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Weak localization of holes in high-mobility heterostructures
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Theory of weak localization is developed for two-dimensional holes in semiconductor heterostructures.
Ballistic regime of weak localization where the backscattering occurs from few impurities is studied with
account for anisotropic momentum scattering of holes. The transition from weak localization to antilocalization
is demonstrated for long dephasing times. For stronger dephasing the conductivity correction is negative at all hole
densities due to nonmonotonous dependence of the spin relaxation time on the hole wavevector. The anomalous
temperature dependent correction to the conductivity is calculated. We show that the temperature dependence of
the conductivity is nonmonotonous at moderate hole densities.
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I. INTRODUCTION

Weak localization (WL) is an enhancement of backscat-
tering caused by interference of waves propagating by the
same path in the opposite directions. WL of electrons results
in corrections to conductivity anomalously dependent on
temperature and magnetic field. Weak localization is studied in
a variety of disordered metals and semiconductors including
recently discovered graphene and topological insulators. In
these systems, the carrier momentum is coupled strongly with
spin or pseudospin which results in nonparabolic energy spec-
trum. This leads to suppression of the backscattering called
weak antilocalization (WAL). WAL is observed in graphene
(for review see Ref. 1) and in topological insulators2–5 (the
corresponding theory is developed in Refs. 6 and 7).

Heterostructures with hole type of conductivity also belong
to the class of systems with nonparabolic energy spectrum
and coupled spin and orbital degrees of freedom. Since the
two-dimensional valence band states are formed as a result
of competition of size quantization and strong spin-orbit
interaction present in the bulk semiconductor, the spectrum
nonparabolicity depends on the two-dimensional hole density
p and the quantum well width a. At small density and in
narrow structures the holes behave as ordinary electrons, while
at pa2 � 1 the nonparabolicity effects are important and spin is
strongly coupled with the momentum. This leads to transition
from WL at low density to WAL at higher densities in 2D hole
systems caused by increase of spin-orbit strength.8

Experimental studies showed the WL-WAL transition
with increase of 2D hole density in both temperature and
magnetic-field dependences of the conductivity.9–12 The WL
theory for hole systems13–15 was developed for the so-called
“diffusion” regime where the backscattering occurs after many
collisions with impurities. The diffusion theory describes well
the magnetoconductivity in low-mobility hole structures,16

but it is inapplicable to high-mobility systems studied nowa-
days because it describes magnetoconductivity in very low
fields.

The temperature dependence of the conductivity is also
different in high-mobility systems. WL is present due to
these closed paths where the interference is not broken by
dephasing processes. This means that the phase breaking time
τφ should be much longer than the momentum scattering time
τ . However, the diffusion theory of WL assumes a stronger

condition ln (τφ/τ ) � 1 which is not realized in high-mobility
structures with long scattering times. The backscattering in
these systems occurs after carrier propagation along “ballistic”
paths with few impurities which are ignored by the diffusion
theory.17,18 The aim of this work is to develop the WL theory
of two-dimensional holes valid in both the diffusion and
ballistic regimes and calculate the temperature dependence
of the conductivity correction.

II. HOLE WAVEFUNCTIONS AND RELAXATION TIMES

The hole states in quantum-well structures grown from
A3B5 materials are described by the Luttinger Hamiltonian
where the wavevector component kz is treated as an operator
−i∂/∂z (here z is the growth direction).19 We apply the
isotropic approximation and assume the quantum well to be
rectangular and infinitely deep. We have found the hole energy
dispersion in the subbands of size quantization in this model
by a standard way.19 The dependence of the hole energy in the
ground subband on the two-dimensional wavevector E(k) is
nonparabolic at ka � 2, see inset to Fig. 1. Hereafter we use in
numerical calculations the Luttinger parameters corresponding
to GaAs: γ1 = 6.8 and γ2 = γ3 = 2.6.

