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Electronic equivalence of optical negative refraction and retroreflection in the two-dimensional
systems with inhomogeneous spin-orbit couplings
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The negative refracted transmission and retroreflection of electrons in low-electron-density semiconductors, in
the presence of spin-orbit coupling, are theoretically predicted. It is shown that negative electronic transport may
occur owing to the occurrence of additional states whose wave vectors are antiparallel to their group velocities.
We conclude that the transport emerges as negative in nature in the scattering process if the sign of its ray equation
is reversed with respect to that of the incidence’s. We demonstrate this finding in the hybrid of two-dimensional
electron gases with different Rashba spin-orbit couplings. We also show that the fundamental of negative electric
transport is promising to focus a divergent electronic beam in a spintronic sandwich structure with flat surfaces.
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I. INTRODUCTION

The influence of spin-orbit interaction (SOI) on the trans-
port properties has been a subject of considerable investigation
for many years.1–5 Owing to the SOI effect, a spin-degenerate
parabolic band is split into two spin-helicity bands. In
general, electrons fill in both the bands with two oppositely
spin-polarized states. The existence of two spin-polarized
states leads to many extraordinary phenomena in spintronic
tunneling in hybrids with different SOIs, such as bidirectional
refraction6 and spin optics.7 Electrons reflected at the interface
between two-dimensional electron gases (2DEGs) with a
step-like variation of the SOI strength changes the spin
orientation via the spin angular impulse exerted on electrons8

and produces an edge spin current.9 Recent experiments
revealed that all electrons can be restricted in one of the spin-
helicity bands in low-density semiconductors with a strong
SOI.10–12 The Fermi energy and Rashba spin splitting can be
tuned in spintronic systems,13 graphene,14 and 2DEGs in a
topological insulator.15 Theoretically, the spin accumulation
for the case of electrons filling in a single spin-helicity band,
due to the interference of incident and reflected electron
waves, was studied.16 Corresponding to the variation of the
electronic structure from two spin-helicity bands to a single
spin-helicity band, the differential-geometric characteristics of
the Fermi surface are changed.17,18 One of the most remarkable
characteristics is that the density of states (DOS) is no longer
a constant as it would be for a 2DEG, while a one-dimensional
(1D) feature emerges. Another characteristic accompanied by
topological variation of the Fermi surface is that the relative
orientations of the Fermi wave vector and the group velocity
of the electronic wave packet can emerge antiparallel to each
other.

Recalling a counterintuitive phenomenon relating to the
group velocity antiparallel to the wave vector, Veselago19

predicted the existence of negative refraction in the crystal
optics. This phenomenon had been demonstrated in microwave
scattering experiments.20–24 Analyzing these artificially struc-
tured materials, with negative refractive indices, consisting of
simultaneously double-negative permittivity and permeability
material25,26 or consisting of a periodic arrangement of
scatterers in the photonic crystal,27 it is found that they have

common and fundamental characteristics, i.e., the group and
phase velocities are in opposite directions.28 The relative
orientation between the group and the phase velocities can
be characterized intuitively by the sign of a ray equation,29,30

which is defined as a scalar product of group and phase
velocities. Because the propagation of a wave with a negative
sign in the ray equation behaves differently from that of a wave
with a positive sign, the change in sign of the ray equation
across the interface between two materials has been predicted
to exhibit a variety of novel electromagnetic phenomena.31

It is of interest to investigate whether or not there exists
an electronic analog of optical negative refraction or, more
generally, “negative” electronic transport in semiconductors.
Here “negative” means that an oblique incidence of electron
beam at the interface of two different materials is transmitted
and reflected to the same side of the incidence’s with regard
to the normal at some angles. The transport behavior is deter-
mined by the dispersion law of particles. Negative refraction
has been predicted in spintronic and graphene systems. By
analyzing the special dispersion law derived from a non-
Abelian potential, Juzeliūnas et al. recently predicted that
negative refraction32 and negative reflection33 of cold atoms
can be achieved in cold atom systems. Cheianov et al. predicted
the negative refracted character of electronic transmission in a
graphene p-n junction.34 In studies of spin-polarized tunneling
Zhang35 considered a heterostructure consisting of two regions
without SOI and with both Rashba36,37 and Dresselhaus38

SOI. It was found that one of the propagating modes itself
manifests a negative refraction. To date the retroreflection of
electrons is still a rare physical phenomenon and has not been
discussed. The retroreflection of electrons cannot happen in
graphene. Although negative reflection has been predicted
for the Andreev39 reflection in graphene40 and spintronics41

systems, electronic negative transport in semiconductors so
far has not been studied systematically.

The purpose of this paper is, first, to investigate the
electronic conditions that are analogous to those of opti-
cal negative refractive behavior and, second, to extend the
analysis to “negative” electronic transport in semiconductor
heterostructures with inhomogeneous SOI. We show that the
group velocity of electrons can be antiparallel to the phase
velocity in low-density spintronic systems where the electrons
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are restricted to one helicity band. The antiparallel nature
provides an internal link with the optical effect of negative
refraction. Correspondingly, not only negative refraction but
also retroreflection of electrons is found in hybrid systems
made of semiconductors with different SOIs. We show that the
occurrence of negative electronic transport can be justified by
the sign reversal of ray equations in the scattering processes.
Our conclusion is that the occurrence of negative transport
relates to the appearance of negative-oriented states, which
is associated with the nontrivial configuration of 1D spin-
polarized Fermi surfaces at a low electron density and with
a strong SOI. According to our analysis negative electronic
transport could not be realized in the previous work with two
concentric Fermi disks of oppositely spin-polarized states. We
also show that the variation of DOS dimensional characteristics
from two to one dimension occurs in the wake of sign reversal
in the ray equation. Similarly to these dramatic effects on
electronic transport in the Lifshitz transition,42 such nuances
owing to the topological variation of Fermi surfaces would be
of interest to the low-dimensional quantum condensed matter
systems with a Fermi surface changing. We demonstrate the
occurrence of negative refracted transmission in a hybrid of
normal 2DEG (N2DEG) and a 2DEG in the presence of
Rashba SOI (R2DEG)36 and retroreflection in a hybrid of
R2DEG/N2DEG. With these two systems, the angular de-
pendencies of electronic fluxes of various propagating modes
can be treated consistently. The finding in this paper may
allow practical realization of electronic focusing in a sandwich
structure of an N2DEG/R2DEG/N2DEG heterojunction.

