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Spin-charge conversion in a multiterminal Aharonov-Casher ring coupled to precessing
ferromagnets: A charge-conserving Floquet nonequilibrium Green function approach
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We derive a nonperturbative solution to the Floquet nonequilibrium Green function (Floquet NEGF) describing
open quantum systems periodically driven by an external field of arbitrary strength of frequency. By adopting
the reduced-zone scheme, we obtain expressions rendering conserved charge currents for any given maximum
number of photons, distinguishable from other existing Floquet-NEGF-based expressions where, less feasibly,
an infinite number of photons needs to be taken into account to ensure the conservation. To justify our derived
formalism and to investigate spin-charge conversions by spin-orbit coupling (SOC), we consider the spin-driven
setups as reciprocal to the electric-driven setups in Souma and Nikolić [Phys. Rev. B 70, 195346 (2004); Phys.
Rev. Lett. 94, 106602 (2005)]. In our setups, pure spin currents are driven by the magnetization dynamics of a
precessing ferromagnetic (FM) island and then are pumped into the adjacent two- or four-terminal mesoscopic
Aharonov-Casher (AC) ring of Rashba SOC where spin-charge conversions take place. Our spin-driven results
show reciprocal features that excellently agree with the findings in the electric-driven setups mentioned above.
We propose two types of symmetry operations, under which the AC ring Hamiltonian is invariant, to argue
the relations of the pumped/converted currents in the leads within the same or between different pumping
configurations. The symmetry arguments are independent of the ring width and the number of open channels
in the leads, terminals, and precessing FM islands. In particular, net pure in-plane spin currents and pure spin
currents can be generated in the leads for certain setups of two terminals and two precessing FM islands with
the current magnitude and polarization direction tunable by the pumping configuration, gate voltage covering the
two-terminal AC ring in between the FM islands.
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I. INTRODUCTION

Spin, one form of angular momentum, is a vector distin-
guishing from the scaler charge and thus provides more degrees
of freedom than the conventional charge for people to utilize
in signal-storage and signal-transfer devices; particularly, the
investigation on manipulating and comprehending the electron
spins, termed spintronics, has become an emerging field due to
its potential industry applications.1–4 A key physical quantity
in spintronics is the spin current, while there are no direct
measurements such as “spin current ammeter” to detect the
spin current.5 In this paper, we propose a setup that takes
advantages of the inverse spin-Hall effect (ISHE) and the
Aharonov-Casher (AC) effect to convert the pumped spin
currents by precessing magnetization of a ferromagnetic (FM)
island into more accessibly measurable charge currents.

In the spin-Hall effect (SHE), a longitudinal injection of a
conventional unpolarized charge current into a system with
either extrinsic (due to impurities)6,7 or intrinsic (due to
band structure)8,9 spin-orbit coupling (SOC) generates a
transverse pure spin current in the four-terminal geometry or
the corresponding spin accumulation along the lateral edges in
the two-terminal geometry. While the magnitude of the pure
spin current generated by SHE in metals and semiconductors is
rather small and difficult to control,4 the ISHE7,10 has recently
emerged as the principal experimental tool to detect induction
of pure spin currents by different sources. In the ISHE (which
can be viewed7,10 as the Onsager reciprocal phenomenon of the
direct SHE), a longitudinal spin current generates a transverse

charge current or voltage in an open circuit. Experimental
examples employing ISHE to detect pure spin current include
(i) a pure spin current pumped by precessing magnetization
of a single FM layer under ferromagnetic resonance (FMR)
conditions with detection by injecting the pumped current
into an adjacent normal-metal (NM), such as Pt, Pd, Au, and
Mo, or semiconductor layer;11,12 (ii) spin currents generated
in nonlocal spin valves;13 (iii) a transient ballistic pure spin
current injected14 by a pair of laser pulses in GaAs multiple
quantum wells being converted into a charge current generated
by ISHE before the first electron-hole scattering event, thereby
providing unambiguous evidence for the intrinsic direct and
inverse SHE.

Spin pumping15 by precessing magnetization is a phe-
nomenon where the moving magnetization of a single FM
layer, driven by microwave radiation under the FMR, emits
spin current into adjacent NM layers. The emitted spin current
is pure in the sense that it is not accompanied by any net charge
flux. This effect is termed pumping because it occurs in the
absence of any dc bias voltage. Particularly, the detection of
pure spin currents pumped by magnetization dynamics has
become a widely employed technique12 to characterize the
effectiveness of the charge-spin conversion by the SHE via
measuring the material-specific spin-Hall angle (i.e., the ratio
of spin-Hall and charge conductivities). The same ISHE-based
technique is almost exclusively used in the very recent observa-
tions of thermal spin pumping and magnon-phonon-mediated
spin-Seebeck effect.16 Also, spin pumping makes it possible
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to inject17 spins into semiconductors with electrically tunable
efficiency across an Ohmic contact, evading the notorious
problem18 of impedance mismatch between the FM conductor
and high-resistivity material.

On the theoretical side, the mechanisms for converting
pumped pure spin current into charge current, due to a
region with intrinsic or extrinsic SOC into which the pumped
spin current is injected, have been analyzed in a number of
recent studies. For example, Ref. 19 has shown that both
transverse and longitudinal charge currents are generated in
the four-terminal Rashba-spin-split two-dimensional electron
gas (2DEG) of square shape which is adjacent to the FM
island with precessing magnetization that pumps longitudinal
pure spin current into the 2DEG. In this scheme, the output
charge current can be increased by increasing the strength of
the Rashba SOC in the 2DEG.

Furthermore, the recent alternative description20 of spin
pumping in FM|NM multilayers, which encompasses both the
earlier considered21 nonlocal diffusion of the spin accumu-
lation at the FM|NM interface generated by magnetization
precession and the effective field described by the “standard
model”15 of spin pumping viewed as an example of adiabatic
quantum pumping that is captured by the Brouwer scattering
formula,22 has shown that spin-charge conversion does not
always occur and that the conversion depends sensitively on
the type of spin-orbit interactions. That is, unlike in FM|NM
systems where spin-charge conversion is driven by the ex-
trinsic SOC and assumed to follow simple phenomenological
prediction jc ∝ S × js (jc is charge current density, S is the
spin polarization direction, and js is the injected spin current
density), the pumped charge currents in Rashba systems were
found to deviate from this naive formula.

Thus, the whole phenomenon of spin-charge conversion
after pure spin current is injected into a system with SOC
needs to be discussed together with the origin of spin currents
and the type of SOC employed for the conversion.20 Here we
analyze spin current generation by one or two precessing FM
islands and the corresponding spin-charge conversion in two-
and four-terminal mesoscopic rings, adjacent to those islands
and patterned in the 2DEG with the Rashba SOC. Unlike
the spin-charge conversion in experimental and theoretical
studies discussed above, where electronic transport occurs in
semiclassical nature,20 the device depicted in Fig. 1 involves
spin-sensitive quantum-interference effects caused by the dif-
ference in the AC phase23–25 gained by a spin traveling around
the phase-coherent ring. The AC effect,23–25 in which magnetic
dipoles travel around a tube of electric charge, can be regarded
as a special case of a geometric phase. For typical ring sizes and
strengths of Rashba SOC in InAlAs/InGaAs heterostructures,
the AC phase acquired by a (spin) magnetic moment moving
in the presence of an electrical field is of Aharonov-Anandan26

(rather than Berry) type due to the fact that the electron spin
cannot25 adiabatically maintain a fixed orientation with respect
to the radial effective (momentum-dependent and, therefore,
inhomogeneous) magnetic field associated with the Rashba
SOC. In fact, the AC phase for spins traveling around the
mesoscopic ring consists of not only the geometric phase,
but also a dynamical phase arising from the additional spin
precession driven by the local effective magnetic field.27

Accordingly, giving electrons such geometric phase makes
it possible to manipulate the magnitude of charge and spin
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FIG. 1. (Color online) Schematics of the (a) four- and (b) two-
terminal device setups. A precessing ferromagnetic (FM) island
driven by microwaves pumps pure spin current into the Aharonov-
Casher (AC) ring (where the spin-charge conversion takes place)
patterned within a two-dimensional electron gas in the x-y plane
with the Rashba spin-orbit coupling. The semi-infinite normal-metal
(NM) leads, in the absence of any dc bias voltage, are attached to
the AC ring to probe the output time-averaged (over a precession
period) pumped charge (spin-q with q ∈ {x,y,z}) currents, IL (I

Sq

L ),

IB (I
Sq

B ), IR (I
Sq

R ), and IT (I
Sq

T ), in the left, bottom, right, and top of the
device, respectively. The FM island is of length LFM, and exchange
splitting �. The magnetization of the FM precesses around the z

axis with frequency ω and cone angle � . The AC ring lattice sites
along the tangential and normal directions are denoted by n and m,
respectively.

currents in AC rings due to the fact that, unlike the usual
case of intrinsically fixed phases, the ring experiments allow
one to steer geometric phases in a controlled way through
the system geometry and other various tunable parameters.28

For example, the destructive quantum interferences, controlled
by the accumulated AC phase via tuning of the strength of
the Rashba SOC (which depends on the applied top-gate
voltage),29,30 cause unpolarized charge current injected into
the two-terminal AC rings to diminish27,28,31–34 [to zero34

if the ring is strictly one-dimensional (1D)]. Similarly, in
four-terminal AC rings one encounters quantum-interference-
controlled SHE, predicted in Ref. 35 and extended to different
types of SOC and ring geometry in Refs. 36 and 37,
where spin-Hall conductance can be tuned from zero to
a finite value of the order of spin conductance quantum
e/4π .

The goal of this study is threefold: (i) to provide a unified
microscopic quantum transport theory based on the non-
perturbative solution of the time-dependent nonequilibrium
Green function (NEGF) in the Floquet representation38 which
conserves charge current at each level of approximation (i.e.,
number of microwave photons taken into account depending
on the strength of the driving field) for both the spin current
generation by the magnetization dynamics and spin-charge
conversion in the adjacent region with SOC; (ii) to understand
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how output spin and charge currents from multiterminal AC
ring devices (such as in Fig. 1) can be controlled by the
top-gate covering the ring, by the cone angle of precessing
magnetization set by the input microwave power driving the
precession, and by the setup geometry; (iii) to examine whether
the device setup in Fig. 1 can be used as a new playground
for experiments25,28,31,32 measuring charge currents to detect
quantum interference effects involving AC phase in a single
mesoscopic ring where multichannel effects in a typical ring of
finite width act as effective dephasing (by entangling spin and
orbital degrees of freedom39 or averaging over orbital channels
with different interference patterns),34 thereby randomizing
interference patterns as in conventional measurements using
dc bias voltage.31

The paper is organized as follows. In Sec. II, we specify
our pumping device and the adopted Hamiltonian. Section III
formulates the solution to the Floquet-NEGF equations. Our
numerical results are discussed in Sec. IV according to
the chosen parameters and units given in Sec. IV A. In
Sec. IV B, we examine both the pumped charge and spin
currents responsible for the AC phase and ISHE effects
and driven by spin pumping in the absence of any dc bias
voltage, i.e., the spin-driven setups as the counterparts to the
conventional voltage-bias driven (electric-driven) setups with
two-terminal27,33,34 and four-terminal35 mesoscopic AC rings
of the Rashba SOC. Section IV D illustrates different pumping
symmetries of the AC ring. We conclude in Sec. V. We also
add an appendix to show how charge current can be conserved
in our present work and to compare our derived expression of
the current with other existing formulas.

