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Electronic structure of two interacting phosphorus δ-doped layers in silicon
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Density functional theory is used to quantify the interaction of a pair of 1
4 -monolayer phosphorus δ-doped

layers in silicon. We investigate changes in the electronic structure as the distance between the two δ-doped layers
is altered and identify the onset of interactions between the transverse and longitudinal bands. The calculations
show that the valley splitting is insensitive to the separation distance, while the interlayer band splittings are
insensitive to the representation used to describe the dopant disorder. These observations are exploited in a
hybrid model which enables the calculation of accurate splittings of realistically disordered systems at tractable
computational cost.
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I. INTRODUCTION

Scanning tunneling microscopy (STM) lithography is
emerging as a potent technology to pattern phosphorus-in-
silicon devices at the atomic scale.1,2 This technique has
been employed to fabricate a number of Si:P nanoscale struc-
tures, including atomically sharp δ layers,3–7 atomically thin
wires,8 few-atom quantum dots,9 and a prototype single-atom
transistor.10 These devices are essentially two-dimensional
(2D) structures since the lithographically positioned phospho-
rus atoms are confined to a single atomic plane and buried
by silicon overgrowth. Three-dimensional structures, obtained
by repeating the 2D-lithography/overgrowth process, offer the
prospect of more complicated device structures in which two
or more patterned Si:P layers interact. In this paper, we use
density functional theory (DFT) to examine the electronic
structure of the simplest multilayer structure, that is, two
stacked Si:P δ layers. The fabrication of such structures is
currently being explored11,12 and a key engineering question
is the transition from electronically isolated to strongly
interacting with distance.

The electronic structure of single Si:P δ layers has been
extensively studied using a variety of theoretical approaches,
including effective mass theory,13,14 a conduction band
model,15 various levels of tight binding,16–18 and full DFT.19–22

Each of these methods brings its own set of advantages
and limitations: effective mass theory and tight binding can
handle the length scales required for device modeling, while
DFT affords a more rigorous treatment on smaller scales.
That said