The paper is organized as follows. Section II defines
the ray equations for the electronic propagation modes in
spintronic systems. The change of the differential-geometric
configuration of Fermi surfaces is analyzed accordingly. In
Sec. III, we discuss the essential relationship between the
sign reversal of ray equations and the occurrence of negative
propagation modes in the scattering processes. Section IV
generalizes the analysis of negative refracted transmission
and retroreflection in R2DEG heterostructures with inhomo-
geneous SOI. The angular dependencies of negative refraction
and reflection fluxes are treated consistently. We analyze
the deductions of conduction from the retroreflections. The
partial conductances accrued from negative refractions (trans-
missions) are calculated. In Sec. V observations in physical
systems and realization of electronic focusing in a sandwich
structure of an N2DEG/R2DEG/N2DEG heterojunction are
suggested. Finally, we present the conclusions and discussions
in Sec. VI.

II. RAY EQUATIONS FOR ELECTRONIC
PROPAGATION MODES

A. Electronic ray equations

Let us first consider an energy spectrum of 2DEG with a
dispersion law

ε = A (k − a)2 , (1)

where k =
√

k2
x + k2

y is the absolute value of wave vector

k. The energy has an annular minimum ε = 0 at k = a

and a bulging ε = Aa2 at k = 0. For the incident energy
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FIG. 1. (Color online) Diagrammatic sketch of band structures
and various k positions for incident, reflected, and transmitted
electrons in (a) N2DEG/R2DEG and (b) R2DEG/N2DEG. An
electron with an energy ε intersects the negative branch (red curve).

of electrons lying slightly below the bulging (ε < Aa2), the
equienergy surface demonstrates the geometry of an annular
disk, shown by the right (red) circle in Fig. 1(a) and the left
(red) circle in Fig. 1(b). The radii of the outer and inner
edges are k+ = a + √

ε/A and k− = a − √
ε/A, respectively.

Corresponding to an increase in energy δε, these two radii
change, δk± = ±(1/2

√
Aε)δε; i.e., the outer circle tends to

be enlarged while the inner circle tends to be reduced. This
equienergy annular disk can be divided into two regimes by
a demarcation circle of radius k = a, where ∂ε/∂k = 0. The
curvature ∂ε/∂k alternates the sign across the demarcation
circle; i.e.,

∂ε

∂k

{
> 0 if k+ � k > a,

< 0 if a > k � k−.
(2)

The wave vectors ending at the edges of the equienergy
surface determine the electronic propagation modes. Thus, if
ε < Aa2, there exist two allowed propagation modes whose
wave vectors end at the edges of the outer and the inner
circles of the equienergy annular disk, respectively. In the
quantum mechanics description, the true direction of electronic
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transport is determined by the group velocity of electrons,
which is defined by the canonical momentum of electrons
rather than the momentum. The latter determines the phase
velocity of electronic waves. The group velocity is defined
by the variance of energy with respect to the momentum
vg = h̄−1∇kε. If ε is the function of k only, it can be written in
the form vg = k(kh̄)−1∂ε/∂k. Because of the factor ∂ε/∂k, the
group velocity can be in a different direction from the phase
velocity, owing to the particular functional dependency of the
dispersion law on the momentum. From Eq. (2) the curvatures
∂ε/∂k at the two edges of the equienergy annular disk have
opposite signs. Thus, the direction of group velocity is parallel
to that of the wave vector when k ends at the outer circle and
opposite to the wave vector when k ends at the inner circle. It
follows that

k · vg =
{

2k+
√

Aε/h̄ if k on outer circle,
−2k−

√
Aε/h̄ if k on inner circle.

(3)

Because vg · vg|k± = 4Aε/h̄2, we can define the ray vector of
the electron beam by scaling the magnitude of group velocity
as s = vg/(2

√
Aε/h̄). Equation (3) becomes

n± · s± = ±1, (4)

where n = k/k. These are ray equations for two propagation
modes. The sign of k · vg in Eq. (3) is then delineated by the
sign of the ray equation. A positive sign in the ray equation
corresponds to a positively oriented state, while a negative sign
corresponds to a negatively oriented state.

B. The topological structure of Fermi surfaces

The aforementioned dispersion law in Eq. (1) can be
realized in 2D electronic systems with SOI. In general, the
Hamiltonian can be written in the form

H = p
A

h̄2 p +
{
σ · p,

B

h̄

}
+ êz ·

{
σ × p,

C

h̄

}
+ Aa2, (5)

where A is the intrinsic parameter of electrons, B and C are
the internal and external parameters, and a = √

B2 + C2/2A.
In general they are spatially dependent because of the spatial
inhomogeneity of the effective mass, the charge density, and
the strength of SOI in semiconductor heterostructures. We
assume that the spatial variations of these parameters occur
only at interfaces and that they are constants in regions away
from the interface. In the region away from the interface,
the eigenstate can be written in the form ψ = ξeik·x. The
Hamiltonian becomes

Hk = Ak2 + B [σ · k + tan βêz · (σ × k)] + a2, (6)

where β = arctan(C/B). The eigenenergies ε± = A(k ± a)2

and the eigenstates

ξ± = (1/
√

2)( ±e−i(θk−β) 1 )T

are found, where T represents the transpose, and θk =
arctan(ky/kx) is the oblique angle of k. The two spin-splitting
bands ε± cross at the energy bulging.

The DOS is given as

D(ε) = 1

2πA

[
�(ε − Aa2) + a

√
A√
ε

�(Aa2 − ε)

]
, (7)

where �(x) is the Heaviside step function. This DOS reveals
the distinct characteristics for the energy above and below the
energy bulging ε = Aa2. Equation (7) shows that the DOS has
2D characteristics if ε > Aa2 but 1D characteristics with van
Hove singularity behavior17 emerge if ε < Aa2.

