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Acoustic impedance and interface phonon scattering in Bi2Te3 and other semiconducting materials
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We present first-principles calculations of the phonon dispersions of Bi2Te3 along with calculations of the
sound speed anisotropy for a number of materials, and we discuss these in relation to acoustic phonon interface
scattering in ceramics. The Bi2Te3 phonon dispersions show agreement with what is known from neutron
scattering for the optic modes, while we find a difference between the generalized gradient approximation and
local density results for the acoustic branches. This is a consequence of an artificial compression of the van
der Waals bonded gaps in the Bi2Te3 structure when using the generalized gradient approximation. As a result,
local density approximation calculations provide a better description of the phonon dispersions in Bi2Te3. A key
characteristic of the acoustic dispersions in several materials studied is the existence of a strong anisotropy in the
velocities. Such an anisotropy may be a significant consideration in the reduction of lattice thermal conductivity by
nanograin boundary scattering. This is a well-known technique commonly employed to improve thermoelectric
performance. We develop a model to quantify the effect of this anisotropy for this interface scattering in ceramics,
and we apply this to Bi2Te3 and compare with PbTe and several other semiconductors.
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I. INTRODUCTION

Thermoelectric performance is commonly quantified in
terms of a dimensionless parameter ZT , defined as follows:

ZT = S2σT

κ
. (1)

Here S is the Seebeck coefficient, σ is the electrical conduc-
tivity, and κ is the thermal conductivity. It is usually a good
approximation to treat κ as being comprised of a lattice portion
and an electronic portion. The electronic portion is directly
related to the electrical conductivity by the Wiedemann-Franz
relation (usually a good approximation for the heavily doped
semiconductors that are useful thermoelectrics), leading to
the point that, from a standpoint of materials optimization, the
lattice thermal conductivity represents wasted heat transfer and
should be as small as possible. One realization of this is the
“phonon glass electronic crystal” (PGEC) concept of Slack,1

in which phonons are strongly scattered, leading to low lattice
thermal conductivity, while the charge carriers are not strongly
scattered. The filled skutterudites2–4 represent an apparent
realization of the PGEC concept. Another approach toward the
PGEC concept is the use of nanostructuring from compaction
and sintering of a nanosize powder into a ceramic. The mean
free path for phonons in bulk crystalline thermoelectrics is
often one to two orders of magnitude larger than that for
electrons, so the use of grain sizes in between these two
mean free paths will tend to strongly scatter phonons, but
not electrons. This approach has been successfully applied to
Bi2Te3,5,6 raising the ZT values near room temperature from
the previously found value of 1.0 to an impressive 1.5. A simi-
lar scenario could also apply to hole-doped Bi2Se3.7 Note that
there are various types of grain boundary scattering that can
reduce the thermal conductivity, such as insulating interstitial
material, but typically these destroy the electrical conductivity,
preventing good thermoelectric performance. In this respect,
the sintering of polycrystalline samples (as opposed to simply
compressed powder) is important as it assures good electrical
contact between the nanograins while maintaining interface

scattering. Understanding interface phonon scattering at such
electrically conducting interfaces is therefore of importance.

One factor as yet unaddressed, however, is the role
of phononic anisotropy in producing phononic scattering.
Consider by analogy, for example, the case of light prop-
agation in dense ceramics. In that case it is known that
fine-grained ceramics of optically isotropic materials can be
made transparent,8 while this is not the case for anisotropic
materials with random grain orientation. In the former case,
despite the small grain sizes, light is able to pass through the
material because there is not significant scattering at the grain
boundaries. The reason for this is that the light speed does not
change at the grain boundary, so there is no impedance (or
velocity) mismatch. While the acoustic case differs from the
optical case due to the presence of the longitudinal mode, the
velocity mismatch still applies.

