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We study the steady-state characteristics and the transient behavior of the nonequilibrium double-dot Aharonov-
Bohm interferometer using analytical tools and numerical simulations. Our simple setup includes noninteracting
degenerate quantum dots that are coupled to two biased metallic leads at the same strength. A magnetic flux
� pierces the interferometer perpendicularly. As we tune the degenerate dot energies away from the symmetric
point, we observe four nontrivial magnetic flux-control effects: (i) flux dependency of the occupation of the
dots, (ii) magnetic-flux-induced occupation difference between the dots, at degeneracy, (iii) the effect of “phase
localization” of the dots’ coherence holds only at the symmetric point, while in general both real and imaginary
parts of the coherence are nonzero, and (iv) coherent evolution survives even when the dephasing strength,
introduced via Büttiker probes, is large and comparable to the dot energies and the bias voltage. In fact,
finite dephasing can actually introduce new types of coherent oscillations into the system dynamics. These
four phenomena take place when the dot energies are gated, to be positioned away from the symmetric point,
demonstrating that the combination of bias voltage, magnetic flux, and gating field can provide delicate control
over the occupation of each of the quantum dots and their coherence.

DOI: 10.1103/PhysRevB.87.045418 PACS number(s): 73.23.−b, 85.65.+h, 73.63.−b

I. INTRODUCTION

The steady-state properties of the Aharonov-Bohm (AB)
interferometer have been intensively investigated,1,2 with
the motivation to explore coherence effects in electron
transmission within mesoscopic and nanoscale structures.3,4

Particularly, the role of electron-electron (e-e) interaction
effects in AB interferometry has been considered in Refs. 5–12,
revealing, e.g., asymmetric interference patterns5 and the
enhancement10 or elimination12 of the Kondo physics. Recent
works further considered the possibility of magnetic-field
control in molecular transport junctions.13–16 The real-time
dynamics of AB interferometers has been of recent interest,
motivated by the challenge to understand quantum dynamics,
particularly decoherence and dissipation, in open nonequi-
librium quantum systems. Studies of electron dynamics in
double-dot AB interferometers in the absence of e-e in-
teractions have been carried out in Refs. 17–19, using a
non-Markovian master-equation approach. The role of e-e
repulsion effects on the dots dynamics was studied numerically
using a nonperturbative method in Ref. 20.

In this paper, we focus on a simple minimal model, the
biased, noninteracting double-quantum-dot AB interferome-
ter, and study its transient and steady-state characteristics.
For a scheme of this model, see Fig. 1. This system has
revealed a wealth of intricate behavior, such as “flux-dependent
level attraction,”21 and the ability to achieve decoherence
control when junction asymmetry is incorporated.19 Here, this
noninteracting system further displays other nontrivial effects
in both the transient regime and the stationary limit. While
previous studies have allowed for junction asymmetry and
nondegenerate dots,18,21 we restrict ourselves to the simplest
case of energy degenerate dots and symmetric dot-lead
couplings. However, in our study the degenerate levels may
be tuned away from the symmetric point, i.e., they do not

necessarily reside at the center of the bias window, a situation
that can be reached by applying a gating field. Using exact
analytic expressions and numerical simulations, we expose
several nontrivial effects emerging in this gated AB model with
biased leads. (i) First, occupation of the dots displays strong
flux dependency. (ii) Second, not only do the occupations
vary with flux, but the dots acquire unequal occupations at
degeneracy. (iii) Further, we show that the effect of “phase
localization”17 appears only at the symmetric point, while
when the system is gated away from that point, dot coherences
can be controlled feasibly by the bias voltage.

In the stationary limit, we further study the role of dephasing
effects, implemented here through a dephasing probe,22–24

on the coherence properties of the system. Interestingly, we
find that finite and substantial dephasing strength (given by
the dephasing rate ×h̄), at the order of the bias voltage and
dot-lead hybridization, still allows for flux dependency of
occupation. However, at large dephasing, the occupation-phase
dependency significantly differs from the zero dephasing
limit. In other words, dephasing processes may alter coherent
oscillations to provide new features. The flux dependency
of the occupation is fully washed out when dephasing is
significantly stronger than the applied bias voltage and the
dot-lead hybridization strength.

The structure of the paper is as follows. In Sec. II, we
present the double-dot AB interferometer model. Section III
explores the steady-state properties of the system using the
nonequilibrium Green’s function approach. We derive closed
analytic expressions (at zero temperature) for the occupation
of the dots, the coherence between the dots, and the charge
current in the system. Section IV provides numerical results in
the transient regime, indicating the time scale it takes for the
system to reach the stationary limit and the intricate dynamics
involved. Section V details the role of dephasing effects,
providing analytic expressions for the occupation of the dots in
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FIG. 1. Scheme of a double-dot AB interferometer. Each of the
two dots is represented by a single electronic level, which do not
directly couple. The total magnetic flux is denoted by �. Dot 1
may be susceptible to dephasing effects, introduced here through the
coupling of this dot to a dephasing probe, the terminal P . The role of
dephasing effects is discussed in Sec. V.

the steady-state limit. Section VI summarizes our main results
and concludes.

II. MODEL

We focus on a symmetric AB setup, with a quantum
dot located at each arm of the interferometer. The dots are
connected to two metal leads (referred to as baths or reservoirs)
maintained in a biased state. For simplicity, we do not consider
here electron-electron interactions and the Zeeman effect, thus,
we can ignore the spin degree of freedom and describe each
quantum dot by a spinless electronic level (see Fig. 1).

We neglect the Coulomb term in order to construct a simple
solvable setup showing nontrivial results to single out the effect
of the threading magnetic flux on the transport behavior. The
resulting analytic expressions allow us to deduce the role of
bias voltage, magnetic flux, and the dot energetics on the
observed characteristics. At the mean-field (Hartree) level, e-e
interaction effects are contained within energy shifts, thus we
expect our main observations to hold. Beyond that, we found
in related studies that e-e interactions with a strength of one to
four times the hybridization strength do not fundamentally
alter results from related noninteracting e-e models.20 We
ignore the Zeeman level splitting since the magnetic flux is
threading between the dots and not the surface of the AB ring.
The total Hamiltonian H is given by

H = HS + HB + HSB. (1)

Here, HS is the Hamiltonian for the dots (the “subsystem”), HB

includes the two metals, and HSB incorporates subsystem-bath
hybridization terms. Specifically, we assume uncoupled dots

HS = ε1a
†
1a1 + ε2a

†
2a2. (2)

To keep our discussion general, we allow the states to be
nondegenerate at this point. In our analytic and numerical cal-
culations below, we have forced degeneracy. a†