The size-quantized hole levels in a symmetrical quan-
tum well are double degenerate at each value of k. We
choose these two states as symmetric (s) and asymmetric
(a) relative to a mirror reflection in the symmetry plane of
the quantum well.20 The corresponding wave functions are
�αk = Fαk(z) exp (ik · ρ), where ρ is the in-plane coordinate,
α = s,a, and Fαk(z) are linear superpositions of the four Bloch
functions um of the total angular momentum 3/2 and projec-
tions on the growth axis m = ±3/2, ± 1/2: u±3/2 = ∓(X ±
iY )s±/

√
2, u±1/2 = [∓(X ± iY )s∓/

√
2 + √

2Zs±]/
√

3. Here
X,Y,Z are the Bloch functions of the top of the valence band,
and s± are spin functions with projections ±1/2 on the z axis.
In the basis [u3/2,u1/2,u−1/2,u−3/2], Fαk have the following
form:13,20

Fsk(z) = [−v0C(z),iv1S(z)eiϕk , − v2C(z)e2iϕk ,iv3S(z)e3iϕk ],

(1)

Fak(z) = [iv3S(z)e−3iϕk ,v2C(z)e−2iϕk ,iv1S(z)e−iϕk ,v0C(z)],

(2)
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FIG. 1. (Color online) Elastic relaxation times of holes. Inset:
energy dispersion of the ground hole subband in a 100 Å wide
quantum well.

where ϕk is the polar angle of the wavevector k. The depen-
dence on k of the real coefficients v0...3 as well as symmetric
(C) and antisymmetric (S) functions of the coordinate z is
determined by the energy dispersion E(k).

In Ref. 21 the phase-coherent transport through two-
dimensional hole systems has been considered. The Luttinger
Hamiltonian has been averaged over the ground state at k = 0
which resulted in its splitting into two blocks. This approach
takes into account only the mixing between the ±3/2 and
∓1/2 states whose angular momentum z projections differ
by 	m = ±2, but ignores the mixing between the ±3/2 and
±1/2 states with 	m = ±1 which is of the same order. As a
result, Ref. 21 takes into account only one part of k2 terms in
the WL conductivity correction. In the present work we use the
whole 4 × 4 Hamiltonian and work with the four-component
functions Eqs. (1) and (2), as it has been done for the diffusive
regime in Refs. 13–15.

We consider elastic scattering of two-dimensional holes
by the short-range potential V (r) = V0

∑
i δ(r − r i), where

r i = (ρi ,zi) are coordinates of the impurities. The spin-orbit
coupling leads to anisotropy of scattering even by such
isotropic impurities. Indeed, the hole wave functions Eqs. (1)
and (2) depend on a direction of the wavevector k. As a result,
the matrix elements of scattering from the state |αk〉 to the
state |βk′〉 by the potential V (r)

Vβα(ϕk′ ,ϕk) = V0

∑
i

F
†
βk′ (zi)Fαk(zi)e

i(k−k′)·ρi

depend on the angular coordinates of the initial and final
wavevectors ϕk and ϕk′ . Therefore the elastic scattering proba-
bility contains the first, second, and third Fourier harmonics of
the scattering angle θ = ϕk′ − ϕk in addition to the isotropic
term. Hence the scattering times describing decay of the nth
Fourier harmonics of the hole distribution function

1

τn

= 2π

h̄
g

∫ 2π

0

dθ

2π
〈|Vss(θ )|2 + |Vas(θ )|2〉(1 − cos nθ )

are different for n = 1,2,3. All higher harmonics decay with
the time τ0 given by

1

τ0
= 2π

h̄
g

∫ 2π

0

dθ

2π
〈|Vss(θ )|2 + |Vas(θ )|2〉.

Here angular brackets denote averaging over the impurity
positions, and g = k/(2πh̄vk) is the density of states where
vk = h̄−1dE/dk is the velocity of holes with the wavevector
k. The dependences τn(k) for n = 0,1,2,3 are plotted in
Fig. 1 for homogeneous impurity distribution over the z

coordinate (averaging is restricted to integration over zi).
The longest time is τ2 describing a decay of the anisotropic
part of the distribution function ∝ cos 2ϕk, sin 2ϕk which
can be created, e.g., by optical excitation of semiconductor
systems. Figure 1 demonstrates that τ2 > τ1, i.e., this part
lives longer than the first harmonic ∝ cos ϕk, sin ϕk which
can be created by application of an external static electric
field. Figure 1 demonstrates that the p-type heterostructures
differ qualitatively from topological insulators and graphene
where scattering is also anisotropic, but the ratios τ1/τ0 = 2,
τn/τ0 = 1 (for n > 1) are fixed, and all relaxation times are
independent of k. In contrast, the spin-orbit coupling is absent
for holes at k → 0, where the spectrum is parabolic and
scattering is isotropic, while at ka � 2 both conditions are
violated. This implies the spin-orbit coupling strength in the
hole systems is controlled by the density p which sets the
Fermi wavevector kF = √

2πp.