We note also that, unlike in optics where there is no optical
anisotropy in cubic materials, a cubic material can have a rather
anisotropic elastic response tensor (the tensor of elasticity
Cijkl) and hence sound speed—a good example of such a
material is PbTe, as described in more detail in the final section.
This material shows comparable anisotropy to Bi2Te3 despite
being cubic. The reason for this is that the response tensor for
optics—the dielectric constant tensor—is a second-rank tensor
whose off-diagonal elements must necessarily vanish due to
the cubic symmetry. However, no such restriction applies to the
fourth-rank tensor of elasticity, and indeed the sound velocity
in a cubic material can vary significantly by direction, as will
be evident for PbTe.

Note that for heat transport in crystalline solids, it is the
longer wavelength acoustic modes that dominate heat transport
due to the presence of a significant group velocity—the sound
speed. The main point of this paper is that it is this sound
velocity mismatch that is ultimately responsible for the efficacy
of grain boundary scattering, and that this mismatch can
be quantitatively assessed by considering the sound velocity
anisotropy. We are working here in the limit in which the
phonon mean free path is larger than the nanograin size, so
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that transport within a grain is in the ballistic limit, as was
considered in a different context in Ref. 9. In this limit, the
lattice thermal conductivity will be predominated by the size
of the nanograins and not the diffusive scattering, as was
considered in Ref. 10.

We provide a definition, and examples of, simple dimen-
sionless parameters R and S, easily computable if the elastic
constants are known, that should provide valuable information
about the ability of nanostructuring (of a type that yields grains
in intimate contact) to reduce lattice thermal conductivity.
We will make direct application of our findings to Bi2Te3,
which, as already mentioned, has already shown substantial
performance benefits from nanostructuring, and in addition
PbTe and several other semiconductors. One conclusion
to be drawn from our work is that, unlike in electronic
transport where anisotropy can be destructive to thermoelectric
performance, anisotropy is generally beneficial in phononic
transport because it enhances the effects of nanostructuring in
reducing the lattice thermal conductivity.

II. PHONON AND ELASTIC CONSTANT CALCULATIONS
FOR Bi2Te3

With an eye toward the effects of nanostructuring in
reducing κlattice and enhancing ultimate performance, we have
computed the phonon dispersions and density of states for
Bi2Te3, the best known and most studied thermoelectric.
Our calculations are based upon density functional theory in

the framework of Blöchl’s projector augmented-wave (PAW)
method11 within the local density approximation (LDA) as
implemented in VASP.12 We also did generalized gradient
approximation calculations but found that they are not as
accurate as the LDA results (see below). A 3 × 3 × 3 k-point
grid in a 3 × 3 × 3 supercell was used, along with an energy
cutoff of 300 eV. Cell parameters and internal coordinates were
both relaxed until internal forces were less than 2 meV/Å.
From the computed electronic structure, one performs sev-
eral supercell calculations incorporating “frozen-phonons,” or
atomic displacements dictated by the rhombohedral crystal
symmetry. By evaluating the forces on the displaced atoms,
one may generate a basis set of force constants from which
the phonon band structure and density of states are generated.
We depict these in Fig. 1. Previous Bi2Te3 lattice-dynamics
calculations were performed in Refs. 13–16. Spin-orbit cou-
pling was not included and we therefore cannot assess the
claim of Ref. 15 for evidence of a spin-orbit coupling-related
lattice instability. Experimentally the material is known to be
stable. Our calculations generally reproduce the non-spin-orbit
coupling phonon dispersions of these authors.

One notes upon examination of the central region (the
portions Z-� and �-L) that the three acoustic modes differ
significantly in these two directions (c axis and in-plane,
respectively). In particular, the highest velocity acoustic mode,
the longitudinal acoustic, has significantly lower velocity in
the c-axis direction �-Z than the nearly planar direction �-L;
quantitatively, the c-axis longitudinal velocity is 1811 m/s and

