II],

and we have expressly avoided denoting any specific methods
used to compute all of these energies. Substituting the
interaction energies into Eq. (1), we have

Enl+ 114+ 10 = E(I 4+ 1]+ E[I 4+ 1II] — E[I]. (3)
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FIG. 1. (Color online) Partition of spatial domains and decompo-
sition of charge densities in the QM/MM method by taking a perfect
Al lattice as an example. The entire system (a) is partitioned into
subsystems (b) and (c) in terms of both ions and electron densities.
The magenta, white, and gray spheres represent the ions belonging
to Regions I, II, and III, respectively. The dashed curves outline the
boundaries of €. in (001) plane. The electron densities py, OMM,
and pom in (001) plane are displayed in (a), (b), and (c), respectively,
where the density contour scales (in A=) range from 0.0 (blue) to
0.24 (red). (d) The constraint potential is plotted along a straight line
in [100] direction for a perfect Al lattice; the straight line is indicated
in (c). All these results are obtained by A = 20 for Al.

Now we specify that the energy E[I+ II] will be computed
using a QM DFT method, E[I + 1] = EPFT[I + 1] and that
the energy E[II + III] will be computed using an MM method,
E[M+ 11 = EMM[IT + III]. The remaining energy ET[II],
subtracted out so as to avoid “double counting” of the energy
of Region II, can be computed by either DFT or MM. Here, we
compute E[II] using MM, E[II] = EMMIII], so that the total
energy retains QM energies from both Regions I and II. The
QM/MM method then yields an estimate for the total energy
of the entire system as

EuI+ 11+ 1] = EPFT[1 4111 + EMM[IT + 1) — EMM([IT].
4)

The total energy thus requires one DFT computation over
Regions I and II. Usually, a standard cluster computation of
EPYT[I 4 II] would lead to relaxation of the electronic degrees
of freedom near the outer surface of the computational domain
(i.e., in Region II), and propagation of density fluctuations
(Friedel oscillations) deep into Region 1. Such effects are
partially mitigated in QM-CADD by using a wide Region 11
and a large “smearing parameter”,® both approximations that
can be tuned and quantitatively evaluated but such an approach
remains computationally intensive. Here, as described below,
we use constrained DFT to compute EPFT[I + 1] and greatly
suppress spurious surface effects in the solution for the electron
density and energy in Region I.
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To obtain equilibrium structures requires computation of
the ionic force F; = —9E,¢/0R; on any ion i that emerges
from the above energy formulation. Forces on ions in Region I
only arise from the first term, EPFT[I 4 1], and thus are fully
quantum mechanical in origin. Forces on ions in Region III
arise only from the second term, EMM[II + III], and thus are
fully atomistic in origin. However, forces on ions in Region II
arise from a combination of DFT and MM energies. Because
the DFT and MM energy functionals have different nonlocal
behaviors, an inconsistency arises that gives rise to so-called

“ghost forces”,”> a well-known problem in energy-based
multiscale methods. Ghost forces are avoided by using a single
method throughout the entire domain to compute the force in
Region II. Here, MM is used to calculate the forces on Region
Il ions by —3d EMM[T 4 II + IIT]/dRy;. Given these forces, the
system is driven to a stable equilibrium structure by minimiz-
ing the ionic forces on all ions in the system. Equation (4) then
provides an estimate of the total system energy.

We reiterate that the MM domain could use a range of
methods of varying accuracy; the main requirement of the
MM method is that it provides accurate deformed ion positions
in Regions II and III. For systems where suitable interatomic
potentials are available, e.g., embedded atom method (EAM)*
potentials, the MM domain could use EAM. In general, the
MM domain could use linear elasticity where the elastic
constants and lattice constant correspond exactly to those
computed by DFT on the material of interest.® The MM domain
could also use the Cauchy-Born rule applied to deformed DFT
unit cell, as done in the quasicontinuum method and other
QM/MM methods in the literature.?”' The choice of an MM
method is thus open and depends on the accuracy of available
methods for the materials under study. In this paper, we will use
the EAM method to perform calculations in the MM domain
but this does not restrict the applicability of the general method.

The flowchart of the overall QM/MM method is shown in
Fig. 2(a) illustrating the calculations of the total energy and
forces. With the initial positions of all ions, the constrained
DFT is performed for Region I and II to determine EPFT[I + I1]
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FIG. 2. (a) Flowchart of the QM/MM method in calculating
the total energy and forces. (b) Flowchart of the constrained DFT
calculation of Region I and II.
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and the forces on Region I ions. Two MM calculations (one for
Region I 4 IT 4 III and the other for Region I 4- III) are carried
out to obtain the forces on Region II ions and E[II 4 III].
From E[II 4 III], the forces on Region III ions are computed
accordingly. The ionic relaxation is then performed until the
forces are converged before the total energy Eiy[I + II 4 III]
is calculated.