III. WL CONDUCTIVITY CORRECTION

The anisotropy of scattering complicates the calculation
of the WL conductivity correction. It is determined by the
Cooperon C

αβ

γ δ (ϕk,ϕk′ ,q) which depends on the four indexes
enumerating the hole states (α,β,γ,δ = s,a), on the directions
of the momenta at the Fermi circle ϕk,ϕk′ , and on the
two-dimensional vector q, q 
 kF. The Cooperon satisfies
the equation13,22

C
αβ

γ δ (ϕk,ϕk′ ,q) = W
αβ

γ δ (ϕk,ϕk′) +
∫ 2π

0

dϕ1

2π
P (ϕ1,q)

× Wαμ
γν (ϕk,ϕ1)Cμβ

νδ (ϕ1,ϕk′ ,q), (3)

where

P (ϕ1,q) = 2πgFτ0/h̄

1 − iqvFτ0 cos (ϕ1 − ϕq) + τ0/τφ

,

gF and vF are the density of states and the velocity at k = kF,
and the correlators are defined as

W
αβ

γ δ (ϕk,ϕk′) = 〈Vαβ(ϕk + π,ϕk′ + π )Vγδ(ϕk,ϕk′)〉. (4)

For scattering in a symmetrical quantum well the correlators
have the properties following from Eqs. (1) and (2):

Wss
ss = (

Waa
aa

)∗
, Wss

aa = Waa
ss ,

(5)
Wsa

sa = (
Was

as

)∗
, Wsa

as = Was
sa ,

and all other correlators are equal to zero. Note that
the relaxation times are determined by 〈|Vss |2 + |Vas |2〉 =
Wss

aa − Wsa
as . The correlators contain Fourier harmonics

exp (±imϕk ± inϕk′) with m,n = 0 . . . 6, and Wss
ss ,Wss

aa,W
sa
as

depend on the difference ϕk − ϕk′ while Wsa
sa (ϕk,ϕk′) does

not.
The correlator properties Eqs. (5) allowed us to decouple

partly Eqs. (3) and derive independent equations for the
Cooperons C+ and C− as well as two coupled equations for
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the Cooperons C1 and C2 defined as

C+ = Css
aa − Cas

sa = −(
Csa

as − Caa
ss

)
,

C− = Css
aa + Cas

sa = Csa
as + Caa

ss , (6)

C1 = Css
ss = (

Caa
aa

)∗
, C2 = Cas

as = (
Csa

sa

)∗
.

The equations are as follows:

C±(ϕk,ϕk′ ,q) = Wss
aa(θ ) ∓ Wsa

as (θ ) +
∫ 2π

0

dϕ1

2π
P (ϕ1,q)

× [
Wss

aa(θ1) ∓ Wsa
as (θ1)

]
C±(ϕ1,ϕk′ ,q), (7)

C1(ϕk,ϕk′ ,q)

= Wss
ss (θ ) +

∫ 2π

0

dϕ1

2π
P (ϕ1,q)

[
Wss

ss (θ1)C1(ϕ1,ϕk′ ,q)

+Wsa
sa (ϕk,ϕ1)C2(ϕ1,ϕk′ ,q)

]
, (8)

C2(ϕk,ϕk′ ,q)

= Was
as (θ ) +

∫ 2π

0

dϕ1

2π
P (ϕ1,q)

[
Was

as (ϕk,ϕ1)C1(ϕ1,ϕk′ ,q)

+Waa
aa (θ1)C2(ϕ1,ϕk′ ,q)

]
. (9)

Here we introduced θ = ϕk − ϕk′ and θ1 = ϕk − ϕ1.
We have found the Cooperons C+, C−, C1, and C2

expanding them in Fourier series which transfers the integral
Eqs. (7)–(9) to systems of linear equations. Since the corre-
lators have a finite number of Fourier harmonics, the linear
equation systems are finite: 7 independent equations for both
C+ and C−, and 14 coupled equations for C1 and C2. The
Cooperon Fourier harmonics have been found by a numerical
solution of these linear equation systems. In the diffusion
approximation, q assumed to be small, and P (ϕ,q) is expanded
up to q2 terms.13–15 This simplifies greatly Eqs. (7)–(9) because
only the zeroth and first Fourier harmonics contribute to the
Cooperon in the diffusion approximation.