FIG. 1. (Color online) The computed phonon dispersions (top left) and associated density of states (top right) of Bi2Te3. Coordinate
momenta (units of reciprocal rhombohedral lattice vector): L: (1/2,0,0); F : (1/2,0,1/2); Z: (1/2,1/2,1/2). The heavy black line in the left
figure indicates the upper frequency limit of the predominant heat carrying acoustic modes. Bottom: the measured phonon dispersions, in
1012 rad/sec, from Ref. 20 and a picture of the physical structure of Bi2Te3. Phonon dispersions from left: �-X, �-Y, �-Z. In the structure
picture, Te1 is in blue (located at top and bottom) and Te2 in gray (second layer from the top and bottom).
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the planar is 2394 m/s, a difference of about 30%. In addition,
the transverse acoustic modes are degenerate from �-Z but
not so in-plane; here the velocities are significantly different
as well, with the single c-axis value of 1774 m/s and the two
planar velocities of 1395 and 1728 m/s. These velocities are
low and generally typical of good thermoelectric materials.
Note also that in the frequency range at and above 1 THz,
the optic modes intersect with the acoustic modes, so that the
primary region of heat transport is limited to less than 1 THz,
which in turn limits the phonon momenta that contribute to
transport to locations relatively near the � point.

Turning to the phonon density of states, one finds three
regions of interest. Highest in frequency, as expected given the
lighter mass, are the primarily Te optic modes between 2.3 and
4 THz. As noted previously, these modes are not the primary
contributors to phononic transport due to the very small group
velocities (see the left-hand panel of Fig. 1), although they do
make some contribution. A similar statement applies to the
primarily Bi optic modes between 1 and 2.3 THz, although
these may be important contributors to phononic scattering
due to anharmonic scattering of the lower-frequency acoustic
modes, which are at frequencies less than 1.5 THz. As noted
above, only a fraction of these modes—those less than 1 THz—
contribute to thermal transport as the higher-frequency acous-
tic modes are strongly scattered by the adjacent optic modes,
and also have smaller group velocities. For example, in the
�-L direction, only those acoustic phonons less than half the
L-point momentum will strongly contribute to heat transport,
while in the �-F direction this cutoff frequency occurs at
a momentum roughly 60% of the F -point momentum. It
should be noted that the later discussion of sound speed
anisotropy as a contributor to nanograin scattering is an
approximation which effectively assumes that all phononic
transport derives from the acoustic modes, which is clearly
somewhat simplified compared to reality, as the optic modes
in Fig. 1 do in fact exhibit some dispersion and hence heat
transport. Nevertheless, it is likely that the majority of transport
indeed derives from the acoustic modes.

The original lattice-dynamics calculations for this work
employed the standard GGA.17,18 However, these results
produced longitudinal sound speed velocities which were
higher in the �-Z direction (the c axis) than in the planar
directions. This result persisted even when a relatively fine
4 × 4 × 4 k-point mesh was used. Similarly, we initially found
from first-principles calculations of the elastic constants of
Bi2Te3 using WIEN2K (Ref. 19) and the GGA that the elastic
constants c11 and c33 are very nearly equal. All these results
are contrary to the elastic constant data of Jenkins,20 which
produce higher longitudinal sound speeds in-plane (see the
next section), as well as the measured planar and c-axis
thermal conductivity,21 where the c-axis value is less than
half the planar value, indicating lower c-axis sound speeds.
Our calculational discrepancy was likely due to the common
GGA overestimation of lattice constants. It was for this reason
that we performed these lattice-dynamics calculations within
the LDA, which often gives structural and elastic properties in
better agreement with experiment.22,23 These results suggest
that for anisotropic layered semiconductors such as Bi2Te3, use
of the LDA to compute elastic and lattice dynamics properties
may be desirable.

TABLE I. Calculated elastic constants (in GPa) for Bi2Te3.