B. Constrained DFT

In the above, we have merely divided space and ions
into domains in fairly standard manner. The computation of
the DFT energies now needs to be specified, and requires
a description of the electron density in the system. This is
where we employ the constrained DFT. This QM/MM method
will partition charge density as opposed to wave functions
because “charge densities are nearsighted and wave functions
are not.”*> The total electron density is decomposed into
contributions associated with the QM ions in Regions I+ 11
and the MM ions in Region III, o = pom + omm. The two
electron densities pom and pyv are not confined to their own
spatial domains, i.e., pgm extends into the MM region and vice
versa. Thus, adomain €2, is defined by the overlapping QM and
MM charge densities, which straddles Regions II and III, as
shown in Fig. 1. Because there is no direct electronic bonding
between Regions I and III, the electron density from ions in
Region I is required to be zero in €2, to avoid overlap with
omMm- Thus, pom(r € ;) is due solely to electrons associated
with the ions in Region II.

Since, relative to the perfect crystal, there are no drastic
changes to the atomic structures in Regions II and III, their
electron densities should be bulklike and can thus be well
represented by a superposition of atomic charge densities,
determined a priori for each ionic species. More specifically,
the MM charge density is computed as the sum of atomic
charge densities p,(r — R;) centered at each MM ion R;,
pvm(r) = D, par(r — R;) where the index i runs over all
ions in the MM region. Similarly, we define a target charge
density parget = Y_;cp Pa(r — R;), where the index i runs over
all ions in Region II, which represents the bulklike electron
density expected in Region II. The QM charge density pqgm is
then obtained as the outcome of a constrained DFT calculation
in which the charge density pqm is constrained to match the
predetermined target charge density pgrger Within €2, i.e., the
density constraint is pgm(r) = Prarget(r) in Qc¢. Prarger (and its
corresponding constraint potential given below) thus provides
a constraint for the determination of pgm throughout the DFT
domain of I + 11 + Q..

The constraint is not imposed on the entire Region II
because the electron density of Region I extends into partial
space of Region II and should not be constrained. The
constraint is imposed only in 2., which is computed self-
consistently as the ionic positions are changed. Numerically,
2. encompasses those points r satisfying

,0/(]') > Pcfv (5)

where p'(r) = min{pom(r), omm(r)} and pr = 1074 A_3. In
other words, €2, is the region where the charge densities from
both the pgm and pomm exceed the small value pcr, and is
thus the region in which the two charge densities overlap.
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To determine 2., powm is first constructed as a superposition of
atomic charge densities centered at each QM ion; it also serves
as the initial input charge density in the self-consistent DFT
calculations.

Having specified the target charge density and the domain
2. where the constraint is imposed, we now develop the
associated constraint potential that is added as an “externally
applied potential” to the KS equations to drive the ground-
state charge density toward the target charge density in
Q.. According to the Hohenberg and Kohn theorem,* the
constraint potential equals the embedding potential in the
self-consistent embedding theory if the two external potentials
yield the same ground state density pom. We follow the method
of Zhao et al.?® by defining the constraint potential as

ﬁé(l‘) - / IOQM(r ) - :Otarget(r )dl'/, (6)
Q Ir —r’|

where A is a penalty parameter. This constraint potential
is essentially a penalty function associated with the total
Coulomb potential generated by any differences between the
target and actual electron densities. Since the constraint is only
imposed in €2, the constraint potential should be localized to
.. Numerically, this is accomplished by multiplying ﬁé‘ by
a cutoff function associated with the electron densities that
define Q2. as

1, if p'(r) > 2pf,
wr) =1 20— 1, if pg <p'(0) <20, (D)
0, if p'(r) < per.