The Fermi surfaces then have different geometric structures
for εF > Aa2 and εF < Aa2. If the Fermi energy εF lies
slightly above the energy bulging (εF > Aa2), it intersects two
opposed spin-helicity bands. εF = A(k′

F ± a)2 identifies two
concentric Fermi disks of radii k′

F,± = √
εF /A ∓ a. The Fermi

energy is linear in the density of electrons ne. However, for
the case where the Fermi energy lies below the energy bulging
(εF < Aa2), it intersects only the band εF = A(kF − a)2. As
a consequence, a chiral material with only state ξ− is achieved.
The Fermi surface is in the form of an annular disk bound by
Fermi wave numbers kF,± = a ± √

εF /A. The Fermi energy
is quadratic in the density of electrons, εF = (π

√
A/a)2n2

e .
Thus, the geometric characteristics of the Fermi surface can
be controlled by the electron density and the external actions
(ne � a2/π ).

In the case of εF > Aa2 two spin-polarized states have the
same ray equation, nF · sF = +1. However, for εF < Aa2 the
ray equations of two propagating modes kF,± have opposite
signs, nF,± · sF,± = ±1. According to the analysis in Sec. II A,
only positively oriented states exist for εF > Aa2. But both
positively oriented states kF,+ and negatively oriented states
kF,− can occur for εF < Aa2. The occurrence of a negatively
oriented mode kF,− implies the interplay of change in the
topological structure of the Fermi surface and dimensional
variation in the DOS. Topological change of the Fermi surface
gives rise to an additional negative-oriented state.

III. NEGATIVE REFRACTED TRANSMISSION AND
RETROREFLECTION

To analyze the electronic analog of an optical negative
refraction, we first investigate electron tunneling across the
interface between two 2DEGs with different spin-splitting
constants B and C. We then extend the analysis to the
retroreflection of electrons.

A. Negative refracted transmission

We consider a hybrid of two 2DEGs with SOI present only
on the right side of the interface. The interface is situated
at x = 0 as shown in Fig. 1(a). The system is described by
Hamiltonian (5) with B = b�(x) and C = c�(x). The Fermi
levels on the two sides of the interface align if no bias is applied
across the junction. Applying a low voltage across the junction,
electrons tunnel through the interface from left to right along
the x axis. For an incident electron with energy ε < Aa2, the
dispersion relations for electrons on the two sides are ε = Ak2

and ε = A(k − a)2, respectively. The electronic incidence and
reflection are in spin-degenerate states, while the transmission
is in spin-polarized states ξ−. There are one reflected mode
with k in the region x < 0 and two transmitted modes in the
region x > 0. The wave vectors of two transmitted modes are
k+ = kB and k− = kC (k± = |k±| = a ± √

ε/A) as shown in
Fig. 1(a). The group velocities of transmitted electrons for the
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kB and kC modes are

vB
g = 2

√
ε/Ah̄2

(√
1 − k2

y/k2+ex + ky/k+ey

)
(8)

and

vC
g = 2

√
ε/Ah̄2

(√
1 − k2

y/k2−ex − ky/k−ey

)
. (9)

Utilizing their ray equations we can confirm the waves of
the incidence (k), the reflection (kD), and the transmission
(kB) to be positively oriented, while the transmitted wave
(kC) is negatively oriented because its group velocity vC

g is
antiparallel to kC . Momentum conservation requires that the
tangential wave-vector components of k, kD , kB , and kC are
equal across the interface. Energy conservation results in the
incident nonpolarized electron at an oblique incident angle θ

being reflected at reflection angle −θ and refracted into two
polarized states with kB/C at the refraction angles

θB/C = (+/−) arctan(�+/−/

√
1 − �2

+/−), (10)

where �± = √
ε/A/(a ± √

ε/A) sin θ . Therefore, an individ-
ual electronic beam is then bifurcated on the right side when
it tunnels across the interface. The reflected and transmitted
fluxes with vD

g and vB
g are on the opposite sides of the surface

normal to that of the incident wave, while the transmitted flux
with vC

g is on the same side of the surface normal as that of the
incidence. This signifies electronic negative refraction in the
tunneling. Considering that nA · sA = +1 and nC · sC = −1,
negative refraction corresponds to reversing the sign of ray
equations when the electron crosses the interface. From the
above analysis, it is shown that the transitions of an incident
electronic beam to states with the same orientation character-
istics as that of the incidence in the reflection and transmission
exhibit normal tunneling behaviors. A transmitted state with
opposite-oriented characteristics to those of the incidence
displays an electronic negative refraction.

B. Negative reflection

Besides negative refraction, reversing the sign of ray equa-
tions in scattering processes at the interface of a heterostructure
can also result in the occurrence of negative reflection—
retroreflection. The phenomenon manifests as a reflected
electron tracking the contrary path of oblique incidence. For
the purpose of demonstration, we swap the left and the right
sides of Fig. 1(a), i.e., B = b�(−x) and C = c�(−x), as
shown in Fig. 1(b). For an incident electron with energy ε <