Approximation c11 c12 c13 c33

LDA 83.8 3.8 32.1 54.5
GGA 97.4 21.4 90.4

For a direct comparison with experiment, included in Fig. 1
are plots of the phonon dispersions deduced by Jenkins. While
exact in-plane comparisons are not possible due to Jenkins’
choice of �-X and �-Y dispersion directions, we note that as
in our calculated results, the �-Z sound speed is lower than the
planar values. In general, there is a reasonable correspondence
between Jenkins’ results and ours, with the �-Z acoustic
modes reaching values of ∼ 0.8–1 THz in both cases (note
that Jenkins’ data are presented in rad/s whereas ours are in
Hz). At the Z point, Jenkins’ optic mode frequencies are 7, 9,
17, 21, 23, and 27 × 1012 rad/s, which compare rather well
with our values of 1.2, 1.6, 2.7, 3.3, 3.5, and 4.5 THz. At the �

point, Jenkins’ optic mode frequencies are approximately 9.5,
13.5, 16, 17.7, 22, 22.5, 24, and 26.5 ×1012 rad/s, which again
compare well with our values (in 1012 Hz) of 1.3, 2, 2.2, 3, 3.1,
3.4, 3.8, and 4.2. The experimental sound speeds from �-Z
are also approximately equal to our calculated values, from
a comparison of the figures. All in all, the good agreement
suggests the accuracy and applicability of our lattice dynamics
calculations on Bi2Te3.

For the lattice-dynamics calculations, LDA-optimized
internal coordinates and lattice parameters (4.35 Å planar,
29.82 Å c axis) were used, while for the elastic constant
calculations experimental lattice parameters of 4.386 Å planar
and 30.50 Å c axis (but LDA-optimized internal coordinates)
were employed. As is well known, van der Waals interactions
can be important for layered materials such as Bi2Te3, and
while these are not included in our functionals, we do
find good agreement with the experimental properties in
the lattice-dynamics calculations, as indicated. The elastic
constant calculations (see Table I) exhibit somewhat larger
discrepancies with experiment (see Table III), even with usage
of the LDA, with (for example), the value of c12 calculated
as 3.8 GPa, much smaller than the experimental value of
22.0 GPa. We ascribe this to the difficulty of incorporating
all bonding effects in layered materials such as Bi2Te3 into
the simple LDA. For these calculations, we used between 182
and 770 k points in the irreducible portion of the Brillouin
zone (note that the elastically distorted Brillouin zone need not
retain the hexagonal symmetry), and we employed spin-orbit
coupling except for the optimizations and LAPW sphere radii
of 2.5 Bohr radii.

Since above we describe the effect of using the LDA
for structural properties of layered semiconductors such as
Bi2Te3, it is worthwhile to ask about the effect of using
the LDA for electronic properties of Bi2Te3. Therefore, in
Fig. 2 we present the calculated electronic structure of Bi2Te3

within both the GGA and LDA approximations (calculated
using WIEN2K) where all other relevant quantities such as
LAPW sphere radii (2.5 Bohr radii for all atoms), k points
(2000 in the full Brillouin zone), and lattice parameters
(4.386 Å planar and 30.50 Å c axis) and atomic coordinates
are assumed identical. We have used spin-orbit coupling for
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FIG. 2. (Color online) The computed band structure of Bi2Te3

within the LDA and GGA approximations. Note the relatively small
differences in the band structures.

these calculations as this generally affects electronic structure
much more substantially than structural properties. As the plot
indicates, there is only a very small difference between the two
electronic structures, mainly concerning the exact value of the
gap at the conduction-band minimum.

III. SOUND SPEED ANISOTROPY
AND NANOSTRUCTURING

EFFECTIVENESS PARAMETERS

The discussion of the preceding section makes plain the
significant anisotropy in the phonon transport of Bi2Te3.
Here we find a way to assess the quantitative impact of this
anisotropy in reducing lattice thermal conductivity, and we
make a comparison with another well-studied thermoelec-
tric material, PbTe, as well as diamond and several other
semiconductors.