The constraint potential takes its full value if there is an overlap
between the two densities and vanishes if either of the two
densities is lower than p.¢. The localized constraint potential
is thus defined as

v2(r) = wr)vi(r). 8)

For the collinear spin case, there are two constraint densities
and two constraint potentials vi! and vl acting on the spin-
. . Ml
up and spin-down electrons, respectively. vc' (vc™) can be
determined by Eq. (8) with the spin-up (spin-down) charge
density P(SM (,OéM) and ptgrget (/Ottuget)

The constraint potential v} parameterized by A is incorpo-
rated into the KS equation as an externally applied potential,
so that

[—1V2 + 083 (r) + w2 (0)]p}(r) = €l (r), ©)

where vK3(r) is the usual KS effective potential includ-
ing electron-electron, electron-ion, and exchange-correlation
potentials. For a given A, péM(r) is self-consistently deter-
mined by solving the KS equation. The resulting eigenvalues
€/ and eigenfunctions ¢} (r) with pfy(r) = Y=, fil¢} (O (f;
is the occupation number) are then obtained. In the limit of
A — 00, péM(r) would approach to Ogrger(r) in €2.. The energy

of the QM region EPFT[I + I1] is thus calculated as

EP™[pém: Rou] = Z fi€! + Eqc[pbm] + VewaaRom)

— / Pom(T)VE (r)dr, (10)
Q
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where Eg. is the usual double-counting energy term and
Vewald 18 the Madelung energy. The energy contribution of
the constraint potential (as an external potential) is subtracted
from the constrained DFT energy because E DFT[,oéM;RQM]
represents the energy of the QM region by itself.

In this formulation, the constrained DFT forces the full
QM electron density to match the target value in the overlap
domain. The constrained DFT calculation includes the full
nonadditive kinetic potential on the electrons associated with
Regions I and II. If the target density were the exact density
for the actual problem, the exact QM energy for Region
I+1I would then be obtained. The use of an approximate
target density is thus the major approximation in the method.
However, the use of any reasonable target density prevents
the spurious relaxation of the electron density near the outer
surfaces of the DFT domain, which is a major source of error
in most other QM/MM methods.

III. IMPLEMENTATION

The constrained DFT calculations are performed using
the Vienna Ab initio Simulation Package (VASP)**® with
the projector augmented wave pseudopotentials.’® An energy
cutoff of 300 eV is used for the plane-wave basis set in all the
three metals. The Perdew-Zunger local density approximation
(LDA)? is used for the exchange-correlation (XC) functional
of Al and the Perdew-Burke-Ernzerhof generalized gradient
approximation (PBE-GGA)® is employed for Fe and Pd. The
k-point sampling is based on the Monkhorst-Pack scheme,*
with details given in each case. The MM calculations employ
the EAM potentials for Al* Fe,*' and Pd*? but rescaled to
yield the same lattice constant and bulk modulus as those
of DFT for the given material. The DFT ionic relaxation is
carried out with the conjugate-gradient algorithm and the force
convergence criterion is 0.02 eV /A.

A. Construction of p,

The target charge density is constructed as a sum of
atomic-centered charge densities p,(r — R;) around each ion.
As elaborated below, p, is obtained for a perfect crystalline
lattice of each element. The function p,(r — R;) must give
an excellent representation of the true DFT charge density
pouik in the bulk perfect crystal. We thus determine p,; by
introducing a variational form and minimizing an objective
function /, defined as the square of the difference between
the target density and the true bulk density integrated over a
unit cell of the perfect lattice, with respect to the variational
parameters. The objective function / is given by

2
I'= / |:Z pa(r —R;) — pbulk(r):| dr, an
Vil

where V represents the volume of the unit cell and the
sum includes all ions in a hypothetical large perfect crystal.
The variational form for the atomiclike charge density is
constructed from Gaussian-type orbitals as

Pu®) =3 Cin | R Y1 (0.0, (12)

Im
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TABLE 1. The parameters c;,, and «y,, of p,(r) for Fe, Al, and Pd, respectively.

Cim (277
(I,m) Fe(1) Fe(]) Al Fe(1) Fe(|) Al Pd
0, 0) 3.945 1.515 0.007 7.801 2.129 2.186 7.334 1.341
(1,-1 0.0 0.0 0.998 0.0 0.0 0.620 0.0
(1,0) 0.0 0.0 0.998 0.0 0.0 0.620 0.0
(L, 1) 0.0 0.0 0.998 . 0.0 0.0 0.620 0.0
2,-2) 0.250 0.226 — 0.440 0.785 1.296 — 0.748
2,—-1 0.250 0.226 — 0.440 0.785 1.296 — 0.748
2,0) 0.201 0.355 - 0.440 0.924 0.582 — 0.748
2, 1) 0.250 0.226 — 0.440 0.785 1.296 — 0.748
2,2) 0.201 0.355 — 0.440 0.924 0.582 — 0.748

where {r, 8, ¢} are spherical coordinates, and / and m are
angular and magnetic quantum numbers. ¢, are coefficients
ensuring that ), ¢;, equals the number of valence electrons
of the atom. The Y},, are the spherical harmonic functions, and
the radial functions R; are Gaussian functions given by

Ri(r) = r' AL, o )exp(—ay, 1), (13)

where the A(/,«) are normalization factors given by

Q234

2013272 JT((21 + 3)/2).

The parameters c¢;,, and «y,, are determined by minimizing /.
In a collinear spin-polarized system such as Fe, there are two
sets of atomiclike charge density pit(r) and palt(r) for spin-up
and spin-down, respectively. The ,oaTt and pj[ are obtained by the
minimization of the objective function using the bulk charge
densities ,ogulk and pljulk, respectively.