Our key results are as follows: (i) To arrive at Eqs. (32)–(35),
we solve the Floquet-NEGF equations and use the so-called
reduced-zone scheme38 which guarantees conservation of
charge currents for any given maximum number of photons
(as shown in the Appendix), unlike other recent approaches
based on continued-fraction solutions40–43 where charge con-
servation is ensured only in the limit of infinite number of
photons. (ii) With Fig. 2 through Fig. 7, we analyze the
pumped currents in the spin-driven setup Fig. 1. The results
are in good correspondence with the reciprocal electric-driven
results shown in Refs. 34 and 35, justifying the derived
formalism herein. Detail examinations, based on the AC effect
and ISHE, of the modulations of both the pumped charge
and spin currents are given. (iii) In Sec. IV D, we tailor the
pumping symmetry under which the Hamiltonian of the AC
ring of Rashba SOC remains invariant. By performing the
symmetry operations on one specific pumping configuration,
we can obtain the relations between pumped currents in the
same or different pumping configurations (or setup geometry).
Although we illustrate the symmetry operations by considering
only the setups of two-terminal two-precessing FM islands,
the symmetry arguments are applicable to the case of an
arbitrary number of terminals and FM islands as well, giving
multifarious manipulations of the pumped currents via setup
geometry. In particular, Figs. 10, 11, and Figs. 14–17 show
that the pumped spin currents are pure and are of magnitude
and polarization direction tunable by the top-gate voltage
controlling the strength of the Rashba SOC and by the pumping
configurations.

II. DEVICE SETUP AND HAMILTONIAN

Consider the spin-driven four-terminal (or four-lead) setup
in Fig. 1(a). A ferromagnet, FM, with precession axis along
the z direction, contacts the AC ring of Rashba SOC in the x-y
plane from the left. The FM plays the role of a spin-z source,
pumping pure spin-z currents into the ring via the FM|AC-ring
interface. The spin-charge conversion takes place in the AC
ring. The pumped or converted charge current Ip and spin

current I
Sq

p are probed by the NM leads where currents are con-
served with p = L, R, B, and T indicating the currents flowing
through the left, right, bottom, and top leads and q ∈ {x,y,z}
standing for the pumped spin-x, y, and z currents, respectively.

All computed pumped spin and charge currents are time
averaged (over one precession period); they carry positive
signs if the flow direction is in the +x or +y direction or
minus if flow direction is in the −x or −y. In the two-terminal
setup, Fig. 1(b), we have two NMs labeled by p = L, R. Note
that, except for the number of leads, Fig. 1(b) does not differ
from Fig. 1(a), but just further shows the lattice structure of
the device. The AC ring is modeled by m = 1 · · · M concentric
circles of the same number of lattice sites, and in a circle m

the lattice sites are indexed by n = 1 · · · N . For instance, we
have (M,N ) = (3,8) in Fig. 1(b). The NMs and the FM are
modeled by square lattices, while each NM is of semi-infinite
length, and the FM is of finite length, namely, an island.

The Hamiltonian of the whole device can be divided into
six terms,

H (t) = HACR + HNM + HFM(t)

+HNM-ACR + HFM-ACR + HFM-NM, (1)

where HACR, HNM, and HFM account for the Hamiltonian of
the AC ring, NM, and FM, respectively. The term H NM-ACR

describes the hybridization between NMs and the AC ring,
and H FM-ACR (HFM-NM), the hybridization between FM and
the AC ring (FM and NMs). Note that the time-dependent
Hamiltonian originates only from the precessing FM, HFM(t).
Below, we express these six terms explicitly.

Focus on HACR first. As given in Ref. 34, the ring
Hamiltonian can be written as

HACR =
[ ∑

σ,σ ′=↑,↓
εn,mâ†

n,m;σ ân,m;σ

−
(

N∑
n=1

M∑
m=1

γ
n,n+1,m;σ,σ ′
φ â†

n,m;σ ân+1,m;σ ′

−
N∑

n=1

M−1∑
m=1

γ m,m+1,n;σ,σ ′
r â†

n,m;σ ân,m+1;σ ′

)]

+ H.c., (2)

with n and m denoting the lattice sites along the tangential
(φ) and normal (r) directions as illustrated in Fig. 1(b),
respectively. The creation (annihilation) operator at site (n,m)
of spin σ is â

†
n,m;σ (ân,m;σ ). The on-site potential εn,m at site

(n,m) takes into account the disorder and can be tuned by
applying a top-gate voltage. In what follows, unless further
specified, we will assume that the AC ring, NM, and FM
are all clean conductors, i.e., of zero on-site potentials. The
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hopping along the φ direction,

γ
n,n+1,m
φ = 1

(rm/a)2�φ2
γ0Is − i

γSO

(rm/a)�φ

×(σx cos φn,n+1 + σy sin φn,n+1), (3)

and along the r direction,

γ m,m+1,n
r = γ0Is + iγSO(σy cos φn − σx sin φn), (4)

consists of two terms proportional to γ0 that origi-
nates from the kinetic energy and to γSO that results
from the Rashba SOC, with φn ≡ 2π (n − 1)/N , φn,n+1 ≡
(φn + φn+1)/2, �φ = φ2 − φ1, rm ≡ r1 + (m − 1)a, γ0 =
h̄(2ma2)−1, γSO = α(2a)−1, a being the lattice spacing, σq =
Sq2/h̄ being the Pauli matrices, and h̄ × 2π , the Planck
constant. It is worth addressing that the Hamiltonian (2)
yields the same spin precession as obtained by the SU(2)
non-Abelian spin-orbit gauge44 that absorbs the Rashba SOC
term for the U-shaped45 1D conductor; furthermore, the above
form of the concentric tight-binding Hamiltonian was also
used to theoretically model the Rashba SOC in HgTe/HgCdTe
quantum wells in Ref. 31, showing experimental observations
of the AC effect in good agreements with the theoretical
predictions, and thus strengthening the validity of the ring
Hamiltonian Eq. (2).

The currents are probed by the un-biased NM leads whose
Hamiltonian reads

HNM = −
∑

p

∑
σ=↑,↓

∑
〈μ,μ′〉

γ0b̂
(p)†
μ;σ b̂

(p)
μ′;σ , (5)

where b̂
(p)†
μ;σ is the creation operator and b̂

(p)
μ;σ is the annihilation

operator in lead p at site μ of spin σ . The pure spin currents
are pumped by the precessing FM described by

HFM(t) =
∑

σ,σ ′=↑,↓

∑
ν

�

2

M(t) · 
σ ĉ†ν;σ ĉν;σ ′

−
∑

σ=↑,↓

∑
〈ν,ν ′〉

γ0ĉ
†
ν;σ ĉν ′;σ

=
∑

σ,σ ′=↑,↓

∑
ν

[
V ei(ωt+�) + V †e−i(ωt+�)

+ �

2
cos �σz

]
ĉ†ν;σ ĉν ′;σ ′

−
∑

σ=↑,↓

∑
〈ν,ν ′〉

γ0ĉ
†
ν;σ ĉν ′;σ , (6)

with 
M(t) = [sin � cos(ωt + �), sin θ sin(ωt + �), cos �]
giving V = sin �(σx − iσy)�/4. The ĉ

†
ν;σ (ĉν;σ ) is the

creation (annihilation) operator at site ν in the FM of spin σ .
The hybridizations between adjacent materials,

HNM-ACR = −γ0

∑
p

∑
σ=↑,↓

∑
〈μ,n〉

b̂
†
p;i;σ ân;σ + H.c.,

HFM-ACR = −γ0

∑
σ=↑,↓

∑
〈ν,n〉

ĉ
†
j ;σ ân;σ + H.c.,

and
HFM-NM = −γ0

∑
p

∑
σ=↑,↓

∑
〈ν,μ〉

ĉ
†
j ;σ b̂j ;i;σ + H.c.,

are set to be of the same strength, namely, γ0.

III. FLOQUET NONEQUILIBRIUM GREEN FUNCTION
APPROACH FOR PERIODICALLY DRIVEN OPEN

QUANTUM SYSTEMS

In the devices where spin flip or spin precession is
absent, the problem of spin pumping by magnetization
dynamics can be greatly simplified by mapping it onto a
time-independent one in the frame rotating with the precessing
magnetization.46–49 However, the device in Fig. 1 contains
Rashba SOC which causes spin-up to evolve into to spin-down
by spin precession, so that the device Hamiltonian transformed
in the rotating frame contains time-dependent SOC terms.

In the adiabatic regime ω → 0, which is satisfied for
pumping by magnetization dynamics since the energy of
microwave photons h̄ω is much smaller than other relevant
energy scales,50 one can employ the Brouwer scattering
formula.22 However, this is numerically very inefficient since
all pumped spin and charge currents in devices, where the
precessing FM island is coupled to a region with SOC, are
time-dependent.19 Thus, one has to compute the scattering
matrix of the device repeatedly at each time step of a discrete
grid covering one period of harmonic external potential in
order to find full ac current vs time dependence and then
extract the experimentally measured dc component.