In this discussion, we will implicitly assume that the grain
boundary scattering is in the ballistic regime, which will
be obtained when the average phonon mean free path (that
would occur in the absence of grain boundaries) becomes
comparable to or larger than the grain size. More specifically,

we will assume that at least a significant fraction of the
distribution of these phonon mean free paths is larger than the
nanograin size, so that there is significant ballistic scattering
at the grain boundaries. In this limit, the well-established
acoustic mismatch theory24–27 describing heat conduction at
interfaces of crystalline solids can be applied, as is described
below.

Our method is the following. From published calculated
values of the elastic constants for Bi2Te3, one may generate
the associated Christoffel28 elastic tensor stiffnesses and solve
the resulting secular equation for the three sound velocities
(one longitudinal and two transverse) as a function of the wave
propagation direction. The relevant equations may be found in
Ref. 29 and are summarized in the Appendix. We have plotted
up the sound speeds, as a function of propagation direction,
in Fig. 3. The sound speed plots differ significantly from a
spherical shape, underscoring the anisotropy already apparent
from the calculated phonon band structure.

We turn now to the impact of the anisotropic sound speeds
on the lattice thermal conductivity. As is well known, the lattice
thermal conductivity κl is given as

κl =
∑
q,i

Cq,ivq,i�q,i , (2)

where Cq,i is the specific heat attributable to a phononic mode
with momentum q and polarization i, v is the sound speed
of that mode, � is the mean free path of that mode, and a
sum over the modes of significant group velocity is taken.
In general, the fraction R of elastic energy reflected at a
grain boundary interface at normal incidence is given by the
impedance mismatch formula:

R =
(

(Z1 − Z2)

(Z1 + Z2)

)2

. (3)

Here Z1 and Z2 are the acoustic impedances of the two
adjoining grains, given by Zi = ρivi , where ρ is the density
of a grain and v is the sound speed (of a given polarization)
within the grain. Since we expect ρ to be constant within a
nanostructured sample, the energy fraction reflected depends
on the sound speeds v1 and v2 in the two grains, at the
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FIG. 3. (Color online) The computed sound speed anisotropy of Bi2Te3. Distance from origin represents sound speed, in km/s, for that
direction of propagation. Transverse modes T 1 and T 2, left and center, respectively; longitudinal mode, right. Elastic constants taken from
Ref. 20.
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FIG. 4. (Color online) The computed sound speed anisotropy of diamond. Elastic constants taken from Ref. 34. Transverse modes, left and
center; longitudinal mode, right.

directions of incidence and transmission, and in addition on the
polarization of the incoming wave. Note also30 that an incident
wave of one polarization may induce scattered waves of other
polarizations, complicating the issue further. Furthermore, in
a nanostructured sample we do not expect oriented grains.
Hence to work out the effective grain boundary scattering rate,
one must consider grain orientation as well as the intrinsic
anisotropy of the sound speeds. This becomes a rather difficult,
and even difficult to formulate, problem when one realizes that
the grains are not likely to be exactly randomly oriented, and
that the degree of randomness will likely depend on the exact
synthesis and nanostructuring techniques applied, unknown in
this work.

Given that one purpose of this paper is to propose
computationally simple nanostructuring effectiveness param-
eters, we therefore make a simple ansatz based upon the
(relatively) random nature of the problem at hand. Since the
incident and transmitted velocities v1 and v2 are essentially
uncorrelated, it is a fair approximation to replace v2 in
the above impedance mismatch expression by its average
value (a similar assumption in a different context is made
in many “mean-field” theories) and integrate over all angles of
incidence. As with mean-field theories, the simpler expression
is most quantitatively accurate when v1 does not vary too much
from its average. The gross features of anisotropy, however,
should be reasonably well captured by this expression. The
expression for Rtot is a simple two-dimensional integral:

Rtot = 1

4π

∫
sin(θ )dθ dφ

(
v(θ,φ) − vav

v(θ,φ) + vav

)2

, (4)

where the above integral is computed for each of the two
transverse modes and the longitudinal mode and then averaged
over the modes. One could argue, based on phase-space
considerations, that the various terms should be weighted by
the sound speeds, or sound speeds squared, or some other
factor, of the various modes, but it is usually unclear in any
given system what fraction of heat transport separately results
from transverse and longitudinal modes,31 so we have retained
the simplest possible expression.

