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Coherent nonlocal transport in quantum wires with strongly coupled electrodes
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We report a one-dimensional nonlocal experiment where the conductance of a section of carbon nanotube
shows regular oscillations due to phase-coherent and ballistic transport in an adjacent section. This occurs in
spite of wide strongly coupled contact electrodes, which are expected to divide the nanotube into independent
sections. Our simulations show that the electrodes can be modeled as shallow and wide barriers which maintain

quantum coherence of electron transport between the adjacent sections for lengths of several micrometers.
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I. INTRODUCTION

When conductors are reduced to dimensions smaller than
the electronic coherence length, their transport properties
reveal quantum effects. A striking experiment by Umbach
et al.' showed that the conductance of a gold wire was affected
by an adjacent gold loop. Quantum interference of electrons
traveling outside the contact probes and around the loop caused
Aharonov-Bohm periodic oscillations of the conductance as a
function of magnetic field, thereby unambiguously demon-
strating nonlocal effects from regions outside the classical
current path. However, nonlocal interference has not been
observed in one-dimensional (1D) conductors. In this paper
we report the observation of nonlocal coherent transport in a
carbon nanotube, where the nonlocal interference pattern is
obtained by continuously tuning the wavelength of electrons
at the Fermi level, without applying any magnetic field.

Evidence of electrons propagating beyond a carbon nan-
otube (CNT) section covered by a strongly coupled electrode,
such as palladium (Pd), into a neighboring section of uncov-
ered CNT has only been seen for very narrow electrodes, just a
few tens of nanometers across.>* In these samples, a section of
CNT was biased and a nonlocal voltage signal was measured
across an adjacent unbiased section. The nonlocal voltage was
due to a fraction of electrons (about 10% in Ref. 2) propagating
from the biased section across the narrow electrode and into
the unbiased section.

For strongly coupled materials like Pd, this nonlocal effect
is widely believed to disappear when the electrode width is
increased beyond a few tens of nanometers, especially for large
diameter nanotubes, where high-transparency contacts can
more easily be achieved due to a larger CNT/metal interface.*>

Previous experimental work® and first-principle calcula-
tions of a CNT surrounded by Pd atoms> argue that strongly
coupled Pd electrodes divide the nanotubes into independent
sections and that the current of the nanotube segment under-
neath the Pd electrode is basically shunted through the Pd.

In contrast to this picture, we show that even in the
case of large and strongly coupled contacts and large-
diameter nanotubes, a significant fraction (higher than 10%) of
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electrons propagate across the electrode, causing phase-
coherent nonlocal transport extending a few micrometers
beyond the electrode.

II. EXPERIMENTS AND RESULTS

Our sample is a semiconducting CNT with multiple Pd
electrodes, as shown in Fig. 1(a). The electrodes are 650
nm wide and 50 nm thick. The lengths of the CNT sections
between the Pd leads are 400, 6300, and 1200 nm, labeled A,
B, and C, respectively. The tube diameter, measured by atomic
force microscopy (AFM), is 3.0 &= 0.5 nm.

Each section can be biased in a field-effect transistor (FET)
configuration, as shown in Fig. 1(a) for section A. An applied
gate voltage shifts the Fermi energy from the gap region, where
the FET is not conducting, into one of the 1D subbands of the
CNT dispersion relation sketched in Fig. 2(b).

The conductance as a function of gate voltage for section
A at two different temperatures is shown in Fig. 2(a). The
threshold gate voltage at which the conductance starts to
increase, Vg =~ 2V, corresponds to the Fermi energy crossing
the edge of the valence band. When the gate voltage is lowered,
the Fermi energy is pushed further down into the valence band,
where the dispersion relation is approximately linear, as shown
in Fig. 2(b). Here the dispersion relation of the conduction
(valence) bands are approximated by the relation

E(k) = +(—)V(Eg/2)* + (hvrk)?, (1)

where E; and vy are the carbon nanotube energy gap and
Fermi velocity, respectively.’ In this region of gate voltage, all
three CNT field-effect transistors (from sections A, B, and C)
show extremely high on-conductances 2.8Gy < Gon < 4Gy
at 5 K. This indicates that all the sections are free from major
defects and the contacts are highly transparent.*>-3-1°

When the temperature is lowered to temperatures T <10 K,
conductance vs Vi shows large oscillation. The origin of these
oscillations can be identified by measuring the conductance
as a function of source-drain and gate voltages, clearly
revealing that the oscillations are part of an interference
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FIG. 1. (Color online) (a) Schematic diagram of the two-probe
configuration measurement circuit combined with a scanning electron
microscopy image of our sample. (b) Sketch of the CNT and
palladium contacts showing the wave vector for charges propagating
in device A and its component along the tube axis k,.