We have constructed p, for three metals, body-centered
cubic (bcc) Fe, face-centered cubic (fcc) Al and fec Pd, and
their parameters are listed in Table I. Although the target charge
density matches the bulk charge density very well overall, as

Al,a) =

(14)

[111] [111]

0.017,

(1000\\/\’/\\/\,/

(c) -0.017

[110] [110]

FIG. 3. (Color online) Comparisons between oy, (1) obtained by
the periodic DFT calculation (black curve) and the superposition
of the atomic densities ), pu(r — R;) (red curve) for (a) Fe(1),
(b) Fe(]), (c) Al, and (d) Pd, respectively. Insets: the difference
between ppuk(r) and ), pu(r — R;).

shown in the Fig. 3, errors (displayed in the insets) do exist
and they are the main source of error in the present QM/MM
method. One measure of the quality of these charge densities
is their predictions of the material properties in the perfect
bulk lattice. By applying the constrained DFT formalism,
we have calculated the lattice constant, bulk modulus, and
cohesive energy of a cubic unit cell using the atomic densities
thus generated. Table II shows the results for each of the
three metals Al, Fe, and Pd, as compared to the values
obtained from a standard periodic DFT calculation. Overall,
the differences in these properties between the bulk charge
density and superposition of atomic charge densities are small.
These differences are not a fundamental problem with the
method, and can be mitigated by more sophisticated fitting
procedures for the atomic charge density.

We note that by using a fixed p,(r) attached to each ion
site, the present implementation does not permit the atomic
charge density to relax as a function of lattice deformation.
More specifically, although the first-order change in the solid
charge density associated with the changing ion positions is
captured, higher-order changes in the density are not captured.
This effect is partially reflected in the computed bulk modulus
of the materials, as shown in Table II, which are larger than
the true QM values due to the lack of electronic relaxation. To
remedy errors associated with this lack of electronic relaxation,
we can envision generating a target charge density that depends
on the deformation gradient F but we have not yet explored
this avenue.

B. Periodic DFT cell

Computation of any DFT problems are facilitated by the use
of a plane-wave basis. In the KS-DFT plane-wave calculation
of the QM region, a periodic DFT cell is introduced over
which the periodic boundary conditions (PBCs) are imposed.
The PBCs are necessary for various fast Fourier transforms
(FFTs), which are crucial for efficient numerical calculations.
In our constrained DFT method, the constraint potential acts
as an energetic barrier that prevents electrons in the DFT
computation from moving outside of the domain of Regions
I+ 11+ 2. Beyond €2, the QM charge density as well as the
wave functions are required to be zero. Thus, we can use
any convenient periodic cell that encompasses the domain
of Regions I+1I+ Q.. As long as the vacuum introduced
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TABLE II. Lattice constant, bulk modulus, and cohesive energy calculated based on the bulk charge density ppux
(labeled by “bulk”) and the superposition of the fitted atomic densities Y, p.(r — R;) (labeled by “superposition”).

bulk superposition
Fe Al Pd Fe Al Pd
ap (A) 2.833 3.982 3.955 2.826 3.981 3.956
B (GPa) 197 84 171 207 89 171
E (eV) —16.63 —16.79 —20.72 —16.68 —16.77 —20.70

between 2. and the periodic cell is large enough, it can
effectively eliminate the fictitious interaction between the
periodic images. The use of PBCs with the realization that
the real QM/MM system is nonperiodic is justified. Smaller
cells are computationally more efficient, and so we use a cell
that extends out about 5 A beyond the boundary of Q.. As
a reminder, the DFT cell remains coupled to a surrounding
MM region, so that long-range deformations are captured
accurately in any problem.