Aa2, two electron states exist, with the wave vectors ending at
A′ and A′′ in Fig. 1(b). Their ray equations are nA′ · sA′ = +1
and nA′′ · sA′′ = −1, respectively. For an incident electron in
any of these states (kA′ and kA′′ ), there are two reflected modes
kB ′ and kC ′ , with the x components of the wave vectors smaller
and larger than k = a.16 These two reflected waves are in both
positive- and negative-oriented states, respectively. If the ray
equation of the reflected state has the same sign as that of an
incident electron, the reflected mode is specular reflection. If
the ray equation of the reflected state has the opposite sign to
that of the incidence, the reflected mode is retroreflection. The
group velocities of the kB ′ reflected mode and kC ′ reflected

mode are

vB ′
g = −2

√
ε/Ah̄2

(√
1 − k2

y/k2+ex − ky/k+ey

)
(11)

and

vC ′
g = −2

√
ε/Ah̄2

(√
1 − k2

y/k2−ex + ky/k−ey

)
, (12)

respectively. The angles of retroreflections are found as

θA′→C ′ = π + arctan(�′/
√

1 − �′2) (13)

for an A′ electron incident at angle θ ′ and

θA′′−→B ′ = arctan(�′′/
√

1 − �′′2) (14)

for an A′′ electron incident at angle π − θ ′′, where �′ = [(a +√
ε/A)/(a − √

ε/A)] sin θ ′ and �′′ = [(a − √
ε/A)/(a +√

ε/A)] sin θ ′′.
For transmission, the ray equation of the transmitted state

kD′ (nD′ · sD′ = +1 ) has the same sign as that of incident
electron kA′ but the opposite sign to that of incident electron
kA′′ . As in the analysis in Sec. III B, the transmission for the
incidence kA′ is a normal refraction, while that for incidence
kA′′ emerges as a negative refraction.

C. Critical incident angles

Sections III A and III B have shown that negative transport is
a natural phenomenon owing to the occurrence of SOI-induced
electron states whose wave vectors are in the opposite direction
to their group velocities. However, the occurrence of negative
refracted transmission or negative reflection is restricted by
the incident angles of electronic beams. Beyond the critical
angles, negative refracted transmission or negative reflection
is forbidden. For example, in the case of an electron incident
from a normal 2DEG to a 2DEG with SOI, two transmitted
modes exist, at the wave vectors kB and kC on the outer
circle of radius k+ and inner circle of radius k−, respectively.
Their group velocities are given in Eqs. (8) and (9) and
the refraction angles θB/C are given in Eq. (10). Because
1 + a/

√
ε/A > 1, θB is real for all incident angles θ . However,

θC is real only if θ � arcsin(a − √
ε/A)/

√
ε/A. Beyond

θc = arcsin(a − √
E)/

√
E, |ky | is larger than k− and kx is

imaginary so that the transmitted part becomes evanescent and
is exponentially deceasing. Therefore, the maximum angle of
incidence for the occurrence of negative refracted transmission
kC is θc.

Similarly, for reflection in heterostructures of 2DEG with
and without SOI, there are two reflected modes, kB ′ and
kC ′ , when the electron is incident in the kA′ mode. The
group velocities of these two reflected modes are given in
Eqs. (11) and (12). The reflection angle of the specular
reflection θA′ is real for all possible incident angles θ . However,
for reflected mode kC ′ , the reflection angle θA′→C ′ is real
only if k2

− − k2
+ sin2 θ ′ � 0. From Eq. (13) and k+/k− > 1,

the reflected angle for the kC ′ mode is real only if θ ′ �
arcsin[(a − √

ε/A)/(a + √
ε/A]). Therefore, if an incident

electron is in state kA′ , electron retroreflection emerges only
when the incident angle θ ′ is smaller than the critical an-
gle arcsin[(a − √

ε/A)/(a + √
ε/A)]. The maximum critical

angles of incidence relate to the appearance of evanescent
modes. When the incident angle is larger than this critical
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angle, kC ′,x is purely imaginary and the retroreflection becomes
an evanescent wave.

Different from the incident mode kA′ , there is no restriction
on the incident angle for the appearance of both specular
reflection and retroreflection when the incident electron is in
state kA′′ (mode with a k vector ending at the inner edge of the
equienergy surface).

IV. NEGATIVE PROPAGATING BEAMS OF ELECTRONS
IN HYBRIDS OF R2DEG SYSTEMS

Besides the angular characteristics of electronic reflections
and transmissions, we are also interested in the magnitudes
of their fluxes. To obtain the probability current fluxes, the
boundary-value problem at the interface for a concrete model
has to be solved quantitatively. In the follow calculations, we
consider R2DEG by taking A = h̄2/2m∗, B = 0, and C = λ

in Hamiltonian (5). The minimum energy of R2DEG is offset
to kSO = m∗λ/h̄, as shown on the left in Fig. 1(a), where
m∗ is the effective mass of the electron and λ is the strength
of Rashba SOI. 2DEG with a Rashba SOI is a well-studied
system. A comparatively low density is possibly tuned with the
gate voltage in a metal-insulator-semiconductor structure.10–12

The proper modulations of SOI strength and electron density
make the topological characteristics of the Fermi surface
tunable,13–15 abutting Rashba energy εSO = m∗λ2/2h̄2, with
electrons filling both spin helicity bands ε± or only a single
helicity band ε−. According to experiments,10–12 we consider
the case of a Fermi energy lying slightly below the energy
bulging of bands. We discuss the reflected and transmitted
fluxes in hybrids of N2DEG/R2DEG and R2DEG/NR2DEG
[as sketched in Figs. 1(a) and 1(b), respectively]. At a low
electron density, the de Broglie wavelength is large enough to
envisage contacts smaller than the wavelength. The interface
can be described by an infinitely narrow insulating barrier lying
parallel to the y axis, U (x) = Zδ(x). Because the electronic
wave packets propagate in the x-y plane, kF,y (=kF sin θ ) of
an incident electron at an oblique angle θ can be used to
parametrize solutions due to the momentum conservation in
the y direction. For simplicity, we assume that the system
is ballistic and the dissipation of waves can be neglected. In
addition, modification of the effective masses does not change
the topological characteristics of the Fermi surface. Therefore,
we did not consider the modification of the effective masses
in two regions. In this case, no additional complications arise
and the basic physics of the phenomena under consideration
is especially transparent.