The above expression yields a single number Rtot, which
gives in essence the average impedance mismatch reflected
energy at normal incidence for a single scattering event. It
is typically fairly small—of the order of 0.01 or less even

for highly anisotropic media, as depicted below. However,
there is an important additional scattering effect created by the
velocity anisotropy. As with propagation of electromagnetic
waves, there is a form of Snell’s law, vincoming/vtransmitted =
sin(θincoming)/ sin(θtransmitted), relating incoming and outgoing
propagation angles (relative to the normal) to the relative sound
speeds, and a version of total internal reflection, in which for
certain angles of incidence there is no energy transmission
across the interface, applies. To put this quantitatively, for a
20% smaller sound speed (in a given direction) in the receiving
material, angles of incidence greater than 53◦—40% of the
possible angles of incidence—result in total internal reflection,
even though the impedance mismatch reflection coefficient at
normal incidence is only 0.012. This point is described well
quantitatively in the reference of Little.9 Since the average
sound speeds in the two nanograins are of course equal, what
one needs is a measure of the average deviation of the velocity
from its average, which in essence is what the individual Ri

measures (more precisely speaking, Ri � (
vi )2

4v2
i,av

, where 
v is

the standard deviation of vi and vav,i is the angular average
sound velocity of a mode of polarization i).

To give examples of velocity anisotropy and Rtot, we
have computed and present in Figs. 3–5 the sound speed
anisotropy for three well-known semiconducting materials:
Bi2Te3, diamond, and PbTe, respectively. Diamond is included
to demonstrate a material with very low elastic anisotropy,
while PbTe and CoSb3 are well known thermoelectrics. We
will see that as expected, Bi2Te3 shows significant potential for
nanostructuring reductions of κlattice. As mentioned previously,
despite its cubic structure, PbTe also shows large velocity
anisotropy. As asserted previously, while its cubic nature
ensures isotropic conductivity, there is no such requirement
on the elastic properties. Its elastic anisotropy might therefore
also be expected to allow good reductions of lattice thermal
conductivity due to nanostructuring, but recent work32 shows
that for PbTe these nanostructures must be smaller than 10 nm
to have a significant effect, as the phonon mean free path is
already very short. Conversely, although diamond shows very
low anisotropy, its phonon mean free path is so long (well
over 100 nm) that small-grain nanostructuring would likely
have a significant impact on its lattice thermal conductivity
(noting nevertheless the impracticality of this material for
thermoelectric applications). We have taken account of this
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FIG. 5. (Color online) The computed sound speed anisotropy of PbTe. Elastic constants taken from Ref. 35. Transverse modes, left and
center; longitudinal mode, right.

additional effect by defining a “scattering potential coefficient”
Stot as Rtotκlattice,bulk/κmin, where κlattice,bulk is self-explanatory
(values for Bi2Te3 and PbTe taken from Ref. 21) and κmin is
the “minimum thermal conductivity,”33 which we simply take
as 0.5 W/m K for all materials studied.

In an attempt to quantify the anisotropy presented in
Figs. 3–5, in Table II we present the average impedance
mismatch scattering reflection coefficient R for each of the
three materials, along with CoSb3, GaAs, and Si. As expected,
diamond has by far the lowest impedance reflection coefficient,
with an average R between one and two orders of magnitude
less than PbTe and Bi2Te3. The large values for PbTe suggest
that, as with Bi2Te3, nanostructuring may yet be effective
in reducing κlattice if sufficiently small nanograins can be
formed. With regard to CoSb3, note that while this material
shows significant potential for nanostructuring lattice thermal
conductivity reduction (since Stot is substantial), this reduction
would be proportionately smaller for a high-performance skut-
terudite such as a triple-filled material, since the lattice term
has already been reduced substantially by the “rattling” effect.
Hence high-performance skutterudites would be expected
to show smaller performance benefits from nanostructuring
than PbTe and Bi2Te3. Conversely, as observed in Ref. 37,
substantial κlattice reductions—as much as 80%—occur in
nanostructured CoSb3 without added “rattlers.” The very small
values of R for diamond provide a natural explanation for why
polycrystalline diamond is such a good heat conductor. We
have not included the thermoelectric half-Heusler compounds
due to a paucity of data and a great variability38–42 in anisotropy

