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Relaxation in quantum dots due to evanescent-wave Johnson noise
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We present our study of decoherence in charge (spin) qubits due to evanescent-wave Johnson noise (EWJN)
in a laterally coupled double quantum dot (single quantum dot). The high density of evanescent modes in the
vicinity of metallic gates causes energy relaxation and a loss of phase coherence of electrons trapped in quantum
dots. We derive expressions for the resultant energy relaxation rates of charge and spin qubits in a variety of dot
geometries, and EWJN is shown to be a dominant source of decoherence for spin qubits held at low magnetic
fields. Previous studies in this field approximated the charge or spin qubit as a point dipole. Ignoring the finite size
of the quantum dot in this way leads to a spurious divergence in the relaxation rate as the qubit approaches the
metal. Our approach goes beyond the dipole approximation and remedies this unphysical divergence by taking
into account the finite size of the quantum dot. Additionally, we derive an enhancement of EWJN that occurs
outside a thin metallic film, relative to the field surrounding a conducting half-space.
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I. INTRODUCTION

Semiconducting quantum dots are promising candidates
for scalable quantum information processing.1 Several ex-
periments performed on laterally coupled double quantum
dots (DQDs) have demonstrated precise and rapid control of
the coupling between electronic charge states and coherent
manipulation of trapped electrons,2–4 leading to realization
of a DQD as a qubit. Quantum dots are realized in a
variety of experimental setups, including a Si and GaAs
two-dimensional electron gas,2–4 semiconductor nanowires,5

and carbon nanotubes.6 In almost all of these implementations,
confinement and manipulation of an electron in a quantum
dot is achieved by applying an electrostatic potential through
metallic gates. While the metallic gates are crucial for qubit
control, they can also act as a source of decoherence during
qubit operations.

Several decoherence mechanisms, such as hyperfine cou-
pling of the trapped electron spin to host lattice nuclear spins in
spin-based qubits7 and electron coupling to phonon modes8–10

in charge-based qubits, have been previously studied in an
effort to identify the major source of decoherence in semicon-
ductor qubits. A more recent study investigated decoherence
due to voltage fluctuations in the metallic gates using the
lumped circuit model of a DQD charge qubit.11 In almost all
of these studies,8–11 the estimated energy relaxation rate is at
least an order of magnitude smaller than the rate observed
experimentally,2,3 suggesting that a different decoherence
mechanism is dominant in current experimental setups for
charge qubits.

Here we present our study of decoherence in a quantum
dot due to electromagnetic field fluctuations near the metallic
gates. We focus primarily on noise from the high density
of evanescent modes in the vicinity of metallic gates. This
evanescent-wave Johnson noise (EWJN) has been identified as
an important source of decoherence in atomic12,13 and quantum
dot based qubits.14 Our previous work14 as well as other
theoretical estimates12 of the effect of Johnson noise in atomic
and quantum dot based qubits use the dipole approximation,
which is a valid approximation if the distance from the
metallic gate to the qubit is much larger than the size of the

qubit. However, it may be necessary to go beyond the dipole
approximation in the case of EWJN in a quantum dot.

In this work, we present our study of the energy relaxation
of a single electron charge qubit in a DQD system and
a single electron spin qubit in a single quantum dot. We
assume that the primary source of field fluctuations are the
metallic top gates of the quantum dot architecture. Back
gates are typically a distance on the order of a micron from
the qubits, which is too far to experience significant EWJN
enhancement. We consider the detailed spatial variation of the
electromagnetic field fluctuations and present results beyond
the dipole approximation which take into account the finite
size of the quantum dot. We show that this extension of
the dipole approximation removes the unphysical divergence
in the relaxation rate at the metallic surface. This paper is
organized as follows: In Sec. II we present our formalism
for calculating the relaxation rate of a charge qubit. Results
are presented for a DQD geometry. Section III presents the
formalism and results for the relaxation rate of a spin QD.
In Sec. IV we derive an enhancement of the noise spectrum
that results as the thickness of the metallic gate is decreased.
Finally, Sec. V summarizes our results. Our results indicate
that EWJN is the dominant cause of energy relaxation in
some spin qubit experiments, particularly those performed in
a small external magnetic field, and is comparable in effect
with previously studied noise sources in charge qubits.