β and aβ are the
subsystem creation and annihilation operators, respectively,

where β = 1,2. The metals are composed of noninteracting
electrons

HB =
∑

l

ωla
†
l al +

∑
r

ωra
†
r ar , (3)

where a
†
l,r and al,r are bath creation and annihilation operators,

for the left (l ∈ L) and right (r ∈ R) leads. The subsystem-bath
hybridization term is given by

HSB =
∑
β,l

ξβ,la
†
βale

iφL
β +

∑
β,r

ζβ,ra
†
r aβeiφR

β + H.c., (4)

where ξ is the coupling strength to the left bath and similarly ζ

stands for the coupling strength to the right bath. The notation
here is general, but we later take these couplings to be identical
since we are interested in a dot-lead symmetric setup. Here, φL

β

and φR
β are the AB phase factors, acquired by electron waves

in a magnetic field perpendicular to the device plane. These
phases are constrained to satisfy the following relation:

φL
1 − φL

2 + φR
1 − φR

2 = φ = 2π�/�0, (5)

where � is the magnetic flux enclosed by the ring and
�0 = hc/e is the flux quantum. In what follows, we adopt
the gauge φL

1 − φL
2 = φR

1 − φR
2 = φ/2. It can be proved that

transient dynamics and steady-state characteristics of physical
observables (current, occupation, and coherences) are gauge
invariant.18

We voltage-bias the system, using the convention 
μ ≡
μL − μR � 0, with μL,R as the chemical potential of the
metals. While we bias the system in a symmetric manner,
μL = −μR , the levels of the dots may be placed away from
the so-called symmetric point at which μL − εβ = εβ − μR .
This situation may be achieved by applying a gate voltage
to each dot. For simplicity, we use the conventions h̄ ≡ 1,
electron charge e ≡ 1, and Boltzmann constant kB = 1.

III. STATIONARY BEHAVIOR

A. Method: Equations of motion

Since the model is noninteracting, its steady-state char-
acteristics can be calculated exactly using the nonequilibrium
Green’s function (NEGF) approach.25 This technique has been
extensively used in the past for studying transport properties
in mesoscopic systems and molecular junctions.26 We review
here the steps involved so as to carefully contain the phase
factors. The derivation presented here follows an equation-
of-motion approach.27 In this method, an effective quantum
Langevin equation for the subsystem is obtained by solving the
Heisenberg equations of motion (EOM) for the bath variables,
then substituting them back into the EOM for the subsystem
(dot) variables. The indices α,β = 1,2 identify the two dots.
The resulting EOM is

daβ

dt
= −iεβaβ − iηL

β − iηR
β

− i

∫ t

t0

dτ
∑
α,l

ξβ,lg
+
l (t − τ )ξ ∗

α,le
i(φL

β −φL
α )aα(τ )

− i

∫ t

t0

dτ
∑
α,r

ζ ∗
β,rg

+
r (t − τ )ζα,re

i(φR
α −φR

β )aα(τ ). (6)
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The Green’s functions of the (isolated) reservoirs are given by

g+
l (t) = −ie−iωl t θ (t), g+

r (t) = −ie−iωr t θ (t). (7)

The terms ηL
β and ηR

β are referred to as noise, induced on
the subsystem from the left and right reservoirs, respectively.
Their explicit form is

ηL
β = i

∑
l

ξβ,lg
+
l (t − t0)al(t0)eiφL

β ,

ηR
β = i

∑
r

ζ ∗
β,rg

+
r (t − t0)ar (t0)e−iφR

β . (8)

As an initial condition, we take a factorized state for the
total density matrix ρT (t0) = ρL ⊗ ρR ⊗ ρ(t0), with empty
dots and the reservoirs prepared in a grand canonical state
ρν = e−(Hν−μνN)/Tν

Tr[ρν ] , Tν is the temperature of the ν = L,R Fermi
sea, and μν stands for its chemical potential. The reduced
density matrix ρ denotes the state of the subsystem. Using this
initial condition, noise correlations satisfy〈

η
†L
β (t)ηL

β ′(τ )
〉 =

∑
l

ξ ∗
β,le

iωl (t−τ )ξβ ′,le
−i(φL

β −φL
β′ )fL(ωl),

〈
η
†R
β (t)ηR

β ′(τ )
〉 =

∑
r

ζβ,re
iωr (t−τ )ζ ∗

β ′,r e
i(φR

β −φR
β′ )fR(ωr ),

with the Fermi function fν(ω) = [e(ω−μν )/Tν + 1]−1 and the
expectation values evaluated in the Heisenberg representation
〈A(t)〉 = TrT[ρT (t0)A(t)], tracing over all degrees of freedom.
Steady-state properties are reached by taking the limits
t0 → −∞ and t → ∞. We now Fourier transform Eq. (6)
using the convolution theorem with the convention ãβ(ω) =∫ ∞
−∞ dt aβ(t)eiωt , η̃β(ω) = ∫ ∞

−∞ dt ηβ(t)eiωt . The result, orga-
nized in a matrix form, is

ãβ(ω) =
∑

α

G+
β,α

[
η̃L

α (ω) + η̃R
α (ω)

]
, (9)

with the Green’s function

G+
β,α(ω) = 1

(ω − εβ)δα,β − �
L,+
β,α (ω) − �

R,+
β,α (ω)

. (10)

The self-energies contain the phase factors

�
L,+
β,α (ω) =

∑
l

ξβ,lg
+
l (ω)ξ ∗

α,le
i(φL

β −φL
α ),

�
R,+
β,α (ω) =

∑
r

ζ ∗
β,rg

+
r (ω)ζα,re

i(φR
α −φR

β ). (11)

We also define the conjugated-transposed matrix G− = (G+)†,
to be used in the following. The real part of the self-energy
is a principal value integral, which vanishes when the metals’
density of states is energy independent and the bandwidth is
large. We then define the hybridization matrix from the relation
�+ = −i�/2:

�L
β,β ′ (ω) = 2πe

i(φL
β −φL

β′ )
∑

l

ξβ,lδ(ω − ωl)ξ
∗
β ′,l . (12)

Similar expressions hold for the R side. Using the steady-state
solution (9), we can write an expression for the reduced density
matrix. Back transformed to the time domain, it takes the

form

〈a†
αaβ〉 ≡ ρα,β = 1

2π

∫ ∞

−∞
[(G+�LG−)α,βfL(ω)

+ (G+�RG−)αβfR(ω)]dω. (13)

The time variable has been suppressed here since this result is
only valid in the steady-state limit. In what follows, we take
ξβ,l and ζβ,r as real constants, independent of the level index
and the reservoir state, resulting in

�L
β,β ′ = γLe

i(φL
β −φL

β′ ), �R
β,β ′ = γRe

−i(φR
β −φR

β′ ), (14)

where the coefficient γν , defined through this relation and
Eq. (12), is taken as a constant (energy independent). Using
these definitions, the matrix G+ takes the form

G+ =
[

ω − ε1 + i(γL+γR )
2

iγL

2 eiφ/2 + iγR

2 e−iφ/2

iγL

2 e−iφ/2 + iγR

2 eiφ/2 ω − ε2 + i(γL+γR )
2

]−1

(15)

and the hybridization matrices are given by

�L = γL

[
1 eiφ/2

e−iφ/2 1

]
, �R = γR

[
1 e−iφ/2

eiφ/2 1

]
.