A. Tunneling in a hybrid of N2DEG/R2DEG

A hybrid of N2DEG/R2DEG [Fig. 1(a)] is described by the
Hamiltonian

H = p2

2m∗ + 1

2h̄
{λ (x) ,̂ez · (σ × p)} + Zδ (x) , (15)

where λ(x) = λ�(x). For the incident energy ε < m∗λ2/2h̄2,
electrons are in spin-degeneracy states in N2DEG (x < 0) and
in spin-polarized states in R2DEG (x > 0). We assume that the
incident electron is described by a plane wave. Its wave vector
kA towards the interface is at an oblique angle θ with respect
to normal. The reflected wave vector kD in N2DEG can be

identified by the momentum conservation in the y direction
because its group velocity is backwards at the interface at an
angle π − θ . The wave function in N2DEG has the form

�L(x,y) = �L(x)eikyy (16)

with

�L(x) = 1√
2

(η↑ + η↓)eikxx + (r↑η↑ + r↓η↓)e−ikxx, (17)

where kx = kF cos θ and ky = kF sin θ , η↑ = ( 1 0 )T and η↓ =
( 0 1 )T , and r↑ and r↓ are the reflected coefficients of the
spin-up and -down components.

In R2DEG, there exist two possible transmitted
modes, kB = k+nB and kC = k−nC , where k± = kSO ±√

2πne, nB = cos θ+êx + sin θ+êy , and nC = − cos θ−êx +
sin θ−êy . The refraction angles θ± are given by θ± =
arctan[sin θ/

√
k2±/2πne − sin2 θ ]. The wave function in

R2DEG can be written as

�R (x,y) = �R (x) eikyy (18)

with

�R (x) = t+ξ (θ+)eik+,xx + t−ξ (θ−)e−ik−,xx , (19)

where k+,x = k+ cos θ+, k−,x = cos θ−, and ξ (θ±) =
1/

√
2( ∓ie∓iθ± 1 )T . The coefficients t+ and t− are the

probability amplitudes of transmitted waves with wave
vectors kB and kC . According to the analysis of ray equations
in Sec. II, the transmitted mode kB is normal refraction and
the transmitted mode kC is negative refraction.

The probability current is given by

j(x,y)= h̄

m∗ Im[ψ†(∇ψ)] + λ (x)

h̄
ψ† (êz × σ ) ψ. (20)

Conservation of the particle number requires that the normal
components of the currents on the two sides remain in
the positive x direction through the hybrid. As shown in
the Appendix, the continuity conditions guarantee conser-
vation of the probability current, i.e., jL

x (0) = jR
x (0), where

jL
x (x) = (h̄/m∗)Im(�†

L�′
L) in the region x < 0 and jR

x (x) =
(h̄/m∗)Im(�†

R�′
R) − (λ/h̄)�†

Rσy�R in the region x > 0. We
can obtain the currents after the transport coefficients r↑, r↓,
t+, and t− are determined. These coefficients are determined
by the continuity conditions,

�R(0) = �L(0) (21)

and

�′
R (0) − �′

L (0) = −2m∗

h̄2

(
Z − i

λ

2
σy

)
�L (0) , (22)

which is obtained by integrating the stationary form of the
Schrödinger equation across an infinitesimal interval that spans
the region of the δ-function potential. The normal condition
for the transport coefficients r↑, r↓, t+, and t− can be derived,

|r↑|2 + |r↓|2 + vB
g |t+|2
vi

cos θ+
cos θ

+ vC
g |t−|2
vi

cos θ−
cos θ

= 1, (23)

from the conservation of the probability current at the interface,
where vi = h̄kF /m∗ and θ is the incident angle of the
electronic beam.
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FIG. 2. (Color online) Diagram of all possible reflection and transmission processes at (a) an N2DEG/R2DEG interface and (b), (c) an
R2DEG/N2DEG interface. Various transport coefficients (defined as the ratio of transport fluxes to the incident flux α = jtrans/jin) and angles in
(d) for the N2DEG/R2DEG interface and (e), (f) for the R2DEG/N2DEG interface as a function of the incident angle, with the values of Z = 0
(solid curves), Z = 1 (dashed curves), Z = 2 (dotted curves), and γSO = 0.4. (d) αAD for reflection and αAB for normal transmission, with αAC

for the negative refracted electron beam. θc is the critical angle of the incident electron for the appearance of a negative refracted transmission.
(e), (f) αA′B ′ and αA′′C′ for specular reflections, αA′C′ and αA′′B ′ for retroreflections, and αA′D′ for normal transmission, with αA′′D′ for the
negative refracted transmission. θ−

c and θ t
c are the critical angles of the incident electron in state kA′ for the appearance of a retroreflection and

transmission.

Bidirectional transmitted fluxes are given by jAB =
|t+|2v(B)

g and jAC = |t−|2v(C)
g . The flux jAB is away from the

interface inclining at an angle θ+ to normal on the opposite side
of the incidence beam jA. The flux jAC is away from the inter-
face inclining at an angle θ− to normal on the same side of the
incidence beam jA. Therefore, jAC is a negative refracted flux.
Defining the transport coefficients α = |jtrans|/|jin|, the ratio
of transport fluxes to the incident flux, the angle dependence
of flux magnitudes can be discussed. Taking the parameters
energy of the incident electron ε = n2

eεF , density of R2DEG
ne ∼ 1.13 × 1011/cm−2, and dimensionless SOI parameter
γSO = 0.4 (γSO =

√
m∗λ/2h̄2εF ), we calculate the various

transport coefficients numerically. The angular dependence
of the reflection and transmission coefficients (defined as the
ratio of reflection and transmitted fluxes to the incident flux)
are shown in Fig. 2(d). The top half of the diagram in Fig. 2(d)
shows the angles of reflected and transmitted fluxes.

Figure 2(d) shows that there exists a critical angle θc

[= sin−1(k−/kF )]. When the incident angle is larger than θc,
negative refraction is completely forbidden. Our calculations
show that negative refraction (αAC = jC/jA) dominates the
electronic transmission at small incident angles and is strongly
debilitated when the incident angle approaches θc. The
maximum critical angles of incidence relate to the appearance

of evanescent modes. When the incident angle is beyond the
critical angles the transmitted modes k−,x will become evanes-
cent. To obtain the solutions, we must not only match the prop-
agating mode, but also match the evanescent mode in which
k−,x is replaced by a purely imaginary wave vector −iκ−,x . The
appearance of evanescent states has been analyzed in different
energy ranges in 2D systems consisting of semi-infinite regions
with and without Rashba SOI.43,44 Evanescent states for the
case of a single spin-helicity band were discussed in Ref. 9 also.