II. CHARGE QUBIT

We consider a charge qubit realized in a gated lateral
DQD in an AlGaAs/GaAs heterostructure where electron
confinement along the z direction is much smaller than in the
x or y directions, so that we can safely decouple the dynamics
along x and y directions from the z direction.15 The total
Hamiltonian of the charge qubit and its interaction with the
electromagnetic environment is given by

H = Hq + Hint, (1)

where Hq is the Hamiltonian of the charge qubit in a
DQD, which we model in the basis of the localized charge
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states {|L〉,|R〉} as Hq = ε/2(|L〉〈L| − |R〉〈R|) + �/2(|L〉
〈R| + |R〉〈L|). ε is the bias energy between the two dots,
and � is the tunneling amplitude. In the energy eigenbasis this
Hamiltonian reduces to

Hq = h̄ω

2
σz, (2)

where σz is the Pauli matrix, and h̄ω = √
ε2 + �2. For all our

calculations except those in Fig. 2, we will set ε = 0. The
interaction Hamiltonian Hint may be expressed in this same
basis as

Hint = −
∫

d�r [σ̂x
�Mr (�r) + σ̂z

�Mφ(�r)] · �A(�r,t), (3)

where �A(�r,t) is the vector potential of the fluctuating field.
�Mr and �Mφ are associated with energy relaxation and pure

dephasing in the charge qubit, respectively, and are defined as

�Mr (�r) ≡ e

mc
ψ∗

+(�r) �p ψ−(�r) − ieh̄

2mc
ψ∗

+(�r) ψ−(�r) ∇,

�Mφ(�r) ≡ e

2mc
[ψ∗

+(�r) �p ψ+(�r) − ψ∗
−(�r) �p ψ−(�r)] (4)

− ieh̄

4mc
[ψ∗

+(�r) ψ+(�r) ∇ − ψ∗
−(�r) ψ−(�r) ∇],

Here m is the effective mass and �p is the momentum operator of
the trapped electron. Because we are operating within the weak
field limit, the term proportional to �A2 has been dropped from
the interaction Hamiltonian. We choose the gauge where the
scalar potential φ = 0 so that �E = −∂t

�A. The expression for
Hint derives from an interaction in terms of operator quantities
of the form

Hint = − e

2mc
( �A(�r,t) · �p + �p · �A(�r,t)) . (5)

This symmetrized version of the vector potential is not strictly
necessary in our case since our qubit resides in the vacuum
where ∇ · �A = 0, but we included it to keep our results
more generally applicable. The zero temperature relaxation
rate 	1,c = 1/T1,c can be calculated using the following
expression, which follows directly from Fermi’s golden rule:

	1,c = 1

h̄2

∑
ij

∫
d3�r

∫
d3�r ′ M∗i

r (�r) Mj
r (�r ′)χij (�r,�r ′,ω). (6)

At finite temperature, the emission (transition from excited to
ground state) and absorption (transition from ground to excited
state) rates are given by

	e
1,c = [1 + N (ω,T )]	1,c , 	a

1,c = N (ω,T )	1,c. (7)

The Planck function N (ω,T ) = 1/[exp(h̄ω/kBT ) − 1] gives
the average occupation number of environment modes with
frequency ω at temperature T . The spectral density of the
vector potential χij is related to the retarded photon Green’s
function Dij by16

χij (�r,�r ′,ω) ≡
∫

dτ exp−iωτ 〈[Ai(�r,t),Aj (�r ′,t + τ )]〉

= − 1

ε0
Im Dij (�r,�r ′,ω),

where i,j are Cartesian indices that run over x,y,z and the
square brackets denote the commutator. Dij is obtained by

solving

[
−δij

(
∇2 + ω2ε(�r,ω)

c2

)
+ ∂i∂j

]
Dik(�r,�r ′,ω)

= −4πh̄δ3(�r − �r ′)δjk. (8)

Here the relative permittivity ε(�r,ω) characterizes the geom-
etry of a particular problem. In this section, we shall limit
ourselves to the case where the metallic top gate of the lateral
DQD is approximated by the half-space, z < 0. Then we can
derive an analytical expression for Dij ,16,17

Dij (�r,�r ′,ω) = 1

4π2

∫
ei�k·�r‖D̃ij (�k,z,z′,ω) d�k , (9)

D̃xx(�k,z,z′,ω) = 2πih̄

q
eiq(z+z′)

[
rs(k,ω) cos2 θ

− q2c2

ω2
rp(k,ω) sin2 θ

]
, (10)

where rs and rp are Fresnel’s reflection coefficients given by

rp(k,ω) = εq − q1

εq + q1
, rs(k,ω) = q − q1

q + q1
.