The found Cooperons allowed us to calculate the WL
conductivity correction σ . It is well known that this correction
is given by a sum of two maximally crossed diagrams.
Accordingly, it equals to a sum of two terms σ = σa + σb,
where σa arises from the backscattering processes and σb

contribution is due to coherent scattering by arbitrary angles.
These corrections are expressed via the Cooperons as follows:

σa = −e2(vFτ1)2

2πh̄

∫
d2q

(2π )2

∫ 2π

0

dϕ

2π
P (ϕ,q)

× {
C

(3)
− (ϕ,ϕ + π,q) − C

(3)
+ (ϕ,ϕ + π,q)

+ 2Re
[
C

(3)
1 (ϕ,ϕ + π,q)

]}
, (10)

σb = −e2(vFτ1)2

πh̄

∫
d2q

(2π )2

∫ 2π

0

dϕ

2π
P (ϕ,q) cos ϕ

×
∫ 2π

0

dϕ′

2π
P (ϕ′,q) cos ϕ′

{∑
±

[
Wss

aa(θ ) ∓ Wsa
as (θ )

]
×C

(2)
± (ϕ,ϕ′,q) + 2Re

[
Wss

ss (θ )C(2)
1 (ϕ,ϕ′,q)

]
+ 2Re

[
Wsa

sa (ϕ,ϕ′)C(2)
2 (ϕ,ϕ′,q)

]}
. (11)

Here θ = ϕ − ϕ′, the upper index (2) and (3) indicates that
the diagrams are started from 2 and 3 impurity lines, and the
factor τ 2

1 comes from the renormalization of two vertexes due
to the scattering anisotropy.

IV. CALCULATION RESULTS AND DISCUSSION

The results of calculation of the WL conductivity correction
is shown in Fig. 2. The time τ (0) is the relaxation time at k = 0,
cf. Fig. 1. The WL to WAL transition with increase of the hole
density is clearly seen for τ (0)/τφ � 0.04. It occurs at kFa ≈ 2
which corresponds to the density p ≈ 7 × 1011 cm−2 for the
quantum well width a = 100 Å. However, Fig. 2 demonstrates
that the conductivity is a nonmonotonous function of the hole
density which changes sign and become again negative at high
kFa for shorter dephasing times τφ . Inset in Fig. 2 shows
the backscattering and nonbackscattering contributions, σa

and σb.
The backscattering contribution dominates for all values of

the parameter kFa. This can be explained by the approximate
relation

σb ≈ −τ1 − τ0

τ1
σa,

which is derived in the diffusion approximation.13,15 The
difference between τ1 and τ0 is nonzero, but it does not exceed
30%, see Fig. 1. Therefore the nonbackscattering contribution
σb does not reach the large value (e2/2π2h̄) ln (τφ/τ1). In
contrast, it does not exceed the value at k = 0 where σb =
(e2/2π2h̄) ln 2, see Fig. 2.

In order to explain qualitatively the nonmonotonous behav-
ior of the conductivity correction with the hole density we also
compare the results of our exact calculation with ones obtained
in the diffusion approximation:

σa ≈ e2

4π2h̄

[
2 ln

(
τ1

τs‖
+ τ1

τφ

)
+ ln

(
τ1

τs⊥
+ τ1

τφ

)
− ln

τ1

τφ

]
.

(12)
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FIG. 2. (Color online) Conductivity correction as a function
of hole density at τ (0)/τφ = 0.01,0.02,0.04, and 0.09. Inset: the
backscattering (σa) and nonbackscattering (σb) contributions.
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Here the longitudinal and the transverse spin relaxation rates
are given by8

1

τs‖
= 1

τ0
− 2π

h̄
g

∫ 2π

0

dθ

2π

〈
V 2

ss(θ )
〉
,

1

τs⊥
= 4π

h̄
g

∫ 2π

0

dθ

2π
〈|Vsa(θ )|2〉.