in the few data that do exist. For Bi2Te3, the lattice thermal
conductivity given is the planar value; the c-axis value is
roughly half this.

IV. DISCUSSION AND PROPOSED EXPERIMENTAL TEST
OF THEORY

The results of the preceding section attempt to define a
nanostructuring “figure-of-merit,” and the scattering potential
coefficient Stot which we hypothesize will correlate with the
ability of nanostructuring to reduce lattice thermal conductiv-
ity. In the last two columns of Table III, we present the param-
eters Stot and the measured reduction in thermal conductivity,
relative to single-crystal values, of nanostructuring or, in the
absence of such data, of polycrystalline samples. There is an
obvious correlation between the two parameters, but it is not
clearly better49 than a simple correlation between the measured
thermal conductivity reduction and the single-crystal thermal
conductivity values; in particular, Bi2Te3 and CoSb3 show very
different κlattice reductions despite nearly equal Stot values. The
reason for this, we believe, is simply that the grain sizes in the
nanostructured (or for that matter, polycrystalline) samples are
not the same from one material to another, so that this is not
an “apples-to-apples” comparison.

To make such a comparison, let us consider the thermal
conductivity of a nanostructured sample with two sources of
scattering: the phonon-phonon scattering commonly dominat-
ing κlattice for temperatures above the Debye temperature, and
grain boundary scattering from the nanograins. One may then

TABLE II. Average impedance mismatch reflection coefficients (multiplied by 100), scattering potential coefficients, and experimental
lattice thermal conductivity reductions for several materials. L refers to the longitudinal mode and T 1 and T 2 to the transverse modes. The
skutterudite values in parentheses indicate typical values for a high-performance thermoelectric skutterudite.

Compound RL RT 1 RT 2 Rtot κlattice,bulk (W/m K) Stot κlattice reduction from nano/polycrystalline

Bi2Te3 0.153 0.429 0.437 0.340 1.7 (planar) 1.16 1.46

PbTe 0.187 0.544 0.850 0.527 2.3 2.42
CoSb3 0.0234 0.0623 0.133 0.0703 9 (3) 1.26 (0.42) 737

diamond 0.006 27 0.0151 0.005 37 0.0089 2200 39.16 10043

GaAs 0.026 21 0.042 47 0.1436 0.0706 4644 6.51 3845

Si 0.016 68 0.1436 0.042 47 0.067 66 15646 21.11 14247
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TABLE III. Elastic constants (in GPA) used in the calculation of
sound speed anisotropies. All compounds except for Bi2Te3 are cubic
and hence have only three independent elastic constants.

Compound c11 c12 c33 c44 c13 c14

Bi2Te3 74.4 22.0 51.6 31.4 29.2 15.4
PbTe 128.1 4.4 15.1
CoSb3

36 202.0 55.8 42.2
diamond 1076 125 576
GaAs44 118.4 53.7 59.1
Si48 166 64.0 79.6

write the total scattering rate, using Matthiesen’s rule, as

τ−1 = αT + βvs/d. (5)

Here α and β are material-specific constants, d is the mean
grain size, and vs is a suitably averaged sound speed. β

describes the efficacy of grain boundary scattering in a
given material and α is the effectiveness of phonon-phonon
scattering. The sound speed appears in this expression because
higher sound speeds imply shorter times to traverse a nanograin
and undergo a scattering event. Then one may write the thermal
conductivity as