(16)

We can now calculate, numerically or analytically, the behavior
of the reduced density matrix under different conditions.18

Since we are only concerned here with symmetric dot-lead
couplings, we take γL = γR = γ /2. Furthermore, we impose
energy degeneracy ε1 = ε2 = ε. This choice simplifies the
relevant matrices to

G+ =
[

ω − ε + iγ

2
iγ

2 cos φ

2
iγ

2 cos φ

2 ω − ε + iγ

2

]−1

,

�L = γ

2

[
1 eiφ/2

e−iφ/2 1

]
, �R = γ

2

[
1 e−iφ/2

eiφ/2 1

]
.

(17)

We present closed analytic expressions for the diagonal
and off-diagonal elements of the reduced density matrix
in Sec. III B. Complementing numerical data for the real-
time dynamics are included in Sec. IV. This discussion is
generalized in Sec. V to include a dephasing probe.

B. Observables

1. Occupation of the dots

We expose here two effects that persist away from the
“symmetric point,” defined as μL − ε = ε − μR: The dots’
occupations significantly vary with flux, and moreover, the
degenerate dots acquire different occupations. After presenting
general expressions away from the symmetric point, we
consider other relevant cases: the finite-bias limit at the
symmetric point, the limit of infinite bias (which effectively
reduces to the symmetric point), and the case of φ = 2πn,
n = 0,1,2, . . . .

Analytic results are obtained from Eqs. (13) and (17).
Organizing these expressions, we find that the occupation of
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dot 1, ρ1,1 ≡ 〈a†
1a1〉, is given by two integrals

ρ1,1 = γ

4π

∫ ∞

−∞
dωfL(ω)

(ω − ε)2 + ω2
0 − 2ω0(ω − ε) cos φ

2[
(ω − ε)2 − ω2

0

]2 + [γ (ω − ε)]2

+ γ

4π

∫ ∞

−∞
dωfR(ω)

(ω − ε)2 + ω2
0 + 2ω0(ω − ε) cos φ

2[
(ω − ε)2 − ω2

0

]2 + [γ (ω − ε)]2
,

(18)

where we have introduced

ω0 ≡ γ

2
sin

φ

2
. (19)

Similarly, the occupation of level 2, ρ2,2 ≡ 〈a†
2a2〉, is given by

ρ2,2 = γ

4π

∫ ∞

−∞
dωfL(ω)

(ω − ε)2 + ω2
0 + 2ω0(ω − ε) cos φ

2[
(ω − ε)2 − ω2

0

]2 + [γ (ω − ε)]2

+ γ

4π

∫ ∞

−∞
dωfR(ω)

(ω − ε)2 + ω2
0 − 2ω0(ω − ε) cos φ

2[
(ω − ε)2 − ω2

0

]2 + [γ (ω − ε)]2
.

(20)

In what follows, we consider the zero-temperature limit. The
Fermi functions take then the shape of step functions, and the
upper limits of the integrals are replaced by the corresponding
chemical potentials. We now study the contribution of the
odd term in the integrand. This term is responsible for the
development of occupation difference between the dots:

γ

4π

∫ μL

μR

dω
2ω0(ω − ε) cos φ

2[
(ω − ε)2 − ω2

0

]2 + [γ (ω − ε)]2

= sin φ

2

8π
ln

[
F+(φ)

F−(φ)

]
, (21)

where the explicit form of the factors F± is

F±(φ) = γ 4

8
sin4 φ

2
+ 2(μL − ε)2(μR − ε)2

+ γ 2

2

(
cos

φ

2
± 1

)2

(μL − ε)2

+ γ 2

2

(
cos

φ

2
∓ 1

)2

(μR − ε)2. (22)

For details, see Appendix A. Since it is a sum of real quadratic
terms, F± � 0. Inspecting Eq. (21), we note that it vanishes
in four different cases: (i) at zero bias, when μL = μR = 0,
(ii) at infinite bias, μL → ∞ and μR → −∞, (iii) at the
symmetric point when μL − ε = ε − μR , including the case
ε = 0 and μL = −μR , or when (iv) φ = nπ , n = 0,1,2, . . .

(leading to F+ = F−). Combining Eq. (21) with the integration
of even terms in Eq. (18), at zero temperature, we resolve the

−2 −1 0 1 2
0

0.2

0.4

φ/π

ρ 1,
1

 

 

(a)

(b)

ε=0

ε=0.2

ε=0.3

ε=0.35

ε=0.4

−2 −1 0 1 2
0

0.5

φ/π

ρ 1,
1

 

 

ε=0.29

ε=0.3

ε=0.31

ε=0.31
 T=0.05

FIG. 2. (Color online) (a) Flux dependency of occupation for dot
1 using ε = 0 (triangle), ε = 0.2 (�), ε = 0.3 (◦), ε = 0.35 (�), and
ε = 0.4 (+) for the dots’ energies. Panel (b) displays results when ε

is tuned to the edge of the bias window, ε ∼ μL, ε = 0.29 (�), ε =
0.3 (diagonal), ε = 0.31 (◦), and ε = 0.31, T = 0.05 (dashed-dotted
line). In all cases, μL = −μR = 0.3, γ = 0.05, and T = 0, unless
otherwise stated.

occupations

ρ1,1/2,2 = 1

4π

[
2π + tan−1

(
μL − ε

γ−

)
+ tan−1

(
μL − ε

γ+

)

+ tan−1

(
μR − ε

γ−

)
+ tan−1

(
μR − ε

γ+

)]

± sin φ

2

8π
ln

[
F−(φ)

F+(φ)

]
. (23)

The positive sign corresponds to ρ1,1, the negative sign
provides ρ2,2. We have also introduced the notation γ± ≡
γ

2 (1 ± cos φ

2 ). Equation (23) predicts flux dependency of elec-
tron occupation at degeneracy, using symmetric hybridization
constants, once the dots are tuned away from the symmetric
point. Figure 2 displays this behavior, and we find that as the
dot energies get closer to the bias edge, ε ∼ μL, the occupation
strongly varies with ε [Fig. 2(b)]. It is also interesting to
note that the abrupt jump at φ = 2πn disappears once the
levels reside at or above the bias window, for ε � μL. This
feature results from the strict zero-temperature limit assumed
in the analytic calculations [a more detailed discussion follows
Eq. (25)]. When the temperature is high enough, T ∼ γ , the
phase dependency of the occupation is washed out (see Fig. 6).
The following parameters are used here and below: flat wide
bands, dot energies at the order of ε = 0–0.4, hybridization
strength γ = 0.05–0.5, and zero temperature, unless otherwise
specified. The bias voltage is set symmetrically around the
equilibrium Fermi energy, μL = −μR , 
μ ≡ μL − μR .