The relevant dc component of pumped current can be ob-
tained from approaches which generalize the existing steady-
state transport theories, such as the scattering matrix,51,52

NEGF formalism,38,40,41,53–56 and quantum master equations,57

with the help of the Floquet theorem58 valid for periodically
driven systems. While the equations of the Floquet-NEGF
formalism we adopt here have been used before to study a
variety of charge pumping problems in noninteracting40,53–55

and interacting electron systems38,56 or photon-assisted dc
transport,41 the key issue is to find a solution to these
equations that can capture pumping processes at arbitrary
strength (or frequency) of the external time-periodic potential
while conserving50 charge currents at each step of analytic or
numerical algorithm. For example, the often used continued
fraction solution40–43 to Floquet-NEGF equations does not50

conserve charge current in the leads, and the key trick we
employ below to ensure current conservation is the reduced-
zone scheme.38

We begin the derivation for the charge-current-conserved
Floquet-NEGF solution by noting that the two fundamental
objects59 of the NEGF formalism are the retarded

Gr
I,J (t,t ′) ≡ − i

h̄
u(t − t ′)〈{d̂I (t),d̂†

J (t ′)}〉 (7)

and the lesser

G<
I,J (t,t ′) ≡ i

h̄
〈d̂†

J (t ′)d̂I (t)〉 (8)

Green functions which describe the density of available quan-
tum states and how electrons occupy those states, respectively.
Here u is the unit step function; indices {I,J } ∈ {n,m,μ,ν,σ }
and creation d̂† or annihilation operators d̂ ∈ {â,b̂,ĉ} are used.
For notational convenience, the matrix representation with
indices {I,J } will not be written out explicitly below.

The essence of the Floquet-NEGF approach is to treat
the time variable t in Eq. (1) as an additional real-space
degrees of freedom denoted by ť with considering the auxiliary
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first-quantized Hamiltonian

ȟ(ť) = h(ť) − ih̄
∂

∂ť
. (9)

Here h(ť) is the first-quantization version of our actual or
original Hamiltonian (1); i.e., the matrix representation for
h(t) is of elements hIJ (t) given by H (t) = ∑

I,J d̂
†
I d̂J hIJ (t).

The check-hatted symbol X̌ is used to remind us that X̌ is an
auxiliary variable or operator but not the actual one.

The Schrödinger equation for ȟ(ť) reads

ih̄
∂

∂t
ψ̌(ť ,t) = ȟ(ť)ψ̌(ť ,t), (10)

while keeping in mind again that only t is the real time
variable, but ť is a virtual position variable. It is straightforward
to prove that, by assuming the wave function ψ̌(ť ,t) of the
form ψ̌(ť ,t) = A(ť)B(t) in Eq.(10) and then letting ť → t , the
original wave function is recovered,

ψ̌(ť = t,t) = ψ(t), (11)

where ψ(t) obeys our original Schrödinger equation
ih̄∂ψ(t)/∂t = h(t)ψ(t). Equation (11) plays the fundamental
role in the Floquet NEGF, since it bridges the two systems, the
auxiliary time-independent system described by ȟ(ť) and our
original system described by h(t). Accordingly, one can first
solve the problems in the time-independent system constructed
according to Eq. (9), express physical quantities or functions
in terms of ψ̌(ť ,t), and eventually set ť → t to obtain the
corresponding physical quantities or functions for our original
system.

To illustrate the idea above, consider the retarded Green
function as an example. The retarded Floquet Green function
Ǧr (t,t ′; ť ,ť ′) corresponding to our auxiliary system ȟ(ť) obeys
the equation of motion (EOM),[

ih̄
∂

∂t
− ȟ(ť)

]
Ǧr (t,t ′; ť ,ť ′) = δ(t − t ′)δT (ť − ť ′), (12)

where δT (ť − ť ′) denotes the Dirac delta function of period
T . Note that ȟ(ť) is time independent; hence, Ǧr (t,t ′; ť ,ť ′)
depends only on the single time variable t − t ′ via the Fourier
transformation

Ǧr (t,t ′; ť ,ť ′) =
∫ ∞

−∞

dE

2πh̄
e−iE(t−t ′)/h̄Ǧr (E; ť ,ť ′) (13)

and can be expanded by the wave functions of the form

Ǧr (E; ť ,ť ′) =
∞∑

nph ,mph=−∞
ψ̌nph (ť)

×
[

1

(E + iη)I − ȟ

]
nph,mph

ψ̌∗
mph

(ť ′). (14)

Here, the notations, identity operator I , η → 0+, {nph,mph} ∈
integers, and (· · ·)nph,mph ≡ ∫ T/2

−T/2 dtψ̌∗
nph

(ť)(· · ·)ψ̌mph (ť) are
used, and the basis

ψ̌nph (ť) = (T )−1/2e−inphωť (15)

ensures the periodicity Ǧr (E; ť + lT ,ť ′ + l′T ) with ω ≡
2π/T and {l,l′} ∈ integers. The {[(E + iη)I − ȟ]−1}nph,mph in

Eq. (14) is evaluated according to the definition (9) of ȟ via

ȟnph,mph =
∫ T/2

−T/2
dťψ̌∗

nph
(ť)ȟ(ť)ψ̌mph (ť)

= hnph,mph − nphh̄ωδnph,mph , (16)

with nph < 0 (nph > 0) accounting for the absorption (emis-
sion) processes of photons, as indicated by the subscript “ph”,
and

hnph,mph =
∫ T/2

−T/2
dťψ̌∗

nph
(ť)h(ť)ψ̌mph (ť)

= 1

T

∫ T/2

−T/2
dťei(nph−mph )ωťh(ť). (17)

Note that here beside the {I,J } degrees of freedoms, the extra
degree of freedom, namely the photon’s, is introduced. The
hnph,mph exists in the {I,J } ⊗ nph Hilbert space, and thus so
does Ǧr (E; ť ,ť ′). The primary result for the actual (original)
retarded Green function (7) is obtained by substituting (14),
computed by Eqs. (15)–(17), into Eq. (13), and then replacing
ť with t and ť ′ with t ′ in the wave-function-expanded Green
function, namely, Ǧr (t,t ′; ť ,ť ′)|ť→t,ť ′→t ′ = Gr (t,t ′); nonethe-
less Gr (t,t ′) can be further simplified by noting the relation
that for lph ∈ integers, one has[

1

(E + iη)I − ȟ

]
nph,mph+lph

=
[

1

(E + lphh̄ω + iη) − ȟ

]
nph−lph,mph

, (18)

which can be deduced simply from the observations
that M ≡ (E + iη)I − ȟ is a matrix of infinite size,
and that [(E + iη)I − ȟ]nph,mph+lph and [(E + l phh̄ω + iη) −
ȟ]nph−lph ,mph evaluated according to Eqs. (16) and (17) are at
the same position of M, i.e., the same matrix element of
M; therefore, the element at the same matrix position of
M−1 implies Eq. (18), a manifestation of the reduced-zone
scheme in which the energy E can be reduced to the zone
of range h̄ω. With the help of {[(E + iη)I − ȟ]−1}nph,mph =
{[(E + mphh̄ω + iη) − ȟ]−1}nph−mph,0 [mph = 0 and the re-
notation lph → mph in Eq. (18)] and change of variables,
E′ ≡ E + mphh̄ω and n′

ph ≡ nph − mph, the retarded Green
function now reads

Gr (t,t ′) = Ǧr (t,t ′; ť ,ť ′)|ť→t,ť ′→t ′

= 1

T

∫ ∞

−∞

dE

2πh̄
e−iE(t−t ′)/h̄

∞∑
nph,mph=−∞

e−inphωteimphωt ′

×
[

1

(E + iη)I − ȟ

]
nph,mph

= δ(0)
∫ ∞

−∞

dE′

2πh̄
e−iE′(t−t ′)/h̄

×
∞∑

n′
ph=−∞

e−in′
phωt Ǧr

n′
ph,0

(E′), (19)

with Ǧr
nph,mph

(E) ≡ {[(E + iη)I − ȟ]−1}nph,mph = Ǧr
nph−mph,0

(E + mphh̄ω); note that the prefactor δ(0) in Eq. (19) is due
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to the cancelation of mphh̄ω in the exponent, i.e., δ(0) =
(T )−1 ∑

mph
1 = (T )−1 ∑

mph
e−imphh̄ω×0, while for physical

quantities, this prefactor δ(0) is irrelevant; instead, it is the
normalized [absence of δ(0) in Eq. (19)] Green function,

Ḡr (t,t ′) ≡
∫ ∞

−∞

dE

2πh̄
e−iE(t−t ′)/h̄

∞∑
nph=−∞

e−inphωt Ǧr
nph,0(E),

(20)

that renders physical observables. One can also verify that the
expression (20) satisfies the EOM,[

ih̄
∂

∂t
− h(t)

]
Ḡr (t,t ′) = δT (t − t ′), (21)

by applying
∫ T/2
−T/2 dt ′ to both sides of the above Eq. (21).

Comparing the EOMs (12) and (21), one clearly sees that the
evolution of Ḡr (t,t ′) is governed by the actual system h(t),
while Ǧr (t,t ′; ť ,ť ′) is by the auxiliary system ȟ(ť).

The lesser Green function can be obtained in the same
manner. The auxiliary lesser Green function obeys the Keldysh
integral equation,

Ǧ<(t,t ′; ť ,ť ′)

=
∫ ∞

−∞

∫ ∞

−∞
dt1dt2

∫ T/2

−T/2

∫ T/2

−T/2
dť1dť2Ǧ

r (t,t1; ť ,ť1)

× �̌<(t1,t2; ť1,ť2)Ǧa(t2,t
′; ť2,ť ′). (22)

The time-independent ȟ(ť) allows Ǧ<(t,t ′; ť ,ť ′) to be expressed
in terms of the single time variable t − t ′ of the form

Ǧ<(t,t ′; ť ,ť ′)

=
∫ ∞

−∞

dE

2πh̄
e−iE(t−t ′)/h̄Ǧ<(E; ť ,ť ′), (23)

with Ǧ<(E; ť ,ť ′) being Eq. (22) written in the energy domain,

Ǧ<(E; ť ,ť ′) =
∫ T/2

−T/2

∫ T/2

−T/2
dť1dť2Ǧ

r (E; ť ,ť1)�̌<(E; ť1,ť2)

× Ǧa(E; ť2,ť
′). (24)

Here Ǧa(E; ť ,ť ′) = [Ǧr (E; ť ′,ť)]† is the advanced
Green function, and �̌<(E; ť ,ť ′) = |γ0|2ǧ<(E; ť ,ť ′) =∑

p |γ0|2ǧ(p)<(E; ť ,ť ′) is the lesser self-energy accounting
for the interactions from all probes with the bare (probes
that are free of interacting with the environments) lesser
Green function of probe p denoted by ǧ(p)<(E; ť ,ť ′). The
primary result for the lesser Green function (8) is obtained
via Ǧ<(t,t ′; ť ,ť ′)|ť→t,ť ′→t ′ = G<(t,t ′) where Ǧ<(t,t ′; ť ,ť ′) is
computed by the Green functions in the time-independent
system ȟ(ť) according to Eqs. (23) and (24). Similarly,
G<(t,t ′) can also be further simplified by taking advantage of
relation (18) and change of variables. For this simplification,
we utilize the Keldysh equation in the energy domain Eq. (24)
and the wave-function expansion to obtain the expression of
Ǧ<(t,t ′; ť ,ť ′),