Here �k ≡ (kx,ky), �r‖ ≡ (x − x ′,y − y ′), θ is the angle be-
tween �k and the x axis, and q =

√
ω2/c2 − k2 and q1 =√

εω2/c2 − k2 are the z components of the photon wavevector
in the vacuum and the metal, respectively. All other com-
ponents of D̃ij can be derived from D̃xx .16 In this work
we consider ε ≈ iσ/ωε0, where σ = 6 × 107 S/m is the
conductivity of the copper gate.

We pause briefly to mention that typical models of the
interaction of a DQD with the electromagnetic field use the
dipole interaction Hamiltonian

Hint = − �E(�r) · �d, (11)

which will result in a relaxation rate of

	1,c = d2ω

4h̄z3σ
(12)

in the quasistatic approximation, where �d is the dipole moment
of the qubit and �E(�r) is the strength of the fluctuating electric
field evaluated at the location of the qubit. This expression
approximates that the electric field is uniform over the spatial
extent of the qubit, which is equivalent to treating the qubit
as a point dipole. As such, the qubit is able to couple to
arbitrarily small wavelengths of the electromagnetic spectrum,
and the relaxation rate is seen to diverge at shorter distances
as ∼1/z3 if the conductor is modeled with a local dielectric
function.12,14 Using the complete electromagnetic interaction
Hamiltonian (5) accounts for fluctuations of the field over the
spatial extent of the qubit. If the wavelength of a particular
Fourier component of the field fluctuations is smaller than the
length of the qubit in that direction, its influence on the electron
will average out and it will not contribute to qubit relaxation.
The exact and dipole approximation forms of the interaction
Hamiltonian, Eqs. (5) and (11), converge when the distance
from the gate becomes larger than the spatial extent of the
qubit.
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FIG. 1. (Color online) Energy relaxation time T1 vs the distance
from the metallic gate to the DQDs z for dot geometry of d = 30 nm
and l = 30 nm (dashed and dash-dotted blue lines) and 60 nm (solid
and dashed black lines) at 0 K, ω/2π = 1 GHz, and ε = 0. Solid and
dash-dotted lines are T1 times for the exact form of the interaction
Hamiltonian, whereas dashed lines are for the dipole form of the
interaction. The inset in the figure displays confining potential of a
typical DQD in a one-dimensional nanowire and the corresponding
symmetric ground state and antisymmetric first excited state.

We present calculations of the relaxation time for charge
qubits that highlight the differences between these two forms of
the interaction. First we consider DQDs in a one-dimensional
nanowire, which are realizable in semiconducting nanowires6

or carbon nanotubes.5 In such a geometry, the wave functions
of trapped electrons in quantum dots have appreciable spatial
extent in only one direction. We model the confining potential
of the DQD as a symmetric double square well potential and
compute the lowest two eigenenergies and wave functions. We
then compute the relaxation rate between these two lowest
states which are separated by a fixed transition frequency
ω/2π = 1 GHz. A plot of the wave functions and the shape of
the potential is shown in the inset of Fig. 1.

We plot the energy relaxation time T1 vs the distance z

from the metallic gate to the DQD in Fig. 1. In this plot, we
choose the size of the dot in the x direction d = 30 nm and
half the separation between the dots l = 30 nm (dash-dotted
and dashed blue lines) and 60 nm (solid and dashed black
lines). The curves that are shown in solid and dash-dotted
lines are relaxation times for the exact form of the interaction
Hamiltonian, whereas those shown in dashed lines are obtained
using the dipole form of the interaction. The curves show
significant deviation of the exact relaxation rate from the dipole
relaxation rate at shorter distances and convergence of the two
results at longer distances.

In Fig. 2, we present the ratio of T1 for a charge DQD qubit
at bias ε to the T1 obtained at ε = 0 versus the ratio ε/�. An
increase in bias increases the level splitting and decreases the
dipole moment of the DQD. Since the relaxation time T1 ∼
1/ωd2, where d = 2l sin[arctan (�/ε)] is the dipole moment
of the quantum dot, T1 increases for larger bias.