We now discuss in more details the behavior of the
occupation in some special cases. First, we consider the
symmetric point at finite bias and φ �= 2πn, n = 0,1,2, . . . .
In this case, Eq. (23) precisely reduces to

ρα,α(μL − ε = ε − μR) = 1
2 . (24)
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This result holds in the infinite bias limit μL → ∞ and μR →
−∞, irrespective of the (finite) value of ε. Next, the special
case φ = 2πn should be separately evaluated. At these points,
we have ω0 = 0 and Eq. (18) provides the simple form at zero
temperature

ρα,α(φ = 2πn)

= γ

4π

∫ μL−ε

−∞

dx

x2 + γ 2
+ γ

4π

∫ ∞

ε−μR

dx

x2 + γ 2

= 1

4π

[
tan−1

(
μL − ε

γ

)
+ tan−1

(
μR − ε

γ

)]
+ 1

4
.

(25)

These points are reflected by abrupt jumps in the occupation-
flux behavior. Specifically, at the symmetric point, there is a
sharp reduction of occupation number from 1

2 [Eq. (24)] to 1
4

[Eq. (25)], as observed earlier in Ref. 17. Figure 2 shows that
at (strictly) zero temperature, this jump disappears once the
dot energies are placed at or above the bias edge ε � μL since
resonant transmission is excluded and tunneling of electrons is
the only allowed transport mechanism. At finite T , the jump at
φ = 2πn survives even for ε > μL due to the contribution of
resonant electrons. The behavior of the dot’s occupation with
temperature is displayed in Fig. 6.

The total electronic occupation of the dots, at steady state,
generalizes the standard symmetric case attained in Ref. 18:

ρ1,1 + ρ2,2 = γ

2π

∫ ∞

−∞
dω

[
(ω − ε)2 + ω2

0

]
[fL(ω) + fR(ω)][

(ω − ε)2 − ω2
0

]2 + [γ (ω − ε)]2
.

(26)

We now highlight one of the main results of the paper: the
onset of occupation difference in this degenerate (ε1 = ε2)
and spatially symmetric (γL = γR) setup. Using Eq. (23), we
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0.5

ρ 1,
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φ/π

(a)
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−2 −1 0 1 2
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n

(c)
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FIG. 3. (Color online) (a), (b) Occupation of the dots as a function
of φ for 
μ = 0.6, ε = 0.2, T = 0. (c) Occupation difference
δn = ρ1,1 − ρ2,2. At weak coupling γ = 0.05 (�), the occupation
of the dots is almost identical. When the hybridization is made
stronger, γ = 0.5 (◦), comparable to the displacement of the levels
from the symmetric point, ρ1,1 clearly deviates from ρ2,2. At
very strong coupling γ = 2 (+), the occupation difference reduces
and asymmetries develop. For clarity, results are shown for φ/π

between (−2,2).
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0
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δ 
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δ  
n

φ=π/2
φ=π/4
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FIG. 4. (Color online) Occupation difference as a function of
bias voltage 
μ, for different phases φ = π/2 (full line), φ = π/4
(dashed line), φ = π/8 (dashed-dotted line). Other parameters are
ε = 0.2 and γ = 0.05, T = 0. The inset presents data for backward
and forward biases; the main plot zooms on the positive bias regime.

find that

δn ≡ ρ1,1 − ρ2,2 = sin φ

2

4π
ln

[
F−(φ)

F+(φ)

]
. (27)

As we mentioned above, this quantity is nonzero when the
following (sufficient) conditions are simultaneously satisfied:
(i) the bias voltage is finite, neither zero nor infinite, (ii) the
dots are positioned away from the symmetric point ε �= (μL +
μR)/2, and (iii) the phase φ is not a multiple of π , φ �= nπ ,
n = 0,1,2, . . . . To rephrase this observation, the occupation
difference can be controlled by manipulating the subsystem-
metal hybridization energy γ , by changing the bias voltage,
by applying a gate voltage for tuning the dot energies, and by
modulating the phase φ through the magnetic flux. The role of
these control knobs is illustrated in Figs. 3–5.

In Fig. 3, we display the level’s occupation in the resonant
regime μR < ε < μL while varying γ . At weak coupling, δn

is insignificant. However, the occupation difference becomes
large when cotunneling effects contribute. More notably, Fig. 4
illustrates the strong controllability of δn with applied voltage.
We find that the occupation difference is maximized at the edge
of the resonant transmission window, when μL − ε = 0 (or,
equivalently, when 
μ = 2ε). The magnetic flux affects the
width and height of the peak, but not the absolute position
which is only determined by the offset of ε from the center of

−2 −1 0 1 2

−0.2

−0.1

0

0.1

0.2

0.3

φ/π

δ 
n

 

 

FIG. 5. (Color online) Occupation difference as a function of φ

for different bias values 
μ = 0.1 (full line), 
μ = 0.2 (dashed
line), 
μ = 0.3 (dashed-dotted line), and 
μ = 0.4 (dotted line).
Other parameters are ε = 0.2, γ = 0.05, and T = 0.
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FIG. 6. Finite-temperature behavior. Main plot: Occupation dif-
ference as a function of bias voltage for φ = π/4. Inset: Occupation
of dot 1 as a function of φ for 
μ = 0.4. In both panels T = 0
(dotted line), T = 0.01 (full line), T = 0.05 (dashed-dotted line), and
T = 0.1 (dashed line). Dot parameters are ε = 0.2 and γ = 0.05.

the bias window. In Fig. 5, we further show the flux dependency
of δn, which is particularly significant when 
μ = 2ε.

The effect of finite temperature on the occupation-flux
dependence, and on the development of occupation difference,
is displayed in Fig. 6. We find that the effects largely survive

at finite T , as long as T < γ . These results were calculated
numerically, based on Eqs. (18) and (20).

2. Coherence

It was recently argued that the decoherence behavior in
our generic setup, including two noninteracting (uncoupled)
quantum dots interferometer, can be suppressed when the
device geometry is made asymmetric and nondegenerate, using
ε1 �= ε2 and γL �= γR .19 The requirement for asymmetry in this
work arises from the observation of the “phase-localization”
effect, which hinders phase manipulation in the system at
the symmetric point. The term “phase localization” refers to
the fact that if we define ρ1,2(t) = |ρ1,2(t)|eiϕ(t), the relative
phase ϕ localizes to the values −π/2 or π/2 in the long-time
limit when φ �= 2πn, n is an integer.17 Based on numerical
simulations, we have pointed out in Ref. 20 that phase
localization occurs only at the symmetric point, while at other
values of ε the real part of ρ1,2 is finite and nonzero in
the asymptotic limit for any phase aside from 2πn.20 This
observation is established here analytically in the steady-state
limit, implying that decoherence could be suppressed in
degenerate-symmetric systems once the dots are gated, with
their levels shifted relative to the center of the bias window.