Ǧ<(t,t ′; ť ,ť ′) = 1

T

∫ ∞

−∞

dE

2πh̄
e−iE(t−t ′)/h̄

∞∑
nph,mph=−∞

∞∑
kph,lph=−∞

e−inphωť

[
1

(E + iη)I − ȟ

]
nph,kph

×
∑

p

|γ0|2ǧ(p)<
kph,lph

(E)

[
1

(E − iη)I − ȟ†

]
lph,mph

eimphωť ′

= 1

T

∫ ∞

−∞

dE′

2πh̄
e−i(E′−mphh̄ω)(t−t ′)/h̄

∞∑
nph,mph=−∞

e−in phωť eimphωť ′
∞∑

kph,l
′
ph=−∞

[
1

(E′ − mphh̄ω + iη)I − ȟ

]
nph,kph

×
∑

p

|γ0|2ǧ(p)<
kph ,l′ph+mph

(E′ − mphh̄ω)

[
1

(E′ − iη)I − ȟ†

]
l′ph,0

, (25)

where {[(E − iη)I − ȟ†]−1}lph,mph = {[(E + mphh̄ω − iη)I −
ȟ†]−1}lph−mph,0 and change of variables E′ ≡ E + mphh̄ω

and l′ph ≡ lph − mph are used. Note that the original
Hamiltonian (5) of the NM probes in our present case is time
independent so that we have the expression |γ0|2ǧ(p)<

nph,mph (E) =
−2if̌

(p)
nph (E)|γ0|2Imǧ

(p)r
nph,mph (E) = if̌

(p)
nph (E)�̌(p)

nph,mph (E), with
the Fermi-Dirac distribution (of Fermi energy EF at zero
temperature as the regime we are interested in)

f̌ (p)
nph

(E) = f̌ (p)(E + nphh̄ω)

= lim
β→0

[1 + e(E+nphh̄ω−EF )/β]−1 (26)

and
�̌(p)

nph,mph
(E) = i|γ0|2{[(E + iη)I − ȟ(p)]−1

− [(E − iη)I − ȟ(p)†]−1}nph,mph . (27)

Here the definition (9) yields ȟ(p)(ť) = h(p) − ih̄∂/∂ť with h(p)

being the first-quantized version of HNM = ∑
p h(p)b̂

†
pb̂p, and

note again because HNM in Eq. (5) or h(p) is time independent,
one has [h(p)]nph,mph = δnph,mph [h(p)]nph , resulting in �̌

(p)
nph,mph (E)

proportional to δnph,mph , i.e., diagonal, and thus the bare lesser
Green functions of NMs are diagonal in photon (or Floquet)
space ǧ

(p)<
nph,mph (E) = δnph,mph ǧ

(p)<
nph (E) as well. Moreover, apply-

ing the same argument we used to derive Eq. (18) to ǧ
(p)<
nph,mph (E)

evaluated by Eqs. (26) and (27), one deduces

ǧ
(p)<
nph,mph+lph

(E) = ǧ
(p)<
nph−lph,mph

(E + lph), (28)

which reflects again the reducible property (energy E can be
reduced to the zone of range h̄ω) that yields the reduced-zone
scheme. Using above relation (28) and change of variables
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k′
ph ≡ kph − mph and n′

ph ≡ nph − mph in Eq. (25), we arrive at

Ǧ<(t,t ′; ť ,ť ′)

= 1

T

∫ ∞

−∞

dE′

2πh̄
e−i(E′−mphh̄ω)(t−t ′)/h̄

∑
n′

ph,mph

e−i(n′
ph+mph)ωť eimphωť ′

×
∑
k′

ph,l
′
ph

[
1

(E′ + iη)I − ȟ

]
n′

ph,k
′
ph

×
∑

p

|γ0|2ǧ(p)<
k′

ph,l
′
ph

(E′)
[

1

(E′ − iη)I − ȟ†

]
l′ph,0

. (29)

The actual lesser Green function can be obtained again
via setting ť → t and ť ′ → t ′ in Eq. (29) and noting that
mphh̄ω in the exponent is canceled out; we thus have
δ(0) = (T )−1 ∑

mph
1 = (T )−1 ∑

mph
e−imphh̄ω×0, so that the

actual lesser Green function can be written as

G<(t,t ′) = Ǧ<(t,t ′; ť ,ť ′)|ť→t,ť ′→t ′

= δ(0)
∫ ∞

−∞

dE′

2πh̄
e−iE′(t−t ′)/h̄

∑
n′

ph

e−in′
phωt

×
∑
k′

ph,l
′
ph

[
1

(E′ + iη)I − ȟ

]
n′

ph,k
′
ph

×
∑

p

ǧ
(p)<
k′

ph,l
′
ph

(E′)
[

1

(E′ − iη)I − ȟ†

]
l′ph,0

,

and eventually obtain the normalized lesser Green function,

Ḡ<(t,t ′) =
∫ ∞

−∞

dE

2πh̄
e−iE(t−t ′)/h̄

∑
nph

e−inphωt

×
∑
kph,lph

[
1

(E + iη)I − ȟ

]
nph,kph

×
∑

p

|γ0|2ǧ(p)<
kph,lph

(E)

[
1

(E − iη)I − ȟ†

]
lph,0

. (30)

Physical quantities can be extracted from the actual Green
function (30). For instance, the quantum-statistical-averaged
occupation number at time t on site i ∈ {n,m,μ} can be
expressed as Trs[Ḡ<

i,i(t,t)O]h̄/i, while the bond current from
site i to site j reads

Ji→j (t) = −Trs

[ {hj,i ,O}
2

Ḡ<
i,j (t,t) − {hi,j ,O}

2
Ḡ<

j,i(t,t)

]
,

(31)

with O = Is (O = Sq) for particle (spin Sq) occupations or
currents and Is being the 2 × 2 identity matrix in the Pauli
space; the notation Trs stands for performing the trace in
the Pauli space (spin Hilbert space), and the anticommutator
{A,B} is defined as AB + BA. The particle (charge) current

Ip(t) = 1

2πh̄

∑
p′

∑
nph,mph

∫ EF +h̄ω/2

EF −h̄ω/2
dE

× Tr′[Ǧr (E)f̌ (p′)(E)�̌(p′)(E)Ǧa(E)�̌(p)(E)

− Ǧr (E)�̌(p′)(E)Ǧa(E)f̌ (p)(E)�̌(p)(E)]nph,mph

× e−i(nph−mph)ωt (32)
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FIG. 2. (Color online) Pumped charge and spin currents as a
function of the dimensionless Rashba spin-orbit coupling strength
QR in the two-terminal spin-driven setup (top schematics) with ring
size (M,N ) = (1,200) at different Fermi energies (a) EF = −1.8,
(b) EF = −0.8, and (c) EF = −0.1. The ring is in contact with two
semi-infinite one-dimensional leads in which currents are probed.
The solid vertical lines here indicate the current modulation nodes
Q∗

R at which the complete destructive interferences for spin-z take
place, causing IR = I

Sz

R = 0. Since charge currents are conserved,
IL = IR is satisfied. The spin-driven results here correspond to the
electric-driven results, Fig. 3 in Ref. 34.

and spin current

I
Sq

p (t) = 1

4π

∑
p′

∑
nph,mph

∫ EF +h̄ω/2

EF −h̄ω/2
dE

× Tr′[σqǦ
r (E)f̌ (p′)(E)�̌(p′)(E)Ǧa(E)�̌(p)(E)

− Ǧr (E)�̌(p′)(E)Ǧa(E)f̌ (p)(E)�̌(p)(E)]nph,mph

× e−i(nph−mph)ωt (33)

probed by lead p are obtained by summing all the bond
currents (31) flowing through lead p. Note here the no-
tation Tr′ performs the trace over all degrees of free-
dom, except the photon’s. All the functions within the
trace are matrices; for example, the Fermi-Dirac distribu-
tion is a matrix, f̌ (p)(E) = f̌

(p)
nph (E)δnph,mph , computed by

Eq. (26). The time-averaged currents can then be obtained via
Ip ≡ sign(p) × 2πh̄T −1

∫ T/2
−T/2 dtIp(t) and I

Sq

p ≡ sign(p) ×
4πT −1

∫ T/2
−T/2 dtI

Sq

p (t) as

Ip = sign(p)
∑
p′

∫ EF +h̄ω/2

EF −h̄ω/2
dETr[Ǧr (E)f̌ (p′)(E)�̌(p′)(E)

× Ǧa(E)�̌(p)(E)

− Ǧr (E)�̌(p′)(E)Ǧa(E)f̌ (p)(E)�̌(p)(E)] (34)

045402-7



CHEN, CHEN, CHANG, AND MAHFOUZI PHYSICAL REVIEW B 87, 045402 (2013)

-2

0

2

-2

0

2

-5

0

5

-5

0

5

0 2 4 6 8 10

-20
-10

0
10
20

-20
-10
0
10
20(c)

(b)

10-5
10-6

(a)

C
ha

rg
e 

cu
rr

en
t

S
pi

n 
cu

rr
en

t

Q
R

,L RI I

Sz
LI

Sz
RI open 1M 3.0FE

, 3,200M N

open 1M

open 1M

2.7FE

2.2FE

FIG. 3. (Color online) Pumped charge and spin currents as a
function of the dimensionless Rashba spin-orbit coupling strength
QR in the two-terminal spin-driven setup (top schematics) at different
Fermi energies (a) EF = −3.0, (b) EF = −2.7, and (c) EF = −2.2
that yield the number of open channels, Mopen = 1. The ring is of
size (M,N ) = (3,200) and in contact with two semi-infinite probes
of width consisting of three lattice sites. The solid vertical lines here
indicate the current modulation nodes Q∗

R . The spin-driven results
here correspond to the electric-driven results, Fig. 5 in Ref. 34.

and

I
Sq

p = sign(p)
∑
p′

∫ EF +h̄ω/2

EF −h̄ω/2
dE

× Tr{σq[Ǧr (E)f̌ (p′)(E)�̌(p′)(E)Ǧa(E)�̌(p)(E)

− Ǧr (E)�̌(p′)(E)Ǧa(E)f̌ (p)(E)�̌(p)(E)]}, (35)

with sign(p) = 1 for p ∈ {R,T } and sign(p) = −1 for p ∈
{L,B}. Notice here the appearance of sign(p) is merely
for the sign convenience, positive for right- or up-flowing
currents, while negative for left- or down-flowing currents. The
prefactor 2πh̄ (4π ) for Ip (I

Sq

p ) is adopted so that the units of Ip

and I
Sq

p are the same. In other words, if Ip measures the number
of charge quanta flowing through the lead p per second, then
I

Sq

p measures the number of spin Sq quanta flowing through
the lead p per second. The trace here now is taken over all
degrees of freedom, including the photon’s.