Next, we present results from the relaxation rate calculation
for a DQD in a two-dimensional quantum well. In this
treatment we label the z axis as the vertical confinement
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FIG. 2. (Color online) Ratio of the T1 time for finite bias ε to the
T1 time at zero bias vs ε/� for three values of distances z from the
metallic gate: 1 nm (solid blue line), 10 nm (dashed red line) and
50 nm (dash-dotted black line), for a dot geometry of d = 30 nm and
l = 30 nm at 0 K temperature.

direction and do not consider excitations along the z direction.
We model the confining potential by a symmetric double
rectangular well in 2D and numerically compute the lowest
two eigenenergies and wave functions. We then compute the
electron relaxation rate between these two lowest states. The
results are qualitatively similar to the one-dimensional case
and are shown in Fig. 3, where we plot the energy relaxation
time T1 vs the distance z from the metallic gate to the DQD.
In this plot, we choose the size of the dot in the x direction
d = 30 nm, the size in the y direction f = 30 nm, and half
the separation between the dots l to be 30 nm (dashed and
dash-dotted blue lines) and 60 nm (solid and dashed black
lines). We find that for l = 30 nm and z = 90 nm, T1 is 4 μs,
while for l = 60 nm, T1 is 1.6 μs. These relaxation times are
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FIG. 3. (Color online) Energy relaxation time T1 vs the dis-
tance from the metallic gate to the DQDs z for dot geometry of
d = f = 30 nm and l = 30 nm (dashed and dash-dotted blue lines)
and 60 nm (solid and dashed black lines) at 0 K, ω/2π = 1 GHz, and
ε = 0. Solid and dash-dotted lines are T1 times for the exact form of
the interaction Hamiltonian, whereas dashed lines are for the dipole
form of the interaction.
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somewhat longer than the experimentally reported value of
T1 = 20 ns in DQD-based charge qubits.3 We note that the
relaxation rate for a two-dimensional DQD is shorter than for
a one-dimensional DQD of comparable geometry by about
a factor of 5. A two-dimensional DQD is able to couple to
obliquely oriented wave vectors in addition to those which
point in the direction of separation between the dots, and
this can be reasonably expected to enhance relaxation by a
geometric factor of order unity.

III. SPIN QUBIT

We now focus on the calculation of the relaxation rate for
a single electron in a spin qubit realized in a single quantum
dot. Here the system Hs and the interaction Hint Hamiltonians
are given by

Hs = −gμB �σ · �B0/2, (13)

Hint = −gμB �σ · �B(�r,t), (14)

where �σ is the vector of Pauli matrices, g is the gyrometric
factor of the trapped electron in a quantum dot, μB is the
Bohr magneton, �B0 is the externally applied magnetic field,
and �B(�r,t) is the fluctuating EWJN field. The rate of spin flip
from excited |↑〉 to ground |↓〉 at T = 0 K can be obtained
from Fermi’s golden rule,

	1,s = 1

h̄2

∫
d3�r

∫
d3�r ′Mr,s(�r) Mr,s(�r ′)

×εijkεij ′k′χB
kk′(�r,�r ′,ω)njnj ′ , (15)

where repeated indices are summed over, and nj are the
components of a unit vector n̂ in the direction of �B0. The
effect of finite temperature on the transition rates is the same
as for charge qubits, as shown in Eq. (7). The magnetic spectral
density χB

ij and the matrix element Mr,s(�r) are

χB
ij (�r,�r ′,ω) = εikmεjnp

ε0c2
∂k∂n Im Dmp(�r,�r ′,ω), (16)

Mr,s(�r) ≡ gμB |ψ0(�r)|2. (17)

Here the spin qubit frequency ω = gμBB0/h̄ and ψ0(�r) is
the spatial part of the the ground state wave function of the
spin qubit. Equation (15) is a generalization beyond the dipole
approximation of the simpler expression14

	1,s = g3μ3
BσB0

8h̄2ε0c4z
, (18)

which has been obtained by using the quasistatic limit for
the Green’s function (16), and assuming it is constant over
the spatial extent of the qubit. Equation (18) also assumes the
external magnetic field �B0 points in the z direction.