B. Tunneling in a hybrid of R2DEG/N2DEG

Electronic retroreflection can be analyzed in a similar
manner. We consider a hybrid of R2DEG/N2DEG as shown
in Fig. 1(b). Its Hamiltonian takes the same form as Eq. (15),
but λ(x) = λ�(−x). The electron is incident from R2DEG to
N2DEG. There are two incident electron states, kA′ = k+nA′

and kA′′ = k−nA′′ , for the incident energy ε < m∗λ2/2h̄2. We
first discuss the case of an incident electron in state kA′ .
This is a positive-oriented state and has nA′ · sA′ = +1. There
exist two reflected modes, kC ′ and kB ′ , and one transmitted
mode, kD′ . Their ray equations are given by nB ′ · sB ′ = +1,
nC ′ · sC ′ = −1, and nD′ · sD′ = +1. The wave functions in
the R2DEG and N2DEG regions are written in the form
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�L/R(x,y) = �L/R(x)eikyy with

�L (x) = ξ (θ+)eik+,xx + r+ξ (θ+)e−ik+,xx + r−ξ (θ−)eik−,xx

(24)

and

�R (x) = (t↑η↑ + t↓η↓)eikxx, (25)

where r+ and r− are the probability amplitudes of reflected
waves with wave vectors kB ′ and kC ′ , and t ′↑ and t ′↓ are
the probability amplitudes of transmitted spin-up and -down
components. The coefficients r+, r−, t↑, and t↓ can be
determined by the boundary conditions �R(0) = �L(0) and

�′
R (0) − �′

L (0) = −2m∗

h̄2

(
Z + i

λ

2
σy

)
�L (0) . (26)

Comparing the conditions, Eqs. (22) and (26), there exists a
sign difference for the term iλσy/2 on the right-hand side. The
normal condition for the transport coefficients r+, r−, t↑, and
t↓ becomes

|r+|2 + vC ′
g |r−|2
vA′

g

cos θ−
cos θ+

+
(

v|t↑|2
vA′

g

+ v|t−↓|2
vA′

g

)
cos θD′

cos θ+
= 1.

(27)

Because the sign of the ray equation of the kC ′ mode is oppo-
site to that of kA′ , while that of the kB ′ mode is the same as that
of kA′ , the reflected flux jA′B ′ = |r+|2v(B ′)

g is in the direction
of specular reflection and the reflected flux jA′C ′ = |r−|2v(C ′)

g

is in the direction of retroreflection. The transmitted flux
jA′D′ = (|t↑|2 + |t↓|2)v(D′) shows a normal refracted character.
The angular dependencies of the reflections αA′B ′ and αA′C ′ and
transmission αA′D′ are illustrated in the bottom half of Fig. 2(e).
It is shown that there exists a nonzero retroreflection jA′C ′ only
if the incident angle |θ | < θ−

c . Beyond the critical angle θ−
c no

propagating retroreflection appears because the wave vector of
retroreflected wave k(C ′)

x becomes purely imaginary. It is shown
in Fig. 2(e) that the specular reflection jA′B ′ is very small for
the incident angle |θ | < θ−

c and the reflection is dominated
by the retroreflection. As the incident angle approaches the
critical angle θ−

c , the retroreflection is strongly debilitated
and the specular reflected flux increases intensely. Figure 2(e)
shows a maximum critical angle θ t

c for transmission. For the
case where the densities of electrons are the same on the two
sides of the interface, the Fermi surface of N2DEG is smaller
than the outer circle of R2DEG. Therefore, transmission is
forbidden for incident mode k(A′) if the angle of incidence
exceeds the critical angle θ t

c . To analyze the influence of the
barrier potential on αA′B ′ , αA′C ′ , and αA′D′ , three strengths of Z

are considered. It is found that increasing the potential strength
at the interface increases both the retroreflection jA′C ′ and the
specular reflection jA′B ′ .

The reflections of a kA′′ -incident state can be analyzed in
the same way. There are also two reflected modes, kC ′ and
kB ′ , as well as one transmitted mode, kD′ . Instead of (24), the
wave function in the region R2DEG region is now �L(x) =
ξ (θ−)e−ik−,xx + r+ξ (θ+)e−ik+,xx + r−ξ (θ−)eik−,xx . The normal
condition ensuring conservation of the probability current at

the interface is given by

vC ′
g |r+|2
vA′′

g

cos θ+
cos θ−

+ |r−|2 +
(

v|t ′↑|2
vA′′

g

+ v|t ′↓|2
vA′′

g

)
cos θD′

cos θ−
= 1.

(28)

The kA′′ -incident state is negatively oriented (i.e., nA′′ ·
sA′′ = −1). Therefore, the reflected flux jA′′B ′ = |r ′

+|2v(B ′)
g

is a retroreflection because the sign of its ray equation is
opposite to that of the incidence. jA′′C ′ = |r ′

−|2v(C ′)
g is a specular

reflection because its ray equation has the same sign as the
incidence. For transmission, the sign of the ray equation for
the transmitted mode kD′ is opposite to the incidence’s of
kA′′ . Thus, the transmitted flux jA′′D′ = (|t ′↑|2 + |t ′↓|2)v(D′) has
a negatively refracted character. The angular dependencies of
various fluxes are shown in the bottom half of Fig. 2(f). The
angles of corresponding outgoing fluxes are illustrated in the
top half of the diagram. It is found that retroreflection can
occur for the full region of the incident angle. The reflection
tends to be a retroreflection at a small angle of incidence
but is predominated by specular reflection at a large incident
angle. With an increase in the interface potential strength, the
retroreflection flux jA′′B ′ increases and the specular reflection
jA′′C ′ is suppressed.