C. Evaluation of 3}

In the DFT simulations, FFTs are employed in the calcu-
lation of the Coulomb integrals. However, the evaluation of
# in Eq. (6) presents a difficulty associated with the charge
neutrality requirement of FFTs. This is because the integration
f o [oQM(r) — Prarger(r)]dr is not guaranteed to be zero, leading
to potential numerical problems. To circumvent this prob-
lem, we define a surrogate target charge density P, (r) =
> pa(r — R;), where the index i runs over the entire QM
region (Regions I and II). This modification ensures that
Plinger®) = Puarger(r) in Qe and [ [pqm(r) — e (0)ldr = 0
where integration is over the entire space 2. We can then
calculate ¥} as

i (r) = A/
Q

and the FFTs can be used without problems. The constraint
potential is then localized to the domain of €2, using Eq. (8).
Comparing Eq. (15) to Eq. (6), Eq. (15) has additional
contributions from space $2-€2. that could induce errors in
. Since ijQc [PQM(T) = Priyeer(1)]dr vanishes when the
constrained DFT calculation is converged, this additional term
also vanishes to the first order because the long-range Coulomb
potential is zero in a charge-neutral system. Furthermore, as
shown below, the numerical errors in using Eq. (15) turn out
to be rather small, and the constraint potential itself does not
contribute to the total energy, which is subtracted from the
DFT computed energy as in Eq. (10).

PM(I) = Plarae ()
Ir—r/|

dr', (15)

D. Choice of A

A constrained DFT calculation is converged if the resultant
charge density is identical to the target charge density. In
principle, Eq. (9) should be solved in the limit A = oo, but
in practice, as A increases, the ability to enforce the constraint
is swamped by other numerical factors so that convergence
cannot be obtained.”’ To circumvent this problem, one could
solve Eq. (9) self-consistently with a series of larger and
larger A values and then extrapolate the results to A = 00.2°

However, when a QM region contains hundreds of atoms this
method becomes impractical. In addition, we find that the self-
consistent loops become increasingly difficult to converge with
larger A values. Our aim is to perform single self-consistent KS
calculations with a sufficiently large value of A that balances
computational accuracy and efficiency.

To identify a suitable value for A, we introduce the A-
dependent quantity

1
Ch)=—

20 f [,OéM(l') - plarget(r)] Ué (r)dr (16)
Qe

to quantify the difference between the resultant and target
charge densities, weighted by the constraint potential over
the constrained domain. C(X) decreases with increasing A
and vanishes when A — oco. To determine optimal A, we
have carried out QM/MM calculations for a perfect bulk
cell of each metal of dimensions 14ay x 14ag x ap in x, y,
and z directions, respectively, where a( is the equilibrium
lattice constant. The innermost 4ay x 4ag X ay is the QM
Region I+1I, containing 64 atoms for Al and Pd and 32
atoms for Fe, and the remainder is the MM Region III.
The constrained DFT calculations for Region I+ 11 + €2, are
performed in a rectangular box with dimensions 6ag x 6ay x
ap, with a vacuum (size of 2.5 ag) in the x and y directions and
periodic boundaries in the z direction, and usinga 1 x 1 x 9
k-point mesh.

The evaluated C()) as a function of A are shown in Fig. 4.
In addition to C(A), we also present the variation of the
magnetic moments in Fe versus A, which is another indication
for accuracy of the charge density. For Al, higher accuracy
[~0.05 eV in C(A)] can be achieved by choosing a large A
(~20), and no difficulties with achieving self-consistency are
encountered. On the other hand, the difficulty in obtaining
self-consistency for Fe and Pd prevents the use of such large
values for 1. However, we find good convergence for A = 2
in Fe, and we choose the largest practical value of A =5
for Pd; these values balance accuracy and efficiency. The
chosen A value for Fe also yields sufficiently accurate magnetic
moments for Fe, as shown in Fig. 4(d).

The value of A constitutes the remaining source of error in
the QM/MM method. Note that the value of C()A) does not
represent any specific energy error in our implementation; it
is only a measure of the penalty imposed for not attaining the
target charge density. The energy contribution of the constraint
potential is subtracted from the total energy, so that the error
in the DFT calculation is associated with the small differences
in charge density between the resultant and target values. The
flowchart of the constrained DFT calculation involving the
selection of A is displayed in Fig. 2(b).
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FIG. 4. (Color online) C(A) versus A for three ideal systems
(a) Al, (b) Pd, (c) Fe. In (c), the black (red) curve represents the
spin-up (spin-down) electrons. (d) The variation of the magnetic
moment per atom as a function of A for Fe. The horizontal line
indicates the magnetic moment of a perfect lattice determined from
the periodic DFT calculation.

IV. VALIDATIONS AND APPLICATIONS

In the following, we validate the QM/MM method against
stand-alone periodic DFT calculations in the three metals of
Al, Fe, and Pd. In the validations, the periodic DFT results are
taken as the reference against which we compare the QM/MM
results whenever appropriate.