We derive a closed expression for the off-diagonal system element ρ1,2 ≡ 〈a†
1a2〉 by studying Eq. (13):

ρ12 = γ

4π

∫ ∞

−∞
dωfL(ω)

{
cos φ

2

[
(ω − ε)2 − ω2

0

] + i sin φ

2

[
(ω − ε)2 + ω2

0

]
[
(ω − ε)2 − ω2

0

]2 + [γ (ω − ε)]2

}

+ γ

4π

∫ ∞

−∞
dωfR(ω)

{
cos φ

2

[
(ω − ε)2 − ω2

0

] − i sin φ

2

[
(ω − ε)2 + ω2

0

]
[
(ω − ε)2 − ω2

0

]2 + [γ (ω − ε)]2

}
. (28)

At finite bias and zero temperature, direct integration provides
the real (Re) and imaginary (Im) parts of ρ1,2 (φ �= 2πn):

Reρ1,2 = 1

4π

[
tan−1

(
μL − ε

γ+

)
− tan−1

(
μL − ε

γ−

)

+ tan−1

(
μR − ε

γ+

)
− tan−1

(
μR − ε

γ−

)]
(29)

and

Imρ1,2 = 1

4π
sin(φ/2)

[
tan−1

(
μL − ε

γ+

)
+ tan−1

(
μL − ε

γ−

)

− tan−1

(
μR − ε

γ+

)
− tan−1

(
μR − ε

γ−

)]
. (30)

As before, we define γ± = γ

2 (1 ± cos φ

2 ). We now readily
confirm that at the symmetric point the real part vanishes and
“phase localization” takes place.17 In particular, in the infinite
bias limit we find Imρ1,2 = 1

2 sin φ

2 , in agreement with previous
studies.20 We also include the behavior at the special points
φ = 2πn. Equation (28) reduces then to a simple Lorentzian

form, at zero temperature,

ρ1,2(φ = 0)

= γ

4π

∫ μL−ε

−∞

dx

x2 + γ 2
+ γ

4π

∫ ∞

ε−μR

dx

x2 + γ 2

= 1

4π

[
tan−1

(
μL − ε

γ

)
+ tan−1

(
μR − ε

γ

)]
+ 1

4
.

(31)

The overall sign reverses for φ = ±2π . We note that the
imaginary part of the coherence identically vanishes at zero
phase while the real part is finite, approaching the value 1

4 at
the symmetric point.

Numerical results in the steady-state limit are displayed in
Fig. 7. We find that both the real and imaginary parts of ρ1,2

demonstrate significant features when the dots’ levels cross the
bias window at 
μ = 2ε. The value of the real part abruptly
changes sign, the imaginary part develops a step. At large
bias, Reρ1,2 diminishes while Imρ1,2 is finite, indicating on
the development of the phase-localization behavior. It can be
shown that the double-step structure of Imρ1,2 (as a function of

μ) disappears when the dot energies are set at the symmetric
point.
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FIG. 7. (Color online) Real and imaginary parts of the coherence
as a function of the bias voltage. φ = π (dashed line), φ = π/2 (full
line), φ = π/4 (dashed-dotted line). Other parameters are ε = 0.2,
γ = 0.05, and T = 0. The oval shape marks the region of phase
localization at positive bias.

3. Current

It is of interest to complement our study of subsystem (dot)
properties and examine the transmission coefficient and the
overall charge current in the system. The electric current,
flowing from the L metal to the R end, is obtained by defining
the number operator NL ≡ ∑

l a
†
l al , providing the current

JL→R = − dNL

dt
= −i[H,NL]. This yields

JL→R = i
∑

l,α=1,2

(
ξ ∗
α,le

−iφL
α 〈a†

l aα〉 − ξα,le
iφL

α 〈a†
αal〉

)
. (32)

Expectation values are calculated in the steady-state limit.
Using the EOM formalism as explained in Sec. III, we get
the standard result25

JL→R = 1

2π

∫ ∞

−∞
dω TLR(ω)[fL(ω) − fR(ω)]. (33)

The transmission coefficient is defined as TLR =
Tr(�LG+�RG−), where the trace is performed over the
states of the subsystem (dots). In the present model, at zero
temperature, we obtain

JL→R = 1

2π

∫ μR

μL

dω
γ 2(ω − ε)2 cos2 φ

2[
(ω − ε)2 − ω2

0

]2 + γ 2(ω − ε)2

= cos φ

2

2π

[
γ+

{
tan−1

(
μL − ε

γ+

)
− tan−1

(
μR − ε

γ+

)}

−γ−

{
tan−1

(
μL − ε

γ−

)
− tan−1

(
μR − ε

γ−

)}]
,

(34)

which agrees with known results.5 Using the NEGF formalism,
we could similarly investigate the shot noise in the double-dot
AB interferometer.28

The transmission function is plotted in Fig. 8 displaying
destructive interference pattern for φ = π and a constructive
behavior for φ = 0. For φ �= nπ , the transmission nullifies
exactly at the position of the resonant level.29 The inset
presents the current-voltage characteristics for φ = π/2 away
from the symmetric point (dashed line) and at the symmetric
point (dotted line). We note that the double-step structure
(indicating on tunneling dynamics at low bias) disappears in

−0.2 0 0.2 0.4
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0.4
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 R

FIG. 8. Transmission coefficient as a function of the energy of an
incoming electron, for ε = 0.2, γ = 0.05, φ = π (dotted line), φ =
π/2 (dashed line), and φ = 0 (full line). The inset presents charge
current for φ = π/2 and ε = 0.2 (dashed line), ε = 0 (dotted line).

the latter case. It can be shown that the double-step structure
of Imρ1,2 (see Fig. 7) similarly diminishes at the symmetric
point.