κlattice = Cv2
s

α
(
T + βvs

αd

) . (6)

Here C is the specific heat, which we assume to be known.
We may readily identify the quantity β/α with the scattering
potential coefficient Stot, since in our theory β expresses the
relative effect of impedance mismatch scattering, and α is the
effect of phonon-phonon scattering, which predominates κlattice

in bulk materials.
To test this assertion, what is needed are two or more sets of

thermal conductivity measurements on materials with rather
different Stot values, with each set comprising a series of tests
of samples with nanograins of different sizes d. This would
allow determination of the values of α/β for each of the two
materials, which could then be compared with the calculated
Stot values. One caveat is that the above expression for the
scattering time fails as one approaches the minimum thermal
conductivity, so that measurements at lower temperatures (say
300 K) would likely be more accurate since κ is larger at low
temperature.

This represents an attempt to isolate the effects of velocity
anisotropy scattering from the numerous other factors affecting
phononic transport in a real nanostructured sample, including
(for example) the means of sample preparation and other mi-
crostructural properties. In addition, other forms of scattering,
such as by soft interstitial material between grains, could be
a significant contributor to reducing thermal transport. We do
think, however, that the impedance and velocity mismatch
associated with grain boundary scattering in nanostructured
samples, as depicted here, can be a significant contributor
to the reduction of thermal conductivity by nanostructuring,
and that the quantitative parameters presented may give
an indication of the likely effectiveness of nanostructuring
in reducing the lattice thermal conductivity of a given
material.

V. SUMMARY AND CONCLUSIONS

We present calculated phonon dispersions for Bi2Te3

and discuss ceramic grain boundary scattering in terms of
acoustic impedance mismatch. We find that, as expected, grain
boundaries may lead to strong interface scattering in Bi2Te3

nanostructured material. Interestingly, this is also expected to
be the case in materials such as PbTe, which, although cubic,
does have substantial acoustic wave anisotropy. This is in
contrast to the optical case, where a cubic material would have
no such scattering. In any case, the implication of the present
results is that dense sintered ceramics of anisotropic material
such as Bi2Te3 or PbTe will have reduced thermal conductivity
provided that the appropriate grain size is used; we develop a
method for quantifying this velocity anisotropy. In the case
of more isotropic materials, other strategies for producing
scattering at grain boundaries, such as the introduction of
second phases (as studied in Refs. 50 and 51), may be needed.
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APPENDIX

In this Appendix, we describe in somewhat more detail the
method for extracting sound speeds from the elastic constants.
For the sake of brevity, we will only demonstrate the most
complex case depicted in the paper, i.e., that of rhombohedral
Bi2Te3. In general, solving the Christoffel equations requires
the solution of a 3 × 3 determinant equation, det[� − λ1] = 0.
Here the eigenvalues λ are equal to ρv2

i,θ,φ , where ρ is
the material density and vi,θ,φ is the sound speed of given
polarization and propagation. The matrix � is the elastic
stiffness matrix. For Bi2Te3 there are six nonzero elastic
constants: c11, c12, c13, c14, c33, and c44. Then the components
of the symmetric � matrix are given as follows28 (here n1, n2,
and n3 are the direction cosines along the x, y, and z axes,
which we take in spherical coordinates):

�11 = n2
1c11 + n2

2

2
(c11 − c12) + n2

3c44 + 2n2n3c14, (A1)

�22 = n2
2c22 + n2

1

2
(c11 − c12) + n2

3c44 − 2n2n3c14, (A2)

�33 = n2
2c44 + n2

2c44 + n2
3c33, (A3)

�23 = �32 = (
n2

1 − n2
2

)
c14 + n2n3(c13 + c44), (A4)

�13 = �31 = n1n3(c13 + c44) + 2n1n2c14, (A5)

�23 = �32 = n1n3c14 + n1n2(c11 + c12)/2. (A6)

Diagonalization of � then directly yields the eigenvalues λ and
associated sound speeds vi,θ,φ .
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