A. Constraint potential and vacancy formation energy in Al

oQM, pmm, and py are displayed in Fig. 1 for the perfect
Al lattice. Although there is no visible discontinuity of charge
density at the QM/MM boundary, the charge density errors
across the boundary nonetheless exist, typically by a few
percent. The charge density errors induce force errors on the
interior QM ions. For the perfect Al lattice, we find a maximum
force error of 0.025 eV/A. One can increase A and/or construct
a better purge; to systematically reduce the force errors.

We also plot the constraint potential v2(r) with A = 20
along a straight line in Fig. 1(d). The arrows indicate the
overlap between pgm and pmwm in €2¢. The constraint potential
consists of three parts: (i) the repulsive (positive) potential
constraining pom and the wave functions in the QM region; it
plays the similar role as the kinetic energy contribution in the
embedding potential.>? (ii) The attractive (negative) potential
at the QM/MM boundary renders appropriate bonding between
the QM and MM atoms. (iii) the electrons in Region I and the
inner part of Region II are not constrained and thus experience
zero constraint potential.

For the simplest validation of the QM/MM energetics, we
calculate the vacancy formation energy in Al using both the
QM/MM method and a stand-alone DFT. In the stand-alone
DFT calculation, we use a periodic supercell consisting of
256 atoms (4ag X 4ay x 4ap) with a k-point mesh of 3 x 3 x
3. The DFT supercell is large enough to obtain the accurate
single-vacancy formation energy. The vacancy formation
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energy is defined as
Ef) = EO(N = 1)+ E“() - E“(N). (17

The subscripts (a) and (b) denotes the stand-alone DFT and the
QM/MM calculations, respectively. E@(N — 1) and E@(N)
are the total energy for the periodic lattice with and without a
vacancy, respectively, and E@(1) = E“(N)/N is the energy
of single Al atom in the bulk. The calculated vacancy formation
energy E;“J is 0.75 eV. Using the same exchange-correlation

functional, others have reported a value of 0.78 eV.*’ In the
QM/MM calculations, the entire system consists of 14ag x
14ay x 14ay (10976 atoms) with the innermost 4ay x 4ag X
4ay (256 atoms) as the QM region. Only the I" point is used
in the constrained DFT calculation with a vacuum placed in
all three directions. The QM/MM vacancy formation energy
is defined as

EY) = EO(N — 1)+ E9(1) — EY(N), (18)

where E®(N — 1) and E®(N) are the total energy for the
entire system with and without a vacancy. The calculated
vacancy formation energy E;fv) is 0.79 eV, which is in a good
agreement with the stand-alone DFT values (0.75 ~ 0.78 eV).
We have performed an additional QM/MM calculation with a
larger QM region, 4.5ay x 4.5ay x 4.5ay of 365 atoms, but
obtained the same value (0.79 eV) of E}bv) . We have also

calculated E (bz for A = 10 and 30, and determined the vacancy
formation energy tobe 0.81 eV and 0.79 eV, respectively. Thus,
A = 20 is sufficient to obtain the converged vacancy formation
energy of Al. The discrepancy to the stand-alone results is
probably due to the error in constructing the target charge
density. Note that this single-vacancy example only serves the
purpose of energetic validation of the QM/MM method; the
QM/MM method offers no advantage over the periodic DFT
in this case owing to the short-ranged strain field of a single
vacancy.

B. Magnetic moment in Fe

For transition metal Fe, we focus on the validation of the
magnetic moments by considering the following systems: a
perfect bulk lattice and a bulk with a self-interstitial atom
(STA). In the stand-alone DFT calculation of a SIA, a periodic
supercell of 4ag x 4ay x 4ag consisting of 129 atoms is used
with a k-point mesh of 3 x 3 x 3. In the QM/MM calculation
of a SIA, an entire system of 14ay x 14ag x 14ay with an
innermost QM region of 4ay X 4ay x 4ap is modeled. The
calculation is performed at the I" point only. For both systems,
the QM/MM results are compared to those of the stand-alone
periodic DFT calculation in Figs. 5(a) and 5(c), respectively.
Overall, there is an excellent agreement between the QM/MM
and the periodic DFT calculations for the magnetic moments.
To provide a reference point for comparison, we also display
the difference in the magnetic moments between a DFT cluster
calculation and the same stand-alone periodic DFT calculation
in Figs. 5(b) and 5(d), respectively. The cluster refers to an
isolated QM region without the surrounding MM atoms. It is
striking how effectively the QM/MM method can cut down
the magnetic moment errors at the cluster surfaces. Since the
majority of QM/MM methods involve cluster calculations,
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FIG. 5. (Color online) (a), (b) Difference in magnetic moments
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lattice; (c), (d) Difference in magnetic moments between a periodic
DFT calculation and (c) the QM/MM calculation and (d) a cluster
calculation for a self-interstitial in Fe.

the results shown here clearly demonstrate the superiority
of the constrained QM/MM method relative to the other
QM/MM methods for magnetic materials.