We emphasize that in Eqs. (32)–(35), the reduced-zone
scheme38 such as (18) or (28) is adopted, so that the
original integral interval [−∞,∞] over energy E is reduced
to [EF − h̄ω/2,EF + h̄ω/2], and with this scheme, for any
given maximum nmax

ph � |nph|, charge currents are conserved,
namely,

∑
p Ip(t) = 0 or

∑
psign(p)Ip = 0 (see Appendix for

more details). In principle all integers nph should account for

transport; i.e., transitions involving any number of photons
have to be taken into account. Nonetheless when the strength
of the time-dependent field is small, only a few photons can
be absorbed or emitted by electrons near the Fermi level,
and thus considering transitions between channels of a few
photons is sufficient to get accurate results of currents. In
our following calculations, |nph| � 2 is chosen, since we find
|nph| � 2 and |nph| � 3 do not yield significantly discernible
results.

IV. RESULTS AND DISCUSSION

By Eqs. (34) and (35), we show and examine our numerical
results for two- and four-terminal spin-pumping setups with
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FIG. 4. (Color online) Pumped charge and spin currents as a
function of the dimensionless Rashba spin-orbit coupling strength
QR in the spin-driven setup the same as considered in Fig. 3,
while different Fermi energies are chosen to have the number of
open channels, Mopen = 2 for (d) EF = −1.8 and (e) EF = −1.0
and Mopen = 3 for (f) EF = −0.35 and (g) EF = −0.1. Unlike (a),
(b), and (c) with Mopen = 1 in Fig. 2, the modulation here becomes
incomplete (absence of the AC-spin-interference-induced modulation

nodes at which one has IR = I
Sz

R = 0, namely, absence of Q∗
Rs) due

to the loss of Mopen = 1, while the (incomplete) quasiperiodicity can
still be found as depicted by the solid vertical lines. The spin-driven
results here correspond to the electric-driven results, Fig. 6 in Ref. 34.
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the parameters and units specified in Sec. IV A. In Sec. IV B,
we first concentrate on the two-terminal case [Fig. 1(b)] to
see the counterpart physics shown in Ref. 34 and then, in
Sec. IV C, we investigate the four-terminal case [Fig. 1(a)] to
unveil the phenomena dual to what were found in Ref. 35.
Our discussions are restricted to the case of single precessing
FM in Secs. IV B and IV C. In Sec. IV D, we aim at
building up the relations between probed currents in the
same or different pumping configurations from the symmetry
perspective; the two presented symmetries yield the invariant
AC ring Hamiltonian, and the arguments on the relations
based on the symmetries are generally capable of setups of
an arbitrary number of precessing FM islands and terminals.
Nevertheless, for demonstration simplicity, below in Sec. IV E,
where our numerical results are shown to be in line with the
predictions given by the symmetry arguments, we consider
only the two-terminal two-precessing-FM setups.

A. Parameters and units

The following parameters and units are used. All energies
are in units of the hopping energy γ0, and lengths are in units of
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FIG. 5. (Color online) Pumped charge and spin currents as a
function of the dimensionless Rashba spin-orbit coupling strength
QR in the two-terminal (top panel) and four-terminal (middle and
bottom panels) spin-driven setups (see the schematics) in which
the same strict one-dimensional ring of size (M,N ) = (1,100) is
considered. Each of the probes is one-dimensional. The complete
modulation nodes Q∗

R that characterize the quasiperiodicity emerge
through IR = I

Sz

R = 0 in both two- and four-terminal setups. In
the four-terminal setup, the transverse currents with IB = IT and
I

Sz

B + I
Sz

T = 0 for all QR reflect the existence of the inverse spin-Hall
effect, and the quasiperiodicity can also be identified via IB = IT = 0
at the same Q∗

Rs. Note that the Onsager relation is preserved if we
compare with the finding in the electric-driven setup, Fig. 2 in Ref. 35.
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spin-orbit coupling strength QR in the four-terminal spin-driven setup
(top schematics) with four semi-infinite one-dimensional probes.
Refer to Fig. 3 in Ref. 35 for the reciprocal Onsager (electric-driven)
results.

the lattice constant a. For brevity, the aspect ratio 1/2 between
the length of FM, LFM, and the length of the AC ring, N , is
adopted; for example, in Fig. 1(b), we have LFM/N = 4/8.
Also, the width of FM is set to be the same as the width of
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FIG. 7. (Color online) Pumped transverse (a) charge and
(b) spin-z currents versus the dimensionless Rashba spin-orbit
coupling strength QR . The inverse spin-Hall effect (shown through
IB = IT and I

Sz

B + I
Sz

T = 0) survives in the weak-disorder regime
with different disorder strengths W of the ring in the four-terminal
(each of the probes is one-dimensional) spin-driven setup (top
schematics). The reciprocal Onsager (electric-driven) result is shown
in Fig. 4 of Ref. 35.
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NM. The default values of parameters of the precession FM
(FMs), the spin splitting strength � = 1, precession frequency
(energy) h̄ω = 10−3, precession cone angle � = 10◦, and
initial precession phase (azimuthal angle) � = 0◦, are chosen.
To compare the results of our spin-driven setups with the
findings of the electric-driven setups in Refs. 34 and 35, the size
of the AC ring are set similar or according to Refs. 34 and 35.
We refer to the ring of M = 1 as the strict 1D ring, and M > 1
as the quasi-1D ring. Note again that the sign convention used
here is positive for right- or up-moving flow and negative for
left- or down-moving flow. No bias is applied to any probes for
what we consider here are all spin-driven setups. The number
of open channels Mopen in the leads is adjustable by varying
EF ; referring to Fig. 2 in Ref. 34, for leads of width consisting
of three lattice sites, one has Mopen = 1 approximately in the
interval EF ∈ [±3.9,±2], Mopen = 2 in EF ∈ [±2,±0.5], and
Mopen = 3 in EF ∈ [−0.5,0.5].

B. Single precessing FM island attached to two-terminal
mesoscopic AC ring

We begin with the two-terminal case of the clean AC ring in
the spin-driven setup Fig. 1(b). Introducing the dimensionless

Rashba SOC strength,

QR ≡ γSON

γ0π
, (36)

the special case of the strict 1D ring yields the conductance of
the form27 e2/h{1 + cos[π (

√
Q2

R + 1 − 1)]} which gives the
complete destructive interference condition, Q∗

R = √
l2 − 1

(l = 2,4,6, . . .). Although this expression ignores the scat-
tering at the interface between the ring and the leads, our
numerical calculations, which take into account all interfacial
scattering, suggests that these Q∗

Rs are still preserved even in
the presence of the above scattering. As shown in Fig. 2 for
(M,N ) = (1,200), the pumped spin-z current I Sz

R = 0 vanishes
at these Q∗

Rs, where the charge current IR = IL = 0 also
disappears, consistent with the electric-driven results.27,33,34

Similar behavior can be found for the quasi-1D ring with
only one channel open (Mopen = 1). As shown in Fig. 3 with
(M,N ) = (3,200), the Q∗

R (AC-spin-interference-induced)
modulation nodes still exist, but are altered. We will address
the reason of this alternation later. For now we focus first on
the origination and the clarification of the Q∗

Rs.
The I

Sz

R modulation originates from the fact that a spin-z
acquires some AC phase induced by the Rashba SOC when
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FIG. 8. (Color online) Pumped (a) charge current and (b) spin-x, (c) spin-y, and (d) spin-z currents, in the two-terminal two-precessing-
ferromagnet ring device as shown in the schematics of Fig. 10, probed by the left lead as functions of precession cone angle �R and initial
precession phase (azimuthal angle) �R of the right ferromagnet. The ring is of size (M,N ) = (1,200) and of the dimensionless Rashba spin-orbit
coupling strength QR = 5. The left ferromagnet is of �L = 10◦ (represented by the dashed lines) and �L = 0◦. The left and right leads are
one-dimensional, i.e., the number of open channel Mopen = 1 with Fermi energy EF = −1.8.
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passing through the AC ring, and the phase difference between
the upper arm and lower arm of the ring depends on the Rashba
SOC strength; accordingly, gradually varying the Rashba SOC
strength modulates the spin-z current. The condition of only
one open channel Mopen = 1 is satisfied when M = 1 (Fig. 2),
or when M > 1 (Fig. 3) with the Fermi energy EF only
crossing one subband of the leads. In the former (strict 1D),
Q∗

Rs are independent of the Fermi energy EF , while in the
latter (quasi 1D), when one tunes EF but keeps EF in the
regime Mopen = 1, Q∗

Rs also remain unaffected (independent
of EF as long as Mopen = 1 is satisfied), mimicking again
the electric-driven setup. Moreover, since the spin-z current
I Sz pumped by the FM is pure, if the spin-z encounters a
complete destructive interference, i.e., not able to transport
through the ring, then no charge currents will be generated
in the right NM as well, providing that no passage of spins
with different polarizations such as spin-x or spin-y occur
through the interface between the right NM and AC ring
as we will address below. We refer to these types of nodes
as the AC-spin-interference-induced modulation nodes where
I

Sz

R = 0 and IR vanish concurrently at the same Q∗
Rs, as

indicated by the solid vertical lines in Figs. 2 and 3.
Note that when a pumped spin-z enters the ring, it starts

to precess, and there are chances for this spin to become
spin-x or spin-y when leaving the ring to the right NM, so
that nonzero charge current IR �= 0 without spin-z current
I

Sz

R = 0 can be detected by the right NM. For I
Sz

R = 0 nodes
involving processes as mentioned above are not the AC-spin-
interference-induced modulation nodes Q∗

R focused on here,
because they originate from precession but not interference.
Noteworthily, although the strict 1D ring (M = 1) in Fig. 2 and
quasi-1D ring in Fig. 3 are both in the Mopen = 1 regime, there
is an essential difference between them. In Fig. 2, there are no
evanescent modes, while in Fig. 3, there are two (M − Mopen =
3 − 1) channels that contribute to the evanescent modes; the
Q∗

R nodes in Fig. 3 are thus slightly modified from Fig. 2.
Also, the I

Sz

L can be nonzero at these Q∗
Rs, simply because the

FM pumps also spin-z currents directly to the left lead. To see
the corresponding electric-driven results, compare Fig. 2 here
with Fig. 3 in Ref. 34 and Fig. 3 here with Fig. 5 in Ref. 34.