pattern, as shown in Fig. 3. Here the color scale represents
the differential conductance measured with a standard lock-in
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FIG. 2. (Color online) (a) Zero-bias differential conductance as a
function of gate voltage for device A at two different temperatures.
(b) Conduction and valence 1D subbands for a semiconducting carbon
nanotube.
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FIG. 3. (Color online) 2D plots of the differential conductance
of device A as a function of source-drain voltage (V;_,) and gate
voltage (Vi) at T = 50 mK. (a) 2D plot in large gate and source-drain
voltage ranges showing typical Fabry-Perot pattern with energy scale
corresponding to the length of device A. (b) High-resolution 2D plot
in a region close to zero source-drain voltage showing fine periodic
structure of a Fabry-Perot pattern corresponding to a resonant length
of more than 3 um. (c) Enlargement of a region from (b).

technique. Similar patterns have been previously observed
in both semiconducting and metallic carbon nanotubes with
high-transparency contacts and they can be understood as
Fabry-Perot resonances for the wave functions of electrons
propagating in a carbon nanotube waveguide.*!!

Figure 3(a) shows a clear periodic pattern obtained in
device A at 50 mK. Here the source-drain bias is connected to
electrodes P1 and P2, whereas electrode P3 is not connected
to the external circuit, as shown in Fig. 1(a). The maxima of
differential conductance as a function of gate and source-drain
voltages are due to the coherent interference of different
electronic paths: In addition to the one-trip ballistic path, where
electrons travel from one electrode P1 through the nanotube
to the second electrode P2, there is a finite probability that
electrons will be reflected at the contacts and will be captured
by P2 only after a round trip in the nanotube. The condition
for phase coherence of the two paths is satisfied for values of
the wave vector

k, =nm/L, ()

where n is an integer and k,2L is the additional phase shift
of the electronic wave function along the round trip, as in a
Fabry-Perot resonator.
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We can thus infer the length of the resonator by measuring
the source-drain voltage corresponding to the first maximum
in the Fabry-Perot pattern,'!

eAV, = AE =hvpn/L = (1.67 meV um)/L, (3)

where AE = E(k,1) — E(k,), and we have used the linear
approximation for the dispersion relation in Eq. (1). For device
A, the value V|_, = AV, >~ 4.5 mV is indicated by the black
arrow in Fig. 3(b) and corresponds to a bright spot where two
(high-conductance) white lines cross, at the corner of one of the
diamonds in the pattern. This value of AV} corresponds to a
length L 4 =370 nm, very close to the directly measured length
of device A, 400 nm. Notably, the discrete values of electronic
energies corresponding to resonances coincide with the energy
spectrum of the carbon nanotube as a 1D quantum well with
length L = L4, because the same boundary conditions are
applied.'?

Figures 3(b) and 3(c) show high-resolution plots of the
Fabry-Perot pattern obtained by zooming into a smaller region
of gate and source-drain voltage. Here some fine features
are distinguishable as new periodic structures within the
Fabry-Perot pattern. These new structures are also Fabry-Perot
patterns, but with a much smaller source-drain voltage spacing,
with the first maximum at about 500 pV, corresponding to
a Fabry-Perot resonator larger than 3 wm, about 10 times
longer than the CNT section between electrodes P1 and P2 in
device A.

III. DISCUSSION

A longer electronic path can only be obtained for electrons
injected from the first electrode P1 and propagating across
the second electrode P2 into the adjacent section of CNT,
device B, and back into P2. Analogously to the experiment by
Umbach et al.,' resonances occur when electrons following the
longer path outside the contact probes P1 and P2 are phase
coherent with electrons propagating along the path in the short
nanotube section A. We note that electrode P2 is wider than the
charge-transfer length,'>'% providing maximum transmission
from the carbon nanotube to the Pd electrode. Even in this
case, the transmission from the carbon nanotube to the Pd
electrode is smaller than 1 and fine features due to nonlocal
transport effects can still be measured. However, due to their
small energy scale, they can only be clearly observed at low
temperature (50 mK) and with high-resolution measurements
of the two-dimensional (2D) Fabry-Perot patterns.