C. Edge dislocation in Fe

Here, we demonstrate the advantage of the QM/MM
method over the periodic DFT in modeling an edge dislocation
in Fe. The dislocation has a Burgers vector b = %(111)
on {110} slip plane. In the QM/MM simulation, the entire
system consists of 202 A x 202 A x 6.93 A in [111], [110],
and [112] directions, respectively, with 25398 atoms in total.
Fixed boundary conditions are applied along [111] and [110]
directions with the boundary displacement determined by
the isotropic elastic solution of the edge dislocation. The
dislocation line is along [112] direction in which the periodical
boundary condition is applied. The dimensions of the QM
region are 21 A x 10 A x 6.93 A with 153 atoms, and the rest
of the system belongs to the MM region. In the QM/MM
calculation, the boundary QM region includes three atomic
layers of QM ions in [111] direction and one atomic layer
in [110] direction. Three [111] planes were included in the
DFT calculation to ensure that there is no direct interaction
between the interior QM atoms and the EAM atoms. The
core structure of the edge dislocation is depicted in Fig. 6(a)
. An rough average strain measure is computed for each

0
atomic position i as €; = N Z ) "I and is shown in the

contour plot of Fig. 6(a), where i, j is the atom index
and j sums over the nearest neighbors of the atom i; Ny,
is the number of the nearest neighbors. r;; and rl.oj are the
interatomic distances in the dislocation and the perfect lattice,
respectively. In Fig. 6(b), we display the constraint potential
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FIG. 6. (Color online) (a) The atomic structure and local strain
field of the edge dislocation. The magenta, white, and gray circles
represent the ions belonging to Regions I, II, and III, respectively.
(b) The constraint potential along the horizontal line as indicated in
(a). (c) The edge component of the displacement field in the unit of
the Burgers vector for an edge dislocation in Fe determined from the
QM/MM method. The dislocation core is centered in the QM region
and the dashed lines denote the QM/MM boundaries; only portions
of the MM region are shown.

for the dislocation along a horizontal line. The general feature
of the constraint potential is similar to that of the perfect Al
lattice. As shown in Fig. 6(c), the QM/MM method can capture
the correct long-range edge displacement of the dislocation,
with a minimum of 0 and a maximum of 1 b at the edges of
the MM region. In a periodic DFT calculation, the simulation
cell must contain either a dislocation dipole or quadrupole.**
The spreading of the Burgers vector shown in Fig. 6(c)
demonstrates that a periodic DFT cell must be very large (about
80 A) so that there is no overlap of the cores of the dipole or
quadrupole dislocations. Use of a multiscale method captures
the long-range tails of the Burgers vector distribution in the
MM region while retaining full quantum resolution in the core
region.

We note that the prediction of a dislocation core structure
itself is only the first-level problem for computational materials
science; it is really the computations of (i) chemical effects in
the core due to solute alloying additions or embrittling species,
(ii) structural changes in cores under applied loads or at finite
temperatures, (iii) dislocation-dislocation interactions, and
(iv) other dislocation/defect interactions such as dislocations
precipitate interfaces that are of interest. Periodic DFT is
far too expensive to use for these problems and the scope
of possible cases (e.g., solute types, locations of embrittling
agents, types of boundaries, etc.). Finally, the dislocation
is just one lattice defect with long-range fields; another
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gray and red spheres represent C and O atoms, respectively. The
planes are [110]x[111] and [110]x[112] for the side and top view,
respectively.

case of high interest is a crack, for which there are no
prospects whatsoever for periodic DFT calculations of any

type.

D. Chemisorption of CO on a flat/stepped Pd(111) surface

CO oxidation is an important research area in catalysis
because of its many important technological applications
including exhaust gas after-treatment.*® Here, we calculate
the chemisorption energies of a CO molecule on Pd flat
and stepped surfaces to both validate and demonstrate the
usefulness of the QM/MM method.