For Mopen > 1, the conducting spin states become inco-
herent or impure due to the entanglements between spin
and orbit degrees of freedom.34 The concept of ensemble
average or spin density matrix has to be introduced to describe
the transport of interferences induced by the AC effect.
Furthermore, when more channels are open, the detected
spin phase is obtained by taking into account the transport
processes within and between each single channels, and each
transport process gives different AC phases yielding different
interference nodes (places where the complete destructive
interference occurs); thereby, the overall complete destructive
interference is washed out by different transport processes,
forming the “incomplete” modulations (absence of Q∗

R nodes);
for example, in Fig. 4 for Mopen = 2 and Mopen = 3 with
N = 200, although one can still find the quasiperiodicity as
depicted by the solid vertical lines, IR and I

Sz

R in general do not
vanish concurrently. In addition, some of the pumped spins can
be reflected in the FM|AC-ring interface before entering the
AC ring, so that one has |I Sz

L | � |I Sz

R |. To see the electric-driven

case corresponding to Fig. 4, compare Fig. 4 here with Fig. 6 in
Ref. 34. Note that all the above two-terminal results preserve
the conservation of charge currents with IL = IR .

C. Single precessing FM island attached to four-terminal
mesoscopic AC ring

In the four-terminal setup Fig. 1(a), both ISHE and
AC effects emerge, giving the inverse quantum-interference-
controlled SHE. As shown in Fig. 5 with the ring size (M,N ) =
(1,100), four semi-infinite 1D probes, and EF = −0.05, the
transverse currents obey I

Sz

B = −I
Sz

T and IB = IT for all QR ,
signifying the ISHE. Figure 5 also shows the longitudinal
currents in this four-terminal and the corresponding two-
terminal setups. In the two-terminal setup, again, because of
Mopen = 1, the modulation nodes Q∗

R where IR and I
Sz

R vanish
are found, rendering the complete interference modulation.
In the four-terminal setup, at these Q∗

Rs, although IR and
I

Sz

R vanish as well, while the longitudinal currents, IL and
I

Sz

L , do not vanish, and the inequality IL �= IR shows up due
to the presence of the top and bottom leads that break the
longitudinal current conservation. Interestingly, the ISHE-
induced Hall charge currents IB = IT disappear at these
Q∗

Rs, which demonstrates again the quasiperiodicity of the
modulation and is dual (satisfies the Onsager relation) to what
was depicted for the SHE-induced Hall spin currents (in the
form of spin-Hall conductance) in Fig. 2 of Ref. 35. Also
note that transverse currents IB and IT decrease as increasing
QR due to the reflections in the interfaces between the AC
ring and the top or bottom leads, a manifestation of the lattice
Hamiltonian mismatch.
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FIG. 9. (Color online) Symmetry operations A (SOA) and
B (SOB). In SOA, the inversion with respect to the +x axis
(as depicted by the inset, x inversion) is first performed to the
system represented by the orange/gray arrow lying on the x-y plane
and then with respect to the +y axis (as depicted by the inset,
y inversion). In SOB, x inversion is first performed and then the
replacement (σx,σy) → −(σx,σy). The successive figures show how
the spin (σx,σy,σz) and polar angle φ change after each inverting or
replacing.
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To see how the width of the ring M affects the interference,
we consider the AC ring with fixed N = 100 in contact with
four semi-infinite 1D leads such that only one channel is
available for transport in each lead, i.e., Mopen = 1. Figure 6
indicates that the modulation frequency of the Hall currents
IB = IT for M = 2 is almost double to that for M = 1,
because in M = 2, one additional transport ring path appears.
For larger width, the oscillations of Hall currents become
vague since the multiple intertwined 1D ring paths smear
out the periodic behavior of the currents or average over
the AC phase; nevertheless, the complete quasiperiodicity
(IB = IT = 0 at current modulation nodes Q∗

R) is protected
by the Mopen = 1 condition. The reciprocal features (for the
corresponding electric-driven setup) are shown in Fig. 3 of
Ref. 35. Note that the ISHE emerging through I

Sz

B = −I
Sz

T and
IB = IT is still preserved robustly against the ring width.

Interestingly, the ISHE remains unaffected even in the
weak-disorder regime. Figure 7 plots the probed currents with
different (weak) disorder strength W modeled by the random
on-site potentials of the ring, namely, εn,m ∈ [−W/2,W/2].
The modulations of I

Sz

B = −I
Sz

T and IB = IT show that ISHE
is robust against weak disorder. In addition, the presence
of the weak disorder plays merely the role of reducing the
amplitudes of the modulation as also addressed in Ref. 35 for
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FIG. 10. (Color online) Pumped (a) charge and spin-z currents
and (b) spin-x and spin-y currents probed by the left and right
leads of finite width consisting of three lattice points versus the
dimensionless Rashba spin-orbit coupling strength QR in the two-
terminal two-precessing-FM setup P10◦ -P10◦ (top schematics); i.e.,
the left ferromagnet and right ferromagnet are of precession cone
angle 10◦ and precession axes both along the +z direction.

the corresponding electric-driven setup (compare Fig. 7 here
with Fig. 4 in Ref. 35).

D. Symmetry operations relating pumped spin and
charge currents

We extend our study to the case of multiple precessing
FM islands and examine the relations between the pumped
currents. Consider the two-terminal setup Fig. 1(b) with an
additional FM island inserted between the ring and the right
NM (as the schematics shown in Fig. 10 ). Let �R (�L)
be the precession cone angle and �R (�L) be the initial
precession phase of the right (left) FM. For Mopen = 1 at the
condition QR ≈ Q∗

R , we find that the spin-z currents probed
by the left (right) lead remain almost constant when varying
�R (�L) and/or �R (�L); in other words, the left FM does
not communicate with the right FM due to the complete
destructive interference. Contrarily, in Fig. 8, with EF = −1.8,
(M,N ) = (1,200) ring, two (left and right) 1D leads, fixed
�L = 10◦ (indicated by the dashed line) and �L = 0◦ in
the left FM, at QR = 5, i.e., the condition of the complete
destructive interference is off, we see that the pumped currents
probed by the left lead, IL, I

Sx

L , I
Sy

L , and I
Sz

L , significantly
change with �R . For �R dependence, noteworthily, we see
that IL and I

Sz

L are not as sensitive to �R as I
Sx

L and I
Sy

L (for
example, compare panels of Fig. 8 at �R ≈ 135◦).
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P̄10◦ (top schematics) the same as the one considered in Fig. 10 but
with precession axes along the −z direction for both the left and right
ferromagnets.
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To establish a systematic analysis on the relations between
pumped currents, we inspect the device from the symmetry
perspective. Recall that the Rashba SOC originates from the
structural inversion asymmetry,60 meaning that the AC ring
Hamiltonian, Eq. (2) defined by Eqs. (3) and (4), does not
remain the same by inverting the ring once. This one-time
inversion asymmetry, however, leads to the conjecture that
if one can somehow perform some inversion-like operations
twice, then HACR might be invariant. Indeed, at least two types
of symmetry operations can render invariant HACR. These
two operations are illustrated in Fig. 9. We refer to the first
operation as symmetry operation A (abbreviated as SOA), and
the second as symmetry operation B (abbreviated as SOB). In
SOA, we first invert the system with respect to the +x axis
(x inversion) and then invert again with respect to the +y axis
(y inversion); note that each inversion gives a �φ → −�φ and
a σz → −σz. After these two inversions, as shown in Fig. 9 we
have φ → π + φ, �φ → �φ, and

(σx,σy,σz) → (−σx,−σy,σz), for SOA, (37)

such that Eqs. (3) and (4) remain unaltered, conceding invariant
HACR. For SOB, we first perform the x inversion and then the
replacement (σx,σy) → −(σx,σy); note that in SOB, the σy

undergoes σy → −σy → σy (σy → −σy due to the inversion
and then −σy → σy due to the replacement). We thus get (refer
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FIG. 12. (Color online) Pumped (a) charge and spin-z currents
and (b) spin-x and spin-y currents versus the dimensionless Rashba
spin-orbit coupling strength QR in the two-precessing-FM setup P10◦ -
P̄10◦ (top schematics) the same as the one considered in Fig. 10 but
with precession axis along the +z (−z) direction for the left (right)
ferromagnet.

to Fig. 9), φ → 2π − φ, �φ → −�φ, and

(σx,σy,σz) → (−σx,σy,−σz), for SOB, (38)

so that Eqs. (3) and (4) are unchanged to yield invariant HACR

as well.
For NMs, obviously, after SOA or SOB, the HNM remains

the same, because all NMs are of the same spin-independent
structural-inversion-invariant Hamiltonian. Also, all the hy-
bridizations (characterized by the same spin-independent
hopping −γ0), HNM-ACR, HFM-ACR, and HFM-NM are SOA and
SOB invariant. The only portion in the total Hamiltonian
that might not be able to recover to its original form is the
time-dependent Hamiltonian HFM(t), because under SOA or
SOB the directions of the precession axis can vary. However,
note that since what we are interested in is the time-averaged
currents, it is the relative initial precessing phase �L − �R that
is relevant to these average currents, while the �L − �R does
not change under SOA or SOB, because SOA or SOB is applied
to the whole system (i.e., to all precessing FMs). Moreover,
any operations or transformations will transfer one pumping
configuration either to the same configuration or to another
configuration; in the former, the symmetry argument will relate
the probed pumped currents within a single configuration,
whereas in the latter, it will relate the probed currents between
two different configurations; this will become more clear in the
next section. Without loss of generality, in what follows, we
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FIG. 13. (Color online) Pumped (a) charge and spin-z currents
and (b) spin-x and spin-y currents versus the dimensionless Rashba
spin-orbit coupling strength QR in the two-precessing-FM setup P̄10◦ -
P10◦ (top schematics) the same as the one considered in Fig. 10 but
with precession axis along the −z (+z) direction for the left (right)
ferromagnet.
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choose systems originally at �L = �R = 0◦ to illustrate how
SOA or SOB helps construct the relations between different
probed currents and verify these relations by inspecting our
numerical results.

E. Symmetry arguments applied to two precessing FM islands
with two-terminal mesoscopic AC ring in between

For the purpose of demonstration, we choose to consider
here the two-terminal two-precessing-FM (left and right FMs
adjacent to the left and to the right of the ring, respectively)
setups, while one can apply the argument presented below
also to the ring devices consisting of an arbitrary number of
terminals and precessing FM islands. In addition, since the
definitions of SOA and SOB have nothing to do with the ring
width M , ring length N , number of open channels Mopen, and
EF , the symmetry argument is valid for anyM ,N ,Mopen, and
EF . Here, we choose (M,N ) = (3,200) and set EF = −1.8γ0

giving Mopen = 2 to exemplify the symmetry operations. We
use the notation convention A-B to describe the pumping
configuration, with A accounting for the left precessing FM
and B for the right precessing FM. Here, with {A, B} ∈ {P�,
P̄�}, P� (P̄�) stands for the FM that is of precession axis
along the +z (−z) axis and of precession cone angle �. For
example, the schematics in Fig. 10 is notated as P10◦ -P10◦ , in
Fig. 12 as P10◦ -P̄10◦ , and in Fig. 17 as P̄90◦ -P90◦ .
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FIG. 14. (Color online) Pumped (a) charge and spin-z currents
and (b) spin-x and spin-y currents probed by the left and right leads of
finite width consisting of three lattice points versus the dimensionless
Rashba spin-orbit coupling strength QR in the two-terminal two-
precessing-FM setup P90◦ -P90◦ (top schematics); i.e., both the left and
right ferromagnets are of precession cone angle 90◦ and precession
axis along the +z direction.