IV. TRANSIENT BEHAVIOR

It is of interest to investigate the development of the flux
dependency of the occupancy, and the occupancy difference
δn, before steady state is reached. Similarly, the dynamics
of coherences is nontrivial even without electron-electron
interaction effects.20 We complement the NEGF steady-state
expressions of Sec. III with numerical calculations of the
transient behavior using an exact numerical tool that is based
on the fermionic trace formula30

Tr[eM1eM2 · · · eMp ] = det[1 + em1em2 · · · emp ]. (35)

Here, mp is a single-particle operator corresponding to
a quadratic operator Mp = ∑

i,j (mp)i,j a
†
i aj . a

†
i (aj ) are

fermionic creation (annihilation) operators. The trace is per-
formed over all electronic degrees of freedom. Our objective
is to study the dynamics of a quadratic operator B ≡ a

†
j ak ,

j,k = 1,2,

〈B(t)〉 = Tr[ρT (t0)eiHtBe−iH t ]

= lim
λ→0

∂

∂λ
Tr[ρLρRρeiHteλBe−iH t ]. (36)

We introduce the λ parameter, taken to vanish at the end of
the calculation. The initial condition is factorized ρT (t0) =
ρ(t0) ⊗ ρL ⊗ ρR , and these density operators follow an expo-
nential form eM , with M a quadratic operator. The application
of the trace formula leads to

〈eλB(t)〉 = det{[IL − fL] ⊗ [IR − fR] ⊗ [IS − fS]

+ eiht eλbe−ihtfL ⊗ fR ⊗ fS} (37)

with b and h as the single-body matrices of the B and H

operators, respectively. The matrices Iν and IS are the identity
matrices for the ν = L,R space and for the subsystem (dots).
The functions fL and fR are the band electrons occupancy
fν(ε) = [eβ(ε−μν ) + 1]−1. Here, they are written in matrix
form and in the energy representation. fS represents the
initial occupation for the dots, assumed empty, again written
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FIG. 9. (Color online) Time evolution of the occupation differ-
ence, γ = 0.05, ε = 0.2, T = 5 × 10−3, φ = π/2.

in a matrix form. When working with finite-size reservoirs,
Eq. (37) can be readily simulated numerically exactly.

Figure 9 displays the evolution of the occupation difference,
presented as a function of 
μ. In this simulation, we used finite
bands with a sharp cutoff D = ±1. At short time, δn shows
weak sensitivity to the actual bias. Only after a certain time,
γ t ∼ 2, the peak around the edge at 
μ = 2ε clearly develops.
Note that since the band is not very broad, edge effects are
reflected at large biases as nonzero occupation difference, in
contrast to the broad-bandwidth long-time behavior of Fig. 4.

The transient behavior of the coherences Reρ1,2 and Imρ1,2,
is included in Fig. 10; the corresponding steady-state values
are presented in Fig. 7. We can follow the temporal features of
the phase-localization effect, i.e., the disappearance of the real
part of the coherence at the symmetric point or at large bias,
when φ �= 2πn. Using φ = π/2 we note that while at short
to intermediate time (γ t < 2), significant coherence builds
up, the real part of the coherence eventually survives only
at small biases. Regarding time scales, we find that while
Imρ1,2 reaches the steady-state values at short time γ t ∼ 2,
Reρ1,2 approaches its stationary limit only at longer times, for
γ t ∼ 10. Similar results were obtained in Ref. 20.

V. DEPHASING PROBE:
STEADY-STATE CHARACTERISTICS

We have discussed so far pure coherent evolution effects in
double-dot AB interferometers. It is important to examine at

0
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FIG. 10. (Color online) Time evolution of the real (a) and
imaginary (b) parts of the coherence using γ = 0.05, ε = 0.2,
T = 5 × 10−3, φ = π/2.

this point the role of elastic dephasing effects on this evolution
as was done experimentally31,32 and theoretically33–36 in re-
lated systems. Here, we are essentially focused on the effect of
dephasing on the modulation of occupation with magnetic flux.
Recently, interference and decoherence processes were studied
not only in quantum dot structures,23,24 but in molecular loops
as well.15,16,37,38

Phase-breaking processes arise due to the interaction of
electrons with other degrees of freedom, e.g., with electrons,
phonons, and defects. We generalize here the discussion of
Sec. III, and incorporate dephasing processes into our system
phenomenologically, by using the well-established method of
Büttiker dephasing probe.22 In this technique, elastic dephas-
ing processes on the dots are emulated by including a third
terminal P , enforcing the requirement that the charge current
towards the probe terminal, at a given electron energy, should
vanish. Thus, electrons travel to the probe and return to the
system with a different phase, while both electron number and
electron energy are conserved. This condition sets an electron
distribution within the probe. As we show in the following,
away from the symmetric point this distribution effectively
depends on the magnetic flux. Other phenomenological tools
to incorporate dephasing processes in mesoscopic devices are
based on the introduction of random-phase fluctuations into the
scattering matrix,39 or on the inclusion of damping terms into
the off-diagonal elements of the density matrix within quantum
master-equation (Lindblad or Redfield) formalisms.40

Using the Büttiker probe method, we augment the Hamil-
tonian (1) with a probe, adding to the system a noninteracting
electron reservoir P ,

HD = H +
∑
p∈P

ωpa†
pap +

∑
p∈P

λpa
†
1ap + H.c. (38)

The parameter λ denotes the coupling strength of dot 1 to the
P terminal, taken as a real number. Note that we only allow
here for local dephasing on dot 1. One could similarly consider
models where both dots are susceptible to dephasing effects,
possibly from different sources. Following the equations-of-
motion approach as detailed in Sec. III, we arrive at the steady-
state expression for the reduced density matrix

〈a†
αaβ〉 = 1

2π

∑
ν=L,R,P

∫ ∞

−∞
(G+�νG−)α,βfν(ω)dω. (39)

The probe hybridization matrix is given by

�P = γP

[
1 0
0 0

]
, (40)

and the dot’s Green’s function is written by generalizing the
matrix (15), to include the probe self-energy,

G+ =
[

ω − ε1 + i(γL+γR+γP )
2

iγL

2 eiφ/2 + iγR

2 e−iφ/2

iγL

2 e−iφ/2 + iγR

2 eiφ/2 ω − ε2 + i(γL+γR )
2

]−1

.

This matrix is written here in a general form to allow one to
distinguish between the two dots and the different dot-metal
hybridization terms. The dot-probe hybridization is defined
as γP = 2π

∑
p |λp|2δ(ω − ω0), in analogy with Eq. (12). In

our calculations below we assume energy degenerate dots and
symmetric couplings ε = ε1 = ε2, γL = γR = γ /2.
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We now derive the probe distribution by demanding that
the energy-resolved charge current to the P terminal vanishes.
The total current to P is given by the sum of the currents from
the L and R terminals, generalizing Eq. (33):

JP = JL→P + JR→P

= 1

2π

∫ ∞

−∞
TLP (ω) [fL(ω) − fP (ω)] dω

+ 1

2π

∫ ∞

−∞
TRP (ω) [fR(ω) − fP (ω)] dω (41)

with the transmission coefficient Tνν̃(ω) = Tr[�νG+�ν̃G−].
By forcing the integrand to vanish, we arrive at the probe
distribution

fP (ω) = TLP (ω)fL(ω) + TRP (ω)fR(ω)

TLP (ω) + TRP (ω)
. (42)

Direct evaluation of these transmission coefficients provides
the electron distribution in the probe

fP (ω) = fL(ω) + fR(ω)