To analyze the contributions to the tunneling current
from negative processes, we can write out the total current
through the R2DEG/N2DEG hybrid. Both incident processes
of electrons at energy ε participate in the electronic transport
through the R2DEG/N2DEG hybrid. The total conductance at
zero temperature can be written in the form

σT = e2

4π2h̄

∑
s=±

∫ π/2

−π/2
dθsks(μ) cos θs(1 − |rs |2)

− e2

4π2h̄

∑
s=±

∫ π/2

−π/2
dθsks(μ)|r−s |2 cos θ−s , (29)

where s = ±1 stand for the spin-helicity states of incident
electrons, rs and r−s are the reflection coefficients of an
incident electron in the s state being reflected to the s state
and −s state. The terms in the second line are the angle av-
eraged deductions from retroreflections. Figures 3(a) and 3(b)
display these two deductions from the retroreflections. �A′ =
(e2/4π2h̄)

∫ π/2
−π/2 dθ+k+(μ)|r−|2 cos θ− is for the kA′-incident

state, while �A′′ = (e2/4π2h̄)
∫ π/2
−π/2 dθ−k−(μ)|r+|2 cos θ+ is

for the kA′′ -incident state. As a function of the applied voltage,
it is found that the deductions from the retro-reflections
diminish gradually with an increase in voltage. This is due to
the deduction of the radius of the inner circle via an increasing
voltage. As the consequence of momenta being decreased,
retroreflected fluxes are reduced. When the voltage is increased
to the value at which the energy of incident electrons reaches
the energy bulging (eV/ESO = 0.1875), the inner circle
shrinks to 0 [broken up by the dashed line in Figs. 3(a) and
3(b)] and the retroreflection is suppressed completely. With a
further increase in voltage, the plus branch, ε+(k), begins to
partake of the reflection [as shown in the right inset in Figs.
3(a) and 3(b)]. Because the ray equation for the band ε+(k) has
the same sign as that of the incidence, reflection for a voltage
exceeding the energy bulging emerges as a specular reflection.
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FIG. 3. (Color online) (a), (b) Deductions from retroreflections versus bias for different interface potentials: (a) for the kA′ -incident state
and (b) for the kA′′ -incident state. (c), (d) Partial conductances accrued from negative refractions versus bias: (c) for a R2DEG/N2DEG hybrid
and (d) for a N2DEG/R2DEG hybrid. Insets in (c) and (d): Ratio of conductances accrued from normal transmission (upper curves) and negative
transmission (lower curves) to the total conductance. The dimensionless SOI parameter γSO = 0.4 (γ =

√
m∗λ/2h̄2EF ).

In general, increasing the interface potential will increase the
value of retroreflections. Figures 3(a) and 3(b) also show the
phase-conjugate reflectivity45 in the contributions from two
retroreflection processes, s → −s (s = ±1).

Because the transmissions contain both normal and neg-
ative refractions, the total conductance can be written in
the form σT = σN + σR , where σN is the conductance for
normal transmission and σR is the part accrued from neg-
ative refractions. For a R2DEG/N2DEG junction, negative
refraction comes from the kA′′ - incident state only. Uti-
lizing the normal condition, (28), it is found that σR =
(e2/4π2h̄)

∑
σ=↑,↓

∫ π/2
−π/2 dθ−k−(μ)(v/v(A′′)

g )|tσ |2 cos θ for the

R2DEG/N2DEG hybrid. We display σ
R2DEG/N2DEG
R /σT via

the voltage for different interface potentials in Fig. 3(c). It

is found that its contribution to the total conductance is mostly
concentrated around a low voltage and decreases to 0 around
eV/ESO = 0.1875. Similar, the conductance from the negative
refractions in N2DEG/R2DEG system can be calculated by the
formula σR = (e2/2π2h̄)

∫ π/2
−π/2 dθk(μ)(v(C)

g /v)|t−|2 cos θ− for

the N2DEG/R2DEG hybrid. We show σ
N2DEG/R2DEG
R /σT as a

function of the voltage in Fig. 3(d). Figures 3(c) and 3(d) show
that the conductance from negative refractions diminishes
gradually with an increase in voltage. The insets in Figs. 3(c)
and 3(d) show the ratio of conductances accrued from normal
transmission (upper curves) to negative transmission (lower
curves) to the total conductance. Especially at large interface
potentials, the conductance is mainly demonstrated by normal
transmission.
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N2DEG N2DEG

R2DEG

FIG. 4. (Color online) Diagram of an N2DEG/R2DEG/N2DEG
sandwich structure and electron focusing.

V. ELECTRON FOCUSING

The angular distributions of negative transport fluxes reveal
some interesting physics. The characteristics of existing
negative transport are promising to achieve electron focusing
in a suitably designed N2DEG/R2DEG/N2DEG waveguide.
As depicted in Fig. 4, we utilize the transmission properties in
N2DEG/R2DEG and R2DEG/N2DEG: the injected beam of
nonpolarized electrons is slit into two polarized beams with
opposite ray characters in R2DEG, after tunneling across the
left interface of N2DEG/R2DEG. The beam with n · s = +1
will disperse, but the beam with n · s = −1 can be focused
inside a R2DEG. These two beams in turn incident on the right
interface of R2DEG/N2DEG. The beam with n · s = +1 will
further deflect the normal. The beam with n · s = −1 will be
focused again inside N2DEG. The focusing effect should man-
ifest itself as “spot” distributions at predictable locations. For
the propose of measurements, one can design two controllable
output slits at the projected position of focusing in R2DEG
and N2DEG (as shown in Fig. 4). An angular distribution of
transmission can be observed by gating the aperture in the
left N2DEG and adjusting the setting of the aperture in the
right N2DEG. Since the total conductance is a macroscopic
property containing contributions from all possible transport
channels, it is not straightforward to separate contributions
from different processes such as negative reflection and
negative transmission. Although the negative transmission
proposed here is an intrinsic phenomenon, it is an experimental
challenge to directly quantify it with an electron beam injection
via standard total conductance measurement. Therefore we
suggest that the most sensitive way to experimentally identify
negative transport is by fine measuring electronic focusing.
In addition, utilizing the property that negative propagations
have a critical angle, it is expected that the spots generated by
negative transmitted beams can turn on and off with a change
in the angle of the injected electronic beam.