Focus on SOA first. Consider P10◦ -P10◦ , Fig. 10. By
applying SOA to P10◦ -P10◦ , the first step (x inversion) generates
P̄170◦ -P̄170◦ , while the second step (y inversion) yields the
swap L (left) ↔ R (right) and turns P̄170◦ -P̄170◦ into P10◦ -P10◦ ;
i.e., the original pumping configuration is recovered. As a
result, in P10◦ -P10◦ we have, due to the y inversion involved
in SOA, IL = −IR (or I

Sq

L = −I
Sq

R for all q components
before any operations on spins), which then incorporated with
the replacement (37) turns I

Sq

L = −I
Sq

R into (I Sx

L ,I
Sy

L ,I
Sz

L ) =
(I Sx

R ,I
Sy

R ,−I
Sz

R ), in line with our numerical result, Fig. 10.
In Fig. 11 (P̄10◦ -P̄10◦ ), by employing the same argument
based on SOA, we obtain again the relations IL = −IR and
(I Sx

L ,I
Sy

L ,I
Sz

L ) = (I Sx

R ,I
Sy

R ,−I
Sz

R ). It is noteworthy that in the
pumping configuration A-A such as in Figs. 10 and 11, the
probed charge currents vanish IL = IR = 0 due to the left-right
transmission symmetry,49 resulting in pure spin currents in the
NMs; this absence of charge currents can also be obtained
by noting that the current conservation IL = IR and the
symmetry argument that gives IL = −IR have to be satisfied
simultaneously.

On the other hand, for the left-right transmission asym-
metric cases such as Figs. 12 (P10◦ -P̄10◦ ) and 13 (P̄10◦ -P10◦ ),
IL and IR in general can be nonzero. Similarly, performing
SOA on P10◦ -P̄10◦ (P̄10◦ -P10◦ ), the x inversion renders P̄170◦ -
P170◦ (P170◦ -P̄170◦ ), and then the proceeding y inversion
gives P̄10◦ -P10◦ (P10◦ -P̄10◦ ); hence, SOA transfers P10◦ -P̄10◦
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FIG. 15. (Color online) Pumped (a) charge and spin-z currents
and (b) spin-x and spin-y currents versus the dimensionless Rashba
spin-orbit coupling strength QR in the two-precessing-FM setup P̄90◦ -
P̄90◦ (top schematics) the same as the one considered in Fig. 14 but
with precession axis along the −z direction for both left and right
ferromagnets.
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(P̄10◦ -P10◦ ) to the different pumping configuration P̄10◦ -P10◦

(P10◦ -P̄10◦ ). Therefore, the current IL;R in P10◦ -P̄10◦ (P̄10◦ -P10◦ )
equals −IR;L in P̄10◦ -P10◦ (P10◦ -P̄10◦ ). Again, the relations
above for charge currents together with the replacement
(37) make (I Sx

L ,I
Sy

L ,I
Sz

L ) in P10◦ -P̄10◦ (P̄10◦ -P10◦ ) identical to

(I Sx

R ,I
Sy

R ,−I
Sz

R ) in P̄10◦ -P10◦ (P10◦ -P̄10◦ ) and (I Sx

R ,I
Sy

R ,I
Sz

R ) in

P10◦ -P̄10◦ (P̄10◦ -P10◦ ) identical to (I Sx

L ,I
Sy

L ,−I
Sz

L ) in P̄10◦ -P10◦

(P10◦ -P̄10◦ ). All above features are again in line with our
numerical results, Fig. 12 and Fig. 13. It should be noted
here that � = 10◦ in our numerical calculation is chosen
merely for the illustrations of symmetry operations. The
symmetry argument presented above in fact is applicable for
any cone angle � and even for the case of �L �= �R; i.e.,
the precessing cone angles for left (�L) and right (�R) FMs
are different. Particularly, at � = �L = �R = 90◦, all the
relations based on SOA shown above are preserved as well
(see Figs. 14–17), while since the pumping configuration for
� = 90◦ (precession within the two-dimensional x-y plane)
is of higher geometrical symmetry than � = 10◦, the probed
currents are of additional relations as demonstrated below.

Following the same procedure presented above, one can
also apply SOB to any A-B configuration to relate probed
currents in a single pumping configuration (if SOB does not
generate another pumping configuration) or to relate probed
currents between different pumping configurations (if SOB
generates another pumping configuration). Here, we choose
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FIG. 16. (Color online) Pumped (a) charge and spin-z currents
and (b) spin-x and spin-y currents versus the dimensionless Rashba
spin-orbit coupling strength QR in the two-precessing-FM setup P90◦ -
P̄90◦ (top schematics) the same as the one considered in Fig. 14 but
with precession axis along the +z (−z) direction for the left (right)
ferromagnet.

to focus on the special case with � = 90◦. Unlike the case of
� = 10◦ where we have no relations of the pumped currents
between the two different pumping configurations, P10◦ -P10◦

and P̄10◦ -P̄10◦ , at � = 90◦ the pumped currents in P90◦ -P90◦

can relate to the pumped currents in P̄90◦ -P̄90◦ . Applying
SOB to P90◦ -P90◦ (Fig. 14) yields P̄90◦ -P̄90◦ (Fig. 15) so
that IL(R) in P90◦ -P90◦ is equal to IL(R) in P̄90◦ -P̄90◦ . This
relation, again, incorporated with the replacement (38) leads
to the spin current (I Sx

L(R),I
Sy

L(R),I
Sz

L(R)) in P90◦ -P90◦ equal to

the spin current (−I
Sx

L(R),I
Sy

L(R),−I
Sz

L(R)) in P̄90◦ -P̄90◦ . The above
predictions agree with our numerical results, Figs. 14 and
15. It is worth noting that although P10◦ -P10◦ , P̄10◦ -P̄10◦ ,
P90◦ -P90◦ , and P̄90◦ -P̄90◦ all generate net pure in-plane (x-y
plane) spin currents, i.e., IL + IR = I

Sz

L + I
Sz

R = 0 as predicted
by SOA, the pumped spin currents at � = 90◦ are one to
two orders larger than those at � = 10◦ (compare Figs. 10
and 11 with Figs. 14 and 15). Similar enhancement of the
pumped spin currents by the cone angle can also be found
by comparing Figs. 12 (P10◦ -P̄10◦ ) and 13 (P̄10◦ -P10◦ ) with
Figs. 16 (P90◦ -P̄90◦ ) and 17 (P̄90◦ -P90◦ ). The additional (beside
what were obtained by SOA) relations between P90◦ -P̄90◦

and P̄90◦ -P90◦ can be obtained by performing SOB. Applying
SOB to P90◦ -P̄90◦ (Fig. 16), we arrive at P̄90◦ -P90◦ (Fig. 17),
with IL(R) in P90◦ -P̄90◦ equal to IL(R) in P̄90◦ -P90◦ , and then,

by replacement (38), (I Sx

L(R),I
Sy

L(R),I
Sz

L(R)) in P90◦ -P̄90◦ equal to
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FIG. 17. (Color online) Pumped (a) charge and spin-z currents
and (b) spin-x and spin-y currents versus the dimensionless Rashba
spin-orbit coupling strength QR in the two-precessing-FM setup P̄90◦ -
P90◦ (top schematics) the same as the one considered in Fig. 14 but
with precession axis along the −z (+z) direction for the left (right)
ferromagnet.

045402-15



CHEN, CHEN, CHANG, AND MAHFOUZI PHYSICAL REVIEW B 87, 045402 (2013)

(−I
Sx

L(R),I
Sy

L(R), − I
Sz

L(R)) in P̄90◦ -P90◦ , in line with Figs. 16 and
17. We note that for all � = 90◦ pumping configurations, the
pumped spin currents are pure (namely, IL = IR = 0); this
again can be achieved by considering the current conservation
together with the symmetry argument based on SOA and
SOB. We emphasize that our results here show that the
current polarization direction can be tuned by the top-gate
voltage governing QR , and the magnitude of the pumped
currents can be controlled by the precession cone angle �,
offering amenable manipulations on the output currents from
the proposed device.

V. CONCLUSION

In conclusion, by introducing the auxiliary system where
the time domain is treated effectively as an additional real-
space degree of freedom, we offer a plain access to the Floquet-
NEGF formalism capable of dealing with time-periodic
dynamic problems in a full quantum approach. Particularly,
by further adopting the reduced-zone scheme,38 we derived
expressions (32)–(35) in which charge currents are conserved
for any given maximum number of photons as shown in the
Appendix, where comparisons with other existing results are
also provided. With the help of Eqs. (34) and (35), we reveal the
physics attributed to the AC effect by considering the ring of
Rashba SOC in spin-driven four- [Fig. 1(a)] and two-terminal
[Fig. 1(b)] setups.

When the number of open channel in the leads is one,
Mopen = 1, as a consequence of the AC effect, the complete
AC-spin-interference-induced modulation nodes character-
ized by IR = I

Sz

R = 0 at certain Rashba SOC strengths Q∗
R

(where the complete destructive interferences occur) are found
to be independent of the Fermi energy EF in both two- and
four-terminal cases (Figs. 2, 3, and 5). We note that the
form of Eqs. (32)–(35) remains the same in the presence of
Coulomb interactions, and one can preserve the conservation
of the charge current within the framework of NEGF by
treating each physical lead as 2nmax

ph + 1 photon-associated
leads (refer to the Appendix). However, depending on the
Fermi energy, magnetic states can be formed due to the
Coulomb interactions.61,62 One may then expect that the
Fermi energy independent property of the Q∗

Rs only holds
in the regime where those magnetic states do not appear
(for example, large ratio between the level broadening and
the strength of the Coulomb interaction and/or smaller Fermi
energy than the on-site potentials of the ring) so that electrons
traveling through the ring do not encounter those scattering
which can yield additional spin-dependent phases.