In Fig. 4 we test this explanation for the fine features of
the pattern by applying a source-drain voltage to device B.
We indicate the potential difference between electrodes P3
and P2 as V,_3, and we set V,_3 = —V,_» + V}), as shown
in Fig. 4(a). We then measure the differential conductance of
device A as a function of the source-drain voltage V|_,, at a
fixed gate voltage, for different values of the offset V; [see
Fig. 4(b)]. When Vy = 0, V,_3 = —V,_, and the conductance
of device A shows clear small Fabry-Perot oscillations around
Vi_» = 0mV that are superimposed onto the large Fabry-Perot
oscillations. This is expected because Fabry-Perot oscillations
are symmetric as a function of source-drain voltage; therefore
a condition of constructive interference at a specific value of
Vi_, will hold also at —V;_,. When the offset Vj # 0, then
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FIG. 4. (Color online) (a) Schematic of the equivalent biasing
circuit for tuning the Fabry-Perot pattern with smaller energy scale.
(b) Differential conductance of device A as a function of source-
drain voltage (V,_,) at Vg = —10.07 V and at T = 50 mK. Each
curve is measured after changing the bias voltage across device B
(see text), with Vy = 0, 0.55, 1.53, and 2.55 mV. Inset: 2D plot of
differential conductance for device A measured at V, = 0 showing
the fine Fabry-Perot pattern.

Va_3 # —V|_,, clearly disrupting the constructive interference
of the small Fabry-Perot pattern. The small oscillations are then
smeared out and eventually disappear, leaving only the large
Fabry-Perot oscillations corresponding to AV, >~ 4.5mV. The
bias voltage V| shifts the electrochemical potentials in the
two adjacent CNT sections A and B with respect to each
other. If V) # 0, the mismatch between the electron energies
and momenta in sections A and B destroys the coherent
pattern.

IV. MODELING AND SIMULATION

To obtain a detailed understanding of the picture presented
in the previous section, we model the nanotube as a multitermi-
nal conductor following the Landauer-Biittiker formalism,'”
with two sections A (short) and B (long) separated by a
common electrode [P2 in Fig. 1(b)]. We assume that the
contacts P1 and P2 for section A are symmetric and that the
length of the adjacent section to the right of P1 is infinite. This
is because the CNT section between P1 and the catalyst island
is much longer than all the other sections, as shown in Fig. 1(a).
We also assume that electrode P3 is at the same potential as the
carbon nanotube, because it is electrically connected to it and
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it is disconnected from the external circuit [see Fig. 1(a)]. We
consider the “clean” limit, since in our experiment the electron
mean free path is larger than the lengths of the nanotube
sections; therefore no electron-impurity scattering is taken into
account in our model.

The charge carriers propagating in section A towards P2
can either be reflected back into section A with probability
R or transmitted with probability T = 1 — R. There are two
different paths for transmission. In the first path charge carriers
will be transmitted directly from the nanotube to the electrode
P2. Here the CNT/Pd interface is modeled as a scatterer
with transmission probability of 0.85. This is consistent with
the high, nearly ideal conductance measured. In the second
path, charge carriers will be transmitted along the axial CNT
direction x into the adjacent section B.

Along the x path we assume that the Fermi level in the
sections of nanotube covered by the electrodes is shifted
from the Dirac point (corresponding to the middle of the
bandgap for a semiconducting nanotube).!>!¢ This shift is
introduced in the model with the potential function U(x),
which is shaped as a square barrier [see Fig. 1(b)]. This barrier
acts as a scatterer for electrons propogating along the carbon
nanotube.

The physical origin of the Fermi-level shift is the in-
teraction of the carbon nanotube with the metal form-
ing the electrodes. Different work functions and, in some
cases, chemical bonding cause charge transfer between the
metal and the carbon nanotube, thereby shifting the Fermi
level.

The width of U(x) is set to 600 nm, equal to the width
(L.) of the electrode P2, whereas the height corresponds to the
Fermi-level shift caused by the interaction with the metal.
This shift cannot be readily predicted because it can vary
substantially depending on the material work functions and
the equilibrium distance between the carbon nanotube and the
metal; therefore we adjusted it to match the experimental data
by setting the barrier height equal to 2 meV, as discussed below.
Furthermore, we assumed that the barrier height does not vary
in the range of gate voltage considered in the simulations.
This is because, when a gate voltage is applied, both the
Fermi level in the uncovered nanotube and the Fermi level
in the nanotube covered by the metal are shifted by the gate
voltage, as shown in Ref. 13. For simplicity we assumed that
the gate voltage shifts them by the same amount, keeping
their relative shift caused by the interaction with the metal
constant.