A plot of energy relaxation time T1 vs the distance from
the metallic gate z for a spin qubit is displayed in Fig. 4. Here
we consider a single quantum dot of diameter d = 60 nm
and approximate the ground state spatial wave function of the
spin qubit by the ground state wave function of a harmonic
potential. We assume the Zeeman splitting between spin states
is 50 GHz, typical of experiments in spin qubits.18 The solid
line is the T1 time obtained using the nonlocal magnetic
spectral density while the dotted line is obtained for a local
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FIG. 4. Energy relaxation time T1 vs the distance from the
metallic gate to quantum dot z for spin qubit single dot geometry
of d = 60 nm at 0 K temperature and gμBB0/2πh̄ = 50 GHz. The
solid line represent T1 time for the exact form of the interaction
Hamiltonian, whereas the dashed line is for the dipole form of the
interaction.

spectral density, which diverges as ∼1/z as one approaches
the metallic gate. The reason for saturation of the T1 time
at smaller distances is similar to the case for charge qubits.
There is a slight distinction in that the spin case involves a
spatially extended dipole interaction, as opposed to the charge
case which involves qenuine quadrupole and higher multipole
contributions. This distinction is largely technical, however,
and a saturation of T1 as z → 0 is observed in both cases.
We find that the T1 time for a spin qubit in a GaAs quantum
dot, with an external magnetic field of 10 T and z = 90 nm, is
150 ms which is larger than the experimentally reported value18

of 0.55 ms, and generally EWJN does not seem to be the
dominant source of decoherence for semiconductor devices in
large magnetic fields. GaAs has a strong spin-orbit interaction
(SOI), which mixes the Zeeman-split spin states with orbitally
excited states. Spin relaxation can then occur via coupling of
the qubit to piezoelectric phonon noise in the 2DEG layer.
The relaxation rate from this mechanism scales as B5 and is
the dominant pathway for spin relaxation at large external
magnetic fields B > 1 T.19,20 Additionally, Marquardt and
Abalmassov21 calculate relaxation of spin qubits from electric
EWJN via the SOI. Again, mixing of the charge and spin states
via the SOI allows spin relaxation to be induced from electric
field fluctuations. They estimate the power spectrum of the
Johnson noise using a lumped circuit model and found a B3

dependence of the relaxation rate. Our treatment involves a
direct coupling of the fluctuating magnetic field from the top
gates with the spin states, and our rate scales linearly with the
magnetic field. We therefore expect our relaxation pathway to
dominate at low magnetic fields, and indeed while we predict a
much slower relaxation rate than measured by Amasha et al.19

for B ∼ 7 T, at B = 1 T our results predict T1 ∼ 1.5 s which is
comparable to their measured value of T1 = 1 s. Additionally,
in Si quantum dots with a 2 T external magnetic field and
z = 50 nm, we predict a T1 time of 6 ms which is smaller
than the experimentally reported value of 40 ms.22 However,
it must be kept in mind that we have so far considered the
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simpler top gate geometry of a conducting half-space rather
than the thin layer of finger gates used in these experiments. In
the next section we address modifications to our calculations
that we expect from more realistic gate geometry.

IV. THIN METALLIC GATES

A conducting half-space is an analytically convenient gate
geometry, but a poor approximation to the thin top gates
commonly used in semiconductor devices. In this section
we present an exact treatment of the behavior of EWJN in
the vicinity of a metallic film of finite thickness. Changing
the half-space to a thin film affects EWJN by modifying the
reflection coefficients rs and rp. The power spectrum of the
resultant EWJN is obtained by substituting these modified
reflection coefficients into the photon Green’s function (10),
and the relaxation time of, e.g., a charge qubit, is obtained
by plugging Eq. (10) into Eqs. (6) and (9). The modified
reflection coefficients for a film of thickness a take the
form

rp(k,ω,a) = ε2q2 − q2
1

q2
1 + ε2q2 + 2iqq1ε cot(q1a)

, (19)

rs(k,ω,a) = q2 − q2
1

q2 + q2
1 + 2iqq1 cot(q1a)

. (20)

They differ significantly from the half-space result only when
the thickness a is of the order or smaller than the skin depth δ,
and they reduce to the half-space result for a � δ. A derivation
of Eqs. (19) and (20) is given in the Appendix. Equations (19)
and (20) are exact, but for a good conductor they can be cast
into a simpler approximate form

rp(k,ω,a) ≈ −
(

1 + 2q1

εk
cot (q1a)