We first compare the chemisorption energy of CO on the flat
Pd(111) surface between a stand-alone DFT and the QM/MM
calculation. In the stand-alone DFT calculations, the Pd(111)
surface is modeled by a six-layer slab of Pd atoms as shown
in Fig. 7(a); the bottom three layers are fixed to their bulk
positions while the top three layers are allowed to relax. In the
[110]x[112] plane, the periodic supercell consists of 5 x 2
unit cells (120 Pd atoms). In all calculations, the energy cutoff
of plane-wave basis is 400 eV and the k-point mesh is 4 x
1 x 5in [110], [111], and [112] directions, respectively. The
chemisorption energy is defined as

(a) (a) (a) (a)
AE = ECO/Pd — Epy — Ecos 19)

where E(C‘g /Pd> Egil), and E(C% are the total energies of the
chemisorbed surface, the clean Pd (111) slab, and the CO
molecule, respectively. CO is found to preferentially adsorb on
hollow sites of the Pd (111) surface,*”*® and the chemisorption
energy AE;?I) is —2.07 eV. For the QM/MM calculations,
the entire system has 23 100 Pd atoms with the dimensions
of 153.8A, 47.9A and 48.4A in [110], [111], and [112],
respectively. The QM region consisting of 100 Pd atoms is
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FIG. 8. (Color online) Atomic structure for modeling the
chemisorption of a CO molecule on the Pd surface step. Three
positions for the molecule on the step are indicated by the circles:
(a) on the top surface, (b) on the step surface, and (c) on the lower
surface.

placed at the center of (111) plane shown in Figs. 7(c) and
7(d). The chemisorption energy is calculated as

b) ) (b) (a)
AE = ECO/Pd — Epy — Ecao’ (20)

where E(Cb()) spa and El(,l;) are the total energies of the entire sys-
tem with and without the absorbed CO molecule, respectively.
The chemisorption energy AE ;? is —2.09 eV, comparing very
well to the stand-alone DFT value. This comparison again
validates the energetics of the QM/MM method.

Because of the importance of surface steps in catalysis, we
examine the chemisorption energy of CO at three adsorption
sites near a Pd step as shown in Fig. 8. The QM/MM
method is ideal for treating surface steps because it can
mitigate the fictitious step-step interactions in the periodic
DFT calculations.

The surface step is modeled by removing two atomic layers
on the (111) plane and a periodic boundary condition is
applied in the [112] direction. The QM/MM system measures
166.4 A x 134.7 A x 9.69 A with 14160 Pd atoms in total. The
dimensions of the QM region are 15.35A x 14.10A x 9.69 A
with 120 Pd atoms. A 1 x 1 x 5 k-mesh is used. Following
Eqg. (20), the chemisorption energies are: —2.05 eV, —2.04 eV,
and —1.63 eV for the adsorption sites (a), (b), and (c),
respectively. While the sites (a) and (b) have the similar
chemisorption energy as the flat surface, the site (c) lowers
the chemisorption energy by 0.4 eV as compared to the flat
surface. This example shows that the chemisorption energy
depends sensitively on the local structure of the adsorption
sites, particularly near surface defects such as steps and edges.
This is where the QM/MM method could be particularly useful.

V. CONCLUSION

We have introduced a QM/MM method that is based on
the concept of constrained DFT to capture the nonadditive
kinetic energy that is usually missing in current QM/MM
methods using Kohn-Sham DFT. The implementation of the
QM/MM method, including the construction of the bulklike
charge density, the calculation of the constraint potential and
the optimization of the penalty parameter, have been discussed.
Sources of error in the method are identified, all of which can
be reduced without fundamental changes to the method itself.
The QM/MM method has been applied to three different types
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of metals (Al, Fe, and Pd) and is validated against standard
periodic DFT calculations. For the perfect bulk lattice of Fe,
we show that the QM/MM method can reproduce the magnetic
moments of the periodic DFT calculations with good accuracy.
The QM/MM method also predicts the vacancy formation
energy of Al, the magnetic moments at a self-interstitial atom
of Fe, and the chemisorption of CO on the (111) surface
of Pd quite well, in comparison to periodic DFT results.
We have also applied the QM/MM method to predict the
core structure of the edge dislocation in Fe, where periodic
DFT calculations are not possible without significant errors
due to the necessity of using small cell sizes. Finally, we
used the QM/MM method to examine the chemisorption
energy of CO on a stepped Pd surface, pointing toward
future applications of the method in catalysis. In general, this
QM/MM method has the same level of accuracy and efficiency

PHYSICAL REVIEW B 87, 054113 (2013)

as the OFDFT-based QM/MM embedding method, which is
limited to main group elements. The present method has no
inherent restrictions on application across the periodic table,
within the limits of application of Kohn-Sham DFT methods,
and can deal with arbitrary geometries including nonperiodic
systems. As such, it is a valuable tool for performing accurate
first-principles calculations for problems that might otherwise
not be computationally feasible.
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