Charge carriers transmitted from section A to section B
and then reflected by the electrode P3 will also have a finite
probability to be captured by P2. Therefore, the two sections
A and B can be considered as two 1D quantum wells that
are coupled via the potential barrier U(x) due to the common
electrode P2. We account for this coupling using the Green’s
function method.!> Electronic transport through this structure
involves multiple transmission and reflection processes for
the electron wave functions, which are solutions of the
Dirac equation.'’”"!” The transmission probability through the
shallow barrier along the CNT axis depends on the electron
energy E, on gate voltage Vi, and on the potential barrier
profile U(x). Interference effects, resonant scattering, and
the barrier U(x) will all affect the transmission probability

PHYSICAL REVIEW B 87, 045403 (2013)

Tp (E,U,Vs)intothe electrode P2. Relevant composition rules
and calculation details of Tp (E,U, V) can be found in earlier
papers (see, e.g., Refs. 18 and 19).

The conductance G = dI/dV,_, of section A is com-
puted by using the Landauer-Biittiker formula'> for the
electric current

(Vo Vi) = %/dETP(E,U,vG)[n(E,D
_n(E - €V1_2,T)], (4)

where n(E,T) is the Fermi distribution function. In the sim-
ulations we considered a semiconducting CNT with diameter
dy =3 nm, in agreement with the value measured by AFM.
Following the experimental conditions, the Fermi level is
shifted far away from the band edge, where the energy
dispersion relation becomes approximately linear; therefore
we found that the simulation results depend weakly on the
CNT chirality. Temperature smearing effects are included in
two ways: (i) via the distribution function n(E,T) in Eq. (4)
and (ii) via broadening of the quantized energy levels in the
wells due to inelastic electron-phonon collisions with acoustic
phonons. Although the electron-phonon scattering rate is very
low (1 neV at 4 K and 1 neV at 50 mK), it ensures that
singularities of the density of states are rounded.

FIG. 5. (Color online) Calculated 2D plots of the conductance
G (Vg,V,_») in units of 4Gy = 4e*/h at T = 50 mK. (a) Simulated
2D plot of the conductance of section A assuming the lengths of the
short and long CNT sections to be L, = 440 nm and Lg = 4400 nm,
respectively. The two overlapping Fabry-Perot patterns are formed
due to phase-coherent coupling of the electron states across the middle
barrier. (b) The same plot for G (Vs,V;_;), assuming Ly infinitely
long.
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In agreement with the experiment, the conductance of
section A exhibits a remarkable new feature. In addition to
the Fabry-Perot pattern with eA VLA = hvpm /Ly, it contains
an additional Fabry-Perot pattern with e AV? = nhvp /Ly, as
shown in Fig. 5(a) (here e AV ~ ¢AV}*/10). The additional
pattern is due to coherent coupling between sections A and B
through a wide potential barrier separating them.

Another feature clearly visible in the computed Fabry-Perot
pattern is the stripe of reduced conductance G (Vg,Vi_»)
which is parallel to the Vi axis and centered at V;_, = 0.
Within this stripe the features corresponding to the Fabry-
Perot oscillations are darker than outside the stripe (the
conductance maxima at Vi_, =4 mV are brighter than
the conductance maxima at Vi_, = 0). The stripe width,
AVi_, ~4 mV, centered at V|, =0, is determined by
the height of the potential barrier U(x), because the higher
conductance occurs for electronic energies larger than the
barrier height. We set this height to 2 meV to match the
experimental data, since a low-conductance stripe with width
AVi_» >~ 4 mV can be distinguished in the experimental plots
[see Fig. 3(a)].

To provide further insight, we simulated the case where
section B is infinitely long, leaving all the other parameters
in the model unchanged. The result is the expected simple
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Fabry-Perot pattern with eAV? =hvpw /L4, with no fine
structure, as shown in Fig. 5(b).

V. CONCLUSION

Our experiments unambiguously show that, notwithstand-
ing the large and strongly coupled Pd electrode, nonlocal
effects are still present and charges can propagate phase
coherently in the adjacent section. These nonlocal effects
produce variation of conductance that can be as high as 13% for
an electrode width that is 2 orders of magnitude larger than the
nanotube diameter. This remarkably long range of coherence is
explained by our theoretical analysis, where the Pd electrode
creates a wide and shallow barrier. Electrons can propagate
through such a wide, strongly coupled electrode without being
scattered, on a ballistic phase-coherent path longer than 6 um.
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