)−1

, (21)

rs(k,ω,a) ≈ −
(

1 − 2c2q1k

εω2
cot(q1a)

)−1

. (22)

These expressions have been obtained by expanding
Eqs. (19) and (20) for large imaginary ε and then taking the
quasistatic approximation q → ik. The first approximation
is extremely accurate for copper near zero temperature and
the second is accurate for all distances z such that EWJN
is appreciably enhanced above blackbody radiation.14 The
remarkable feature of Eqs. (21) and (22) is that they show
the strength of the fluctuating fields outside the film are
actually amplified relative to the half-space result. This can
be understood by analogy to the behavior of a particle trapped
in a finite one-dimensional potential well. For a given width of
the well, the wave function will have an exponentially decaying
tail in the forbidden region. As the confinement is increased,
the particle will be squeezed and its wave function will leak
farther into the forbidden region. It will be interesting to see
if this enhancement is observable in the Casimir attraction
between two thin conducting plates.

Using the modified expression for the reflection coeffi-
cients, we compute the T1 time of a DQD charge qubit in one
dimension due to the metallic film. In Fig. 5, we plot the ratio
of the T1 time obtained for the film to the time computed for
the metallic half-space as a function of the film thickness. We
take the exact form of the interaction Hamiltonian for a variety
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FIG. 5. (Color online) Ratio of energy relaxation time T1 from
conducting film to T1 time from half-space vs thickness of the film
a for a DQD charge qubit in one dimension with dot geometry d =
30 nm and l = 60 nm at 0 K temperature. We take the exact form of the
interaction Hamiltonian. The distance z from the film or half-space
is chosen as follows: z = 10 nm (black dash-dotted line), z = 50 nm
(blue dashed line), and z = 150 nm (solid red line). Other parameters
are the same as in Fig. 1.

of distances from the gate. We find that, for distance z > a,
the relaxation time due to the film can be reduced by over an
order of magnitude relative to the half-space. It converges to
the half-space result as z becomes smaller than the thickness
of the film.

Common semiconductor qubit architectures employ thin
finger-shaped top gates which are more sparse than the films
considered here. An exact treatment of EWJN from a detailed
finger gate geometry would be prohibitively difficult, but we
expect to a reasonable approximation that EWJN from finger
gates will be reduced by a factor of the fraction of the top gate
layer that is not composed of metal. Our results should then
overestimate the relaxation rate by a geometric factor. We note
however that newer accumulation-mode architectures employ
a second top gate above the confinement top gates.23 These
accumulation gates are solid sheets and are typically around
100 nm from the qubit, so our treatment should accurately
describe their contribution to relaxation.

V. DISCUSSION AND CONCLUSIONS

In conclusion, we have presented a detailed study of the
effect of evanescent-wave Johnson noise on energy relaxation
of quantum dots beyond the dipole approximation. We have
noted that previous studies of charge and spin qubits which use
the dipole approximation allow contribution from infinitely
large components of the photon wave vector leading to
overestimation and divergence of the energy relaxation rate
as z → 0. We have demonstrated that it is possible to remedy
this spurious divergence by taking into account the finite size of
the quantum dot. While a nonlocal permittivity of the surface
metal will remove the divergence in the field fluctuations at the
boundary, we have shown that the finite size of the dot provides
an alternative normalization mechanism by enforcing a finite
cutoff in the magnitude of the contributing wave vector. In
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addition, we have derived a novel enhancement of the EWJN
field fluctuations that occurs outside a metallic film, relative to
the field outside a metallic half-space.

This paper has focused exclusively on relaxation, though
we expect dephasing times from EWJN to be of comparable
magnitude. The power spectrum of EWJN is linear in ω, and
this will suppress contribution from the small frequency part
of the electromagnetic spectrum, which typically enhances
dephasing rates. While the temperature dependence of the
relaxation rate is simply given by the Planck function, we
do expect a more nontrivial temperature dependence of the
dephasing rate.

Of particular interest are experimental signatures of EWJN-
induced relaxation. Notably, at zero temperature the charge re-
laxation rate scales linearly with the qubit transition frequency
and as the inverse cubic power of the distance between the
qubit and the metallic top gates. The zero-temperature spin
relaxation rate scales linearly with the external magnetic field
and inversely with the distance to the gates.