2

+ γ (ω − ε) sin φ

2 cos φ

2

2
[
(ω − ε)2 + ω2

0

] [fL(ω) − fR(ω)] . (43)

As before, ω0 = γ

2 sin φ

2 . This expression indicates that the
magnetic flux plays a role in setting the distribution within
the probe (such that it only dephases the system and does
not deplete electrons or allow energy reorganization). This
dependency disappears when the dot energies are set at the
symmetric point since the contribution of the second term in
Eq. (43) diminishes in the integrals of Eq. (44) from symmetry
considerations. We now write integral expressions for the
occupation of the dots using Eq. (39):

ρ1,1 = γ

4π

∫ ∞

−∞

dω


(ω)

{ [
(ω − ε)2 + ω2

0 − 2ω0(ω − ε) cos
φ

2

]
fL(ω) +

[
(ω − ε)2 + ω2

0 + 2ω0(ω − ε) cos
φ

2

]
fR(ω)

}

+ γP

2π

∫ ∞

−∞

dω


(ω)

[
(ω − ε)2 + γ 2

4

]
fP (ω),

ρ2,2 = γ

4π

∫ ∞

−∞

dω


(ω)

{ [
(ω − ε)2 + ω2

0 + 2ω0(ω − ε) cos
φ

2
+ ω0γP sin

φ

2
+ γ 2

P

4

]
fL(ω)

+
[

(ω − ε)2 + ω2
0 − 2ω0(ω − ε) cos

φ

2
+ ω0γP sin

φ

2
+ γ 2

P

4

]
fR(ω)

}
+ γ 2γP

8π
cos2 φ

2

∫ ∞

−∞

dω


(ω)
fP (ω), (44)

with


(ω) =
∣∣∣∣(ω − ε)2 − ω2

0 − γ γP

4
+ i

(
γ + γP

2

)
(ω − ε)

∣∣∣∣
2

.

In the absence of dephasing, these expressions reduce to
Eqs. (18) and (20). In the opposite limit, at very large dephasing
γP � γ , γP > 
μ, we note that ρ2,2 is dominated by γ 2

P γ

terms that are flux independent, while ρ1,1 is dominated
by its last term ∝ γP fP , which is flux dependent away
from the symmetric point, resulting in ρ1,1 ∝ sin(φ). Thus,
quite counterintuitively, we find that the level that is directly
susceptible to local dephasing demonstrates flux dependency
of occupation at strong dephasing, while the level that
indirectly suffers dephasing effects more feasibly loses its
coherent oscillations.

Performing the integration numerically, the dots’ occupa-
tion and their oscillation with phase are presented in Fig. 11.
We observe the following trends upon increasing dephasing
strength γP : At the symmetric point [Figs. 11(a) and 11(b)],
the abrupt jump at zero phase immediately disappears with
the application of finite dephasing. When the dot energies are
placed away from the symmetric point, yet they buried within
the bias window [Figs. 11(c) and 11(d)], the abrupt jump
at zero phase again disappears, although the oscillations of
occupation with phase prevail until large dephasing γP ∼ 
μ.
More significantly, when the dot energies are tuned at the
edge of the bias window [Figs. 11(e) and 11(f)], we find that

dot 1 (which is directly dephased) develops a new type of
oscillation with phase. Only at very large dephasing γP � 
μ,
these oscillations are overly suppressed. Thus, away from
the symmetric point, not only features of coherent dynamics
survive even at significant dephasing strength (γP � γ , γP ∼

μ), a new type of coherent oscillations may develop as a
result of the application of elastic scattering effects on the dots.
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FIG. 11. (Color online) The role of dephasing on the dot
occupation–magnetic flux dependency. (a), (b) ε = 0, (c), (d) ε = 0.2,
(e), (f) ε = 0.3, where γP = 0 (dotted line), γP = 0.01 (dashed
line), γP = 0.05 (dashed-dotted line), and γP = 0.5 (full line). Other
parameters are γ = 0.05, 
μ = 0.6, T = 0.
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FIG. 12. (Color online) Occupation of the dots in the absence
of dephasing (full and dashed lines for dots 1 and 2, respectively),
and in the presence of dephasing probes with γP 1 = γP 2 = 0.025
(� for ρ1,1 and ◦ for ρ2,2). The arrows indicate that oscillations are
systematically suppressed in the indicated direction. We used ε = 0.3,
γ = 0.05, 
μ = 0.6, T = 0.

We can generalize the dephasing model, and study the case
with uncorrelated dephasing processes taking place on dots 1
and 2, with dephasing strengths γP 1 and γP 2, respectively.
Analytic expressions for the occupations of the dots are
included in Appendix B. Numerical data are depicted in
Fig. 12. We find that coherent oscillations sustain up to
γP 1,γP 2 ∼ γ , and finite occupation difference is visible. Since
we take the dephasing strengths at each dot to be equal,
γP 1 = γP 2, the occupation of the dots maintains their relative
symmetry. More complicated patterns show when γP 1 �= γP 2.
The fact that the model with two dephasing probes provides
features distinct from the case with a single probe has been
discussed before. For example, in Ref. 41, conductance oscil-
lations for AB rings using different, nonuniform, dephasing
around the ring were noted to be distinct.

To conclude, the quantum coherence phenomena discussed
in Secs. III and IV should be visible even when dephasing
effects take place. Detailed features of, e.g., δn(φ), depend
on the way dephasing is applied, whether it is local or
uniform. It is interesting to reproduce the behavior observed
here while modeling elastic dephasing effects using other
techniques.33–35,39,40

VI. CONCLUSIONS

In this paper, we have addressed the issue of magnetic-
field control on electronic occupation and coherence in a
double-dot AB interferometer. The system under investigation
included energy degenerate dots with symmetric dot-metals
hybridization strengths. However, by voltage gating the dots’
levels away from the so-called symmetric point at which
ε = (μL + μR)/2, we have resolved four nontrivial effects
that can allow for significant control over the occupation
of quantum dots and their coherence: (i) Occupation may
significantly vary with magnetic flux, particularly when the
dot level resides close to the bias edge. (ii) The dots acquire
different occupations, although they are energy degenerate
and the junction is geometrically symmetric. This behavior
is maximized at the bias edge ε ∼ μL. It survives at finite tem-
perature, as long as T < γ . (iii) Regarding the dots’ coherence,
we have demonstrated that the effect of “phase localization”17

does not take place away from the symmetric point, allowing
for decoherence control in the system. Furthermore, (iv) we
have found that the system can withstand dephasing processes,
to maintain coherent evolution and even develop a new type of
oscillations under intermediate dephasing strengths (γP ∼ 
μ

and γP > γ ).
Our minimal model could be applied to describe magnetic-

field control in mesoscopic conducting loops and in molecular
ring structures. In the latter case it has been noted that
degeneracy is crucial for allowing controllability within
realistic magnetic-field strengths.15 Our study has been limited
to the noninteracting electron model, excluding both electron-
electron interaction effects and other explicit sources for
dephasing and inelastic scattering processes. It is of interest
to explore the role of interactions on the effects revealed
in this paper, as we expect that it would effectively lift the
energy degeneracy in the system, further intensifying the
effects discussed here. This behavior can be immediately
observed at the mean-field level. The Hartree term corrects
the dot energies, e.g., ε1 → ε1 + Uρ2,2.42 Thus, away from
the symmetric point, (flux generated) unequal dot occupation
translates to effective unequal energetics for the two (identical)
dots. Double quantum dots have been proposed as qubits,
for implementing quantum computation.43 The controllability
exposed in our study could serve for realizing two-qubit gates
and long-lived memory elements.
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APPENDIX A: DERIVATION OF EQ. (21)