The dependence Eq. (12) is shown in Fig. 3 together with
the result of the exact calculation. The increase of the WL
correction at 0 < kFa < 3 is described by fast increase of
both spin relaxation rates which makes smaller the two first
logarithmic terms in Eq. (12). This demonstrates that WL
to WAL transition in hole systems at long dephasing times
is driven by increase of spin-orbit coupling with increase
of the hole density. However, at kFa > 3 the WL correction
calculated in the diffusion approximation saturates at the value
smaller than (e2/4π2h̄) ln (τφ/τ1) obtained in the limit of very
fast spin relaxation. This is caused by decrease of the transverse
spin relaxation rate 1/τs⊥ and by saturation of the longitudinal
rate 1/τs‖, see inset to Fig. 3.

This behavior of the spin relaxation rates at ka > 1 can be
explained by considering the limit of a very wide quantum
well. The coefficients v0...3 in Eqs. (1) and (2) in this limit are
v0 = 1/2, v1 = v3 = 0, v2 = √

3/2,20 so the symmetrical and
asymmetrical wave functions have the following forms:

Fs,a = cos

(
πz

a

)
exp (±iϕk)√

a

× [(Y cos ϕk − X sin ϕk)s± + iZe±iϕks∓].

These wave functions correspond to the angular momentum
projections ±3/2 on the direction of k in the structure
plane as it should be at large ka. Calculating the scattering
matrix elements Vss = V0〈Fsk′ |Fsk〉 and Vsa = V0〈Fsk′ |Fak〉
we derive that at ka → ∞

1/τs⊥ = 0, 0.9τs‖ = τ0 = τ1.

Infinite τs⊥ shows that the hole spin relaxation is suppressed
not only at small but also at large ka. According to the
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FIG. 4. (Color online) The temperature dependence of the con-
ductivity correction at different hole densities. Inset highlights the
region where the conductivity has a minimum.

calculation results shown in the inset to Fig. 3 this limiting
case is almost realized at kFa � 4 when only the ground
subband is occupied. Therefore the first logarithmic term in
Eq. (12) is small at kFa ∼ 4 while the second one increases
partially compensating the last term, and the total correction
saturates. Moreover, in contrast to the diffusion-approximation
result, the exactly calculated WL correction totally repeats the
behavior of τ1/τs⊥: The above derived suppression of hole
spin relaxation in wide quantum wells is reproduced in the WL
conductivity correction as it is seen from the exact calculation
result shown in Fig. 3 which has a maximum and decreases at
larger ka.

We have also calculated the WL conductivity correction as
a function of temperature T ∼ τ−1

φ at different hole densities.
The result shown in Fig. 4 demonstrates the transition from
metal to insulator temperature behavior. This transition is due
to spin-orbit interaction which is present even in symmetrical
quantum wells with the degenerate hole energy spectrum. The
inset to Fig. 4 shows nonmonotonous temperature dependence
at moderate hole densities.

V. SUMMARY

To summarize, we have developed WL theory for holes in
quantum wells taking into account both ballistic and diffusion
processes. The conductivity correction is calculated in a wide
range of hole densities and temperatures taking into account
real nonparabolicity of the energy spectrum. WL instead of
WAL can occur at high densities due to suppression of hole
spin relaxation at large in-plane wavevectors. The transition
from metal to insulating temperature behavior is demonstrated
in the symmetrical quantum well with spin-degenerate hole
subbands. Such a transition can be detected by magnetocon-
ductivity measurements. This mechanism can concur with the
mechanism due to Rashba splitting of hole energy spectrum
which has been used in Ref. 11 for explanation of WL
experiments on two-dimensional hole systems. Dresselhaus
spin-orbit interaction can also lead to WAL. Theoretically
the Dresselhaus coupling for two-dimensional holes can be
taken into account by k3 spin-orbit splitting. This problem has
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been solved in Ref. 23 where it was demonstrated that WAL
takes place if the Dresselhaus splitting is larger than the elastic
scattering rate h̄/τ . The calculations performed in Ref. 21
for a diffusive strip show only positive magnetoconductivity
at ka = 2 which agrees with our results. Our Figs. 2 and 4
predict transition to WAL at higher ka ∼ 3 for long dephasing
times.
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