Our results indicate that EWJN from the metallic top gate
is not a dominant source of relaxation in charge qubits, but
can be the dominant noise source for energy relaxation in spin
qubits held at low external magnetic field.
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APPENDIX: DERIVATION OF GREEN’S TENSOR
FOR A THIN FILM

Here we present the calculation for the retarded photon
Green’s tensor outside of a thin conducting sheet of permittiv-
ity ε. The Green’s function will satisfy Eq. (8). Here �r ′ is simply
a parameter for the purposes of solving this set of equations,
and we take it to lie in the vacuum outside the conducting
sheet. We will suppress the dependence of Dik(�r,�r ′,ω) on �r ′
and ω to simplify the notation. The geometry of the problem is
contained entirely in the permittivity function ε (�r,ω). We take
the boundaries of the conducting sheet to be located at z = −a

and z = 0, with vacuum outside. Because the geometry is still
translationally invariant in the x and y directions, we employ
the same Fourier expansion (9) as in Sect. II. Solving Eq. (8)
for a problem with planar symmetry is greatly simplified by
separately considering the Fourier components of (9) that
are polarized in the x and y directions. D̃yy(�r) may then be
reconstructed as

Dyy(�r) =
∫

d2�k
(2π )2

ei�k·�r‖
(
D̃yy,kx

(k,z) cos2 θ

+ D̃yy,ky
(k,z) sin2 θ

)
, (A1)

where D̃yy,kx
= D̃yy when ky = 0, and D̃yy,ky

= D̃yy when
kx = 0. The boundary value problem for D̃yy,kx

(k,z) then

becomes

D̃yy,kx
(k,z) =

⎧⎨
⎩

Ae−iqz, z < −a,

B1e
−iq1z + B2e

iq1z, −a � z < 0,

Ceiqz + 2πh̄
iq

eiq|z−z′ |, z � 0.

(A2)

Our interest lies in the behavior of the fields for z > 0, so we
need only to calculate C. Enforcing that Dyy,kx

and ∂Dyy,kx
/∂z

are continuous across the boundaries results in

C = 2πih̄

q
rs(k,ω,a)eiqz′

, (A3)

where

rs(k,ω,a) ≡
(
q2 − q2

1

)
sin(q1a)(

q2
1 + q2

)
sin(q1a) + 2iqq1 cos(q1a)

= 2i sin q1a

(
eiq1a

q − q1

q + q1
− e−iq1a

q + q1

q − q1

)−1

(A4)

so that

D̃yy,kx
(k,z) = 2πih̄

q
(rs(k,ω,a)eiq(z+z′) + eiq|z−z′ |). (A5)

The term proportional to exp(iq|z − z′|) is the free photon
contribution to the power spectrum. It will have an imaginary
component and thus contribute to relaxation only in the
radiative regime, k � ω/c. Within a skin depth of separation
from the metal, evanescent waves are orders of magnitude
larger in field strength than these free photons. They may be
safely ignored in this context. A similar calculation yields the
result for D̃yy,ky

:

D̃yy,ky
(k,z) = −2πih̄c2q

ω2
(rp(k,ω,a)eiq(z+z′) − eiq|z−z′ |),

(A6)

where

rp(k,ω,a) ≡
(
ε2q2 − q2

1

)
sin(q1a)(

q2
1 + ε2q2

)
sin(q1a) + 2iqq1ε cos(q1a)

= 2i sin q1a

(
eiq1a

εq − q1

εq + q1
− e−iq1a

εq + q1

εq − q1

)−1

.

(A7)

A Taylor expansion of Eqs. (A4) and (A7) for large a in the
evanescent range of wave vectors, i.e., a Taylor expansion
in powers of exp(−2|q1|a), gives a monotonically increasing
function of film thickness, a. However, a more careful
treatment reveals that this is an error. The naive expansions of
(A4) and (A7) for large a neglect an enhancement of the field
spectrum that occurs for small k. In fact, EWJN is enhanced as
the thickness is decreased for any good conductor. Specifically,
the enhancement is preserved for a particular spatial Fourier
component of the Green’s function as long as | 2q1

εk
| < 1. EWJN

will eventually vanish as a → 0, but this does not occur until
an unphysically small thickness is reached, on the order of
10−14 m for copper at T = 0 K, which is well below the
applicability of the local permittivity model.
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