VI. DISCUSSION AND CONCLUSIONS

In summary, we have shown the first obvious instance
of realizing electronic retroreflection in electronic systems.
Synthesizing the directions of transmitted fluxes jAC and jA′′D′

and reflected fluxes jA′C ′ , and jA′′B ′ in Sec. IV we demon-
strate the existence of electronically negative refraction and
reflection in hybrid spintronic systems with inhomogeneous
SOI. We conclude that transmission or reflection emerges as
negative refraction or retroreflection if the sign of the ray
equation is reversed with respect to those of the incidence’s in
tunneling processes. From a more fundamental point of view,
the physical reasons behind the characteristics of negative
electronic transport come intrinsically from the occurrence of
an additional electronic state with a negative group velocity,
which is associated with the two-edge structure of the Fermi
surface at a low electron density and strong SOI.

Utilizing the restriction on incident angles for the occur-
rence of negative refracted transmission and retroreflection,
negative electron transport will hopefully be identified in
experiments. For example, for the electronic tunneling in
an R2DEG/N2DEG hybrid, we have shown that negative
refracted transmission occurs only for the incident mode kA′′

and not for kA′ . Such a distinction between the incident modes
kA′′ and kA′ can be distinguished by the experimental design.
Normal transmission is forbidden for the incident mode kA′ if
the angle of incidence exceeds the critical angle θ t

c ; therefore,
the transmission at a certain incident energy ε is negative only
as soon as the incident angle is larger than θ t

c . This property
provides a means of experimental identification of negative
electron refraction. We have shown that the appearance of
negative transport fluxes can be used to focus a divergent
electronic beam in a multilayer heterostructure consisting
of semiconductors with different SOIs. Our preliminary
theoretical investigation of electronic focusing has practical
significance for designing new spintronic devices.
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APPENDIX

In this Appendix we explicitly clarify the probabil-
ity current conservation at the boundary. We consider an
N2DEG/R2DEG heterostructure system. The Hamiltonian
is given by Eq. (15) with λ(x) = λ�(x). Utilizing the
Schrödinger equation ih̄∂tψ = Hψ , an equation of continuity
can be derived, ∂ρ/∂t + ∇ · j = 0, where ρ(x,y) = ψ†ψ is the
probability density in units of particles per unit volume, and

j(x,y)= h̄

m∗ Im[ψ†(∇ψ)] + 1

h̄
λ(x)ψ†(êz × σ )ψ (A1)

is the probability current in units of particles per unit area per
unit time.

For a system consisting of N2DEG and R2DEG, the
wave functions on the left and right sides of the interface
of N2DEG/R2DEG can be written in the form �L/R(x,y) =
�L/R(x)eikyy and the x components of the probability current
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are

jL
x = h̄

m∗ Im[�†
L�′

L] (A2)

in the region x < 0 and

jR
x = h̄

m∗ Im[�†
R�′

R] − 1

h̄
λ�

†
Rσy�R (A3)

in the region x > 0.
Using the boundary conditions Eqs. (21) and (22) we have

Im[�†
L�′

L]x=0 − Im[�†
R�′

R]x=0 = −m∗λ
h̄2 .�†σy�|x=0.

(A4)

This leads to jL
x (0) = jR

x (0). It means that the boundary
conditions ensure conservation of the probability current at
the boundary.

In the following we derive the normal conditions for the
transport coefficients which are determined from the boundary
conditions. The current on the left side of the junction is found
as

jL
x = h̄ki

m∗ [1 − (|r↑|2 + |r↓|2)] cos θ (A5)

when we use the wave function, Eq. (17).
For the region x > 0 the wave function is given in Eq. (19).

The current on the right side of the junction is found as

jR
x = j1 + j2, (A6)

where

j1 = h̄

m∗
∑
s=±

|ts |2 ξ †(θs)

(
sks,x − mλ

h̄2 σy

)
ξ (θs) (A7)

and

j2 = h̄

m∗
∑
s=±

t∗s t−sξ
†(θs)

(
s
�kx

2
− mλ

h̄2 σy

)
ξ (θ−s)e

−isKxx

(A8)

with �kx = ks,x − k−s,x and Kx = ks,x + k−s,x , where ξ (θs) =
(1/

√
2)( − (ks,y + siks,x)/ks 1)T , θs = tan−1(ks,y/ks,x), and

ks = mλ/h̄2 + s
√

m2λ2/h̄4 − 2mE/h̄2. Using the relations
ξ †(θs)ξ (θs) = 1 and ξ †(θs)σyξ (θs) = s cos θs , we have

j1 = (v+|t+|2 cos θ+ + v−|t−|2 cos θ−), (A9)

where vs = (h̄/m)(ks − mλ/h̄2).
The first term in the bracket of j2 [Eq. (A8)] can be written

in the form of

s
�kx

2
ξ †(θs)ξ (θ−s)

= (ks + k−s)

(√
1 − k2

y

k2
s

−
√

1 − k2
y

k2−s

)
− iky

k2
s − k2

−s

ksk−s

due to ks,y = k−s,y = ky . Using the relations ksk−s = 2mE/h̄2

and k2
s − k2

−s = s(4mλ/h̄2)
√

m2λ2/h̄4 − ksk−s , we find

s
ks,x − k−s,x

2
ξ †(θs)ξ (θ−s)

= i
λ

h̄

(
ks,y − isks,x

ks

− k−s,y − isk−s,x

k−s

)
,

which cancels the second term in j2 so that j2 = 0. The
probability current in the region x > 0 is

jR
x = (v+|t+|2 cos θ+ + v−|t−|2 cos θ−). (A10)

Therefore, conservation of the probability current jL
x = jR

x

leads to a normal condition among the transport coefficients
r↑, r↓, t+, and t−,

|r↑|2 + |r↓|2 + v+
vi

|t+|2 cos θ+
cos θ

+ v−
vi

|t−|2 cos θ−
cos θ

= 1,

(A11)

where vi = h̄k/m∗.
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