In the four-terminal setup, the interference modulation
is also characterized by IB = IT = 0 at the corresponding
two-terminal Q∗

Rs (i.e., Fig. 5, top panel IR = I
Sz

R = 0 and
bottom panel IB = IT = 0 vanish at the same Q∗

Rs). Increasing
the number of open channels by tuning the Fermi energy to
reach the Mopen > 1 regime in quasi-1D (of finite width) rings
destroys the completeness of the modulation, i.e., absence of
Q∗

R (Fig. 4). Nevertheless, in the four-terminal case, we find
that the ISHE identified by IB = IT and I

Sz

B + I
Sz

T = 0 (Fig. 5,
bottom panel) is robust against the ring width (Fig. 6) and weak
disorder (Fig. 7), and therefore, the proposed device offers a

durable electrical means to measure the pure spin currents
pumped by the precessing FM islands using the inverse
quantum-interference-controlled SHE in the AC rings. The
above features based on our spin-driven setups reciprocally
well correspond to the findings in the electric-driven setup,
Refs. 34 and 35, supporting our derived formalism.

In addition to the single-precessing-FM setup (Fig. 1), a
multiple-precessing-FM setup is studied. In the two-terminal
two-precessing-FM setup where the ring is in contact with
two (left and right) precessing FM islands, we find that the
currents probed by the left (right) lead are independent of �R

and �R (�L and �L) of the right (left) FM under the condition
of complete destructive interferences. In other words, the
complete destructive interference blocks out the relation
between the left portion (left FM and left lead) and the
right portion (right FM and right lead) of our device, while
this relation revives when the condition of the destructive
interference is suppressed (Fig. 8).

We also identified two symmetry operations, SOA and
SOB (Fig. 9), to examine the relations between currents in
the same pumping configurations or different configurations.
Performing SOA or SOB on an arbitrary pumping config-
uration together with the fact that charge currents should
be conserved, one can first relate the charge currents either
in the same or in different pumping configurations, and
then using Eq. (37) for SOA or Eq. (38) for SOB, one
can further obtain the relations between spin currents. We
choose to exemplify how the above procedure works by
considering the two-terminal two-precessing-FM setup with
precession cone angles �L = �R = 10◦ (Figs. 10–13) and
�L = �R = 90◦ (Figs. 14–17). The relations predicted by
SOA and SOB are consistent with our numerical results.
Especially, the net pure in-plane spin currents (for x-y
plane with IL + IR = I

Sz

L + I
Sz

R = 0 in Figs. 10, 11, 14,
and 15, and for y-z plane with IL + IR = I

Sx

L + I
Sx

R = 0 in
Figs. 16 and 17) can be achieved, and for all �L = �R =
90◦ pumping configurations, the pumped spin currents are
pure, namely, IL = IR = 0. Therefore, with employing the
spin-pumping device proposed here, the pumped currents
can be controlled with their magnitudes and polarization
directions tunable via the pumping configurations (including
the precessing cone angle) and the applied top-gate voltage that
varies QR), giving potential applications in spintronics-based
industry.
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APPENDIX: CONSERVATION OF CHARGE CURRENT
BY REDUCED-ZONE SCHEME

To derive and have some insights into the conservation of
charge current, we introduce the photon-associated lead (or
simply photon lead) λ which accounts for the physical lead
index p and the photon index nph. In other words, we regards
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each lead p now as consisting of (2nph + 1) photon leads. The
sum over p on Eq. (34),

∑
psign(p)Ip, can then be written as

∑
λ,λ′

∫ EF +h̄ω/2

EF −h̄ω/2
dETr[Ǧr (E)f̌ (λ′)(E)�̌(λ′)(E)Ǧa(E)�̌(λ)(E)

− Ǧr (E)�̌(λ′)(E)Ǧa(E)f̌ (λ)(E)�̌(λ)(E)]. (A1)

Using the cyclic relation Tr(ABC) =Tr(BCA) =Tr(CAB),
Eq. (A1) becomes∑

λ,λ′

∫ EF +h̄ω/2

EF −h̄ω/2
dETr[Ǧa(E)�̌(λ)(E)Ǧr (E)f̌ (λ′)(E)�̌(λ′)(E)

− Ǧr (E)�̌(λ′)(E)Ǧa(E)f̌ (λ)(E)�̌(λ)(E)]. (A2)

Summing over λ, the first term in Eq. (A2) reads∑
λ′

∫ EF +h̄ω/2

EF −h̄ω/2
dETrǦa(E)�̌(E)Ǧr (E)f̌ (λ′)(E)�̌(λ′)(E), (A3)

while summing over λ′, the second term reads∑
λ

∫ EF +h̄ω/2

EF −h̄ω/2
dETr Ǧr (E)�̌(E)Ǧa(E)f̌ (λ)(E)�̌(λ)(E), (A4)

with �̌ ≡ ∑
λ �̌(λ) = ∑

p,nph
− 2|γ0|2Imǧ

(p)r
nph,nph = [(Ǧr )−1 −

(Ǧa)−1]/i. Renaming λ′ in Eq. (A3) as λ for λ′ is a
dummy variable and using the equality Ǧa(E)�̌(E)Ǧr (E) =
Ǧr (E)�̌(E)Ǧa(E) = (Ǧa − Ǧr )/i, we find that the two terms
Eqs. (A3) and (A4) are equal; i.e., they cancel out with each
other in Eq. (A2). We thus arrive at the conservation of charge
current,

∑
psign(p)Ip = 0. The derivation presented above

can be applied to Eq. (32) as well to show the conservation∑
p Ip(t) = 0 at any given time t .
The physical picture of the conservation becomes transpar-

ent by noting also that Eq. (A1) can be written as∑
λ,λ′

∫ EF +h̄ω/2

EF −h̄ω/2
dETr[Ǧr (E)�̌(λ′)(E)Ǧa(E)�̌(λ)(E)]

× [f̌ (λ′)(E) − f̌ (λ)(E)],

which recovers the conventional expression of the charge
current flowing into a photon lead λ,

Iλ = 1

2πh̄

∑
λ′

∫ EF +h̄ω/2

EF −h̄ω/2
dETr[Ǧr (E)�̌(λ′)(E)Ǧa(E)�̌(λ)(E)]

× [f̌ (λ′)(E) − f̌ (λ)(E)], (A5)

that gives the conservation
∑

λ Iλ = 0. Consider for instance a
two-terminal case with p = L or R. In practice (numerical
calculation), we choose a maximum nmax

ph � |nph|. Taking
nmax

ph = 2 for example, we have now 2nmax
ph + 1 = 5 photon

leads for each left p = L and right p = R physical lead.
When computing the current flowing through the left lead
with employing the reduced-zone scheme using Eq. (34) or
equivalently Eq. (A5) by

∑
λ=L−2, L−1,L0,L1,L2

Iλ, the five left
photon leads (sources) λ = (p = L)nph=−2, L−1, L0, L1, and
L2 and the five right photon leads (drains) λ′ = R−2, R−1, R0,
R1, and R2 are taken into account. The same symmetric (i.e., all
sources become drains, and all drains become sources) photon
lead geometry is used when computing, again by Eq. (34)
with the same nmax

ph = 2, the current flowing through right lead.

Accordingly, this symmetric photon lead geometry provided by
the reduced-zone scheme yields the conservation of the charge
current; while practically we increase nmax

ph until the difference
between the results obtained by nmax

ph and by nmax
ph + 1 is within

certain tolerance (small number), the conservation in fact holds
for any given nmax

ph , because the geometry symmetry of all
photon leads introduced by the physical leads is preserved at
any approximate levels of the accounted number of photons.

Contrarily, without using the reduced-zone scheme,
Eq. (34) becomes, by “unfolding” the energy E,∑

nph

∫ EF +h̄ω/2
EF −h̄ω/2 dETr (· · ·) −→ ∫ ∞

−∞ dETr(· · ·)nph=0,nph=0,

sign(p)
∑
p′

∑
nph

∫ ∞

−∞
dETr

{
[Ǧr (E)]0,nph [�̌(p′)(E)]nph,nph

× [Ǧa(E)]nph,0[�̌(p)(E)]0,0
}

× {
[f̌ (p′)(E)]nph,nph − [f̌ (p)(E)]0,0

}
, (A6)

which reduces to the conventionally well-known
expression.43,51,63–71 Nevertheless, the conservation is
practically difficult to be satisfied due to the asymmetric
photon lead geometry by Eq. (A6). We take again the
two-terminal case (p = L or R) with choosing nmax

ph = 2 for
example. At a given energy E, using Eq. (A6) to compute
Ip=L, the photon lead geometry is L0 as the source and L−2,
L−1, L1, L2, R−2, R−1, R0, R1, R2 as the drains, while the
same Eq. (A6) used to compute Ip=R takes into account
the asymmetric photon lead geometry, R0 as the source and
R−2, R−1, R1, R2, R−2, L−1, L0, L1, L2 as the drains. The
asymmetry implies that current following through R0 in
general is not equal to the current flowing through L0, which
manifests also via the asymmetric transmission between the
left and right leads,70 and thus fails to fulfill the conservation.

It is worth mentioning that in the case of the same unbi-
ased leads, f̌ (p)(E) = f̌ (p′)(E) ≡ f̌ (E), the symmetric photon
lead geometry ensuring the conservation can be restored
by symmetrically adding the other photon channels mph to
Eq. (A6); i.e., one can write Ip as

sign(p)

2nmax
ph

∑
p′

∑
nph,mph

∫ ∞

−∞
dETr

{
[Ǧr (E)]mph ,nph

× [�̌(p′)(E)]nph,nph [Ǧa(E)]nph,mph [�̌(p)(E)]mph,mph

}
× {

[f̌ (E)]nph,nph − [f̌ (E)]mph,m ph

}
. (A7)

Notice that the original summation
∑

nph
takes into ac-

count (2nmax
ph + 1) photon channels, while now the sum-

mation
∑

nph,mph
above takes into account, noting that

mph = nph does not give contributions because of the
factor [f̌ (E)]nph ,nph − [f̌ (E)]mph,mph , (2nmax

ph + 1) × (2nmax
ph +

1) − (2nmax
ph + 1) = 2nmax

ph (2nmax
ph + 1) photon channels, and

thus a 1/(2nmax
ph ) prefactor appears in Eq. (A7) to avoid double

counting. Summing over p′, Eq. (A7) can be written in a more
compact matrix form,

sign(p)

2nmax
ph

∫ ∞

−∞
dETr[Ǧr (E)f̌ (E)�̌(E)Ǧa(E)�̌(p)(E)

− Ǧr (E)�̌(E)Ǧa(E)f̌ (p)(E)�̌(p)(E)],

which recovers the expression Eq. (27) shown in Ref. 50.
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