In this Appendix, we evaluate the following integral
analytically:

I = γ

4π

∫ μL

μR

dω
2ω0(ω − ε) cos φ

2[
(ω − ε)2 − ω2

0

]2 + [γ (ω − ε)]2
. (A1)

We achieve this by making use of the following definite
integral:

I0 =
∫ c

d

x

(x2 − a2)2 + b2x2
dx

=
tan−1

[
2a2−b2−2d2

b
√

4a2−b2

] − tan−1
[

2a2−b2−2c2

b
√

4a2−b2

]
b
√

4a2 − b2
. (A2)

In our case, we identify d = (μR − ε), c = (μL − ε), b = γ ,
and a = γ

2 sin φ

2 , leading to b
√

4a2 − b2 = ±iγ 2 cos φ

2 and

2a2 − b2 − 2d2 = γ 2

[
1

2
sin2 φ

2
− 1

]
− 2(μR − ε)2,

2a2 − b2 − 2c2 = γ 2

[
1

2
sin2 φ

2
− 1

]
− 2(μL − ε)2.
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We now reorganize Eq. (A2) using the relations tan−1 x + tan−1 y = tan−1( x+y

1−xy
) and tan−1 z = i

2 [ln(1 − iz) − ln(1 + iz)] to
find

I0 =
ln

[
F+(φ)
F−(φ)

]
2γ 2 cos φ

2

, (A3)

where

F±(φ) = γ 4

8
sin4 φ

2
− (μL − ε)2

[
γ 2

2
sin2 φ

2
− (μR − ε)2 − γ 2

(
1 ± cos

φ

2

)]

− (μR − ε)2

[
γ 2

2
sin2 φ

2
− (μL − ε)2 − γ 2

(
1 ∓ cos

φ

2

)]
. (A4)

We can reorganize these F functions as a sum of real quadratic terms

F±(φ) = γ 4

8
sin4 φ

2
+ 2(μL − ε)2(μR − ε)2 + γ 2

2

(
cos

φ

2
± 1

)2

(μL − ε)2 + γ 2

2

(
cos

φ

2
∓ 1

)2

(μR − ε)2. (A5)

Attaching the missing prefactors I = γ

4π
(2ω0) cos φ

2 × I0, we obtain Eq. (21):

I = sin φ

2

8π
ln

[
F+(φ)

F−(φ)

]
. (A6)

APPENDIX B: OCCUPATION OF THE DOTS WITH TWO INDEPENDENT DEPHASING PROBES

Based on the equation-of-motion approach described in Sec. III, we extend the discussion of Sec. V to include two independent
dephasing probes acting on each dot separately. We denote the probe coupled to dot 1 by P 1, and similarly we identify the probe
coupled to dot 2 by P 2. The elements of the reduced density matrix are given by

〈a†
αaβ〉 = 1

2π

∑
ν

∫ ∞

−∞
(G+�νG−)α,βfν(ω)dω, (B1)

and we sum over contributions from all four reservoirs, the electronic baths, and the probes ν = L,R,P 1,P 2. The probes’
hybridization matrices are given by

�P 1 = γP 1

[
1 0
0 0

]
, �P 2 = γP 2

[
0 0
0 1

]
. (B2)

The dot-metal hybridization matrices and hybridization strengths γL and γR were included in Sec. III A. It can be shown that the
dot’s Green’s function can be written as

G+ =
[

ω − ε1 + i(γ+γP 1)
2

iγL

2 eiφ/2 + iγR

2 e−iφ/2

iγL

2 e−iφ/2 + iγR

2 eiφ/2 ω − ε2 + i(γ+γP 2)
2

]−1

,

using γ = γL + γR . We now demand that the energy-resolved current to each probe vanishes, and this condition provides the
electron distribution in each probe, given in terms of the transmission functions as in Eq. (42):

fP 1(ω) = fL(ω) + fR(ω)

2
+ γ (ω − ε) sin φ

2 cos φ

2 [fL(ω) − fR(ω)]

2
[
(ω − ε)2 + ω2

0 + γ 2
P 2

/
4 + ω0γP 2 sin φ

2

] (B3)

and

fP 2(ω) = fL(ω) + fR(ω)

2
− γ (ω − ε) sin φ

2 cos φ

2 [fL(ω) − fR(ω)]

2
[
(ω − ε)2 + ω2

0 + γ 2
P 1

/
4 + ω0γP 1 sin φ

2

] . (B4)
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This expression already assumes degenerate dots ε1 = ε2. We also used the notation ω0 = γ

2 sin φ

2 . We now return to the reduced
density matrix (B1) and substitute these distribution functions to obtain the occupation of dot 1:

ρ1,1 = γ

4π

∫ ∞

−∞

dω


(ω)

{[
(ω − ε)2 + ω2

0 − 2ω0(ω − ε) cos
φ

2
+ γP 2ω0 sin

φ

2
+ γ 2

P 2

4

]
fL(ω)

+
[

(ω − ε)2 + ω2
0 + 2ω0(ω − ε) cos

φ

2
+ γP 2ω0 sin

φ

2
+ γ 2

P 2

4

]
fR(ω)

}

+ γP 1

2π

∫ ∞

−∞

dω


(ω)

[
(ω − ε)2 + (γ + γP 2)2

4

]
fP 1(ω) + γ 2γP 2

8π
cos2 φ

2

∫ ∞

−∞

dω


(ω)
fP 2(ω) (B5)

with 
(ω) = [(ω − ε)2 − ω2
0 − 1

4 (γ γP 1 + γ γP 2 + γP 2γP 1)]2 + (γ + γP 1/2 + γP 2/2)2(ω − ε)2. An expression for ρ2,2 can be
similarly written. It is given by Eq. (B5) once we (i) exchange P 1 ↔ P 2 and (ii) flip signs in front of the 2ω0(ω − ε) cos φ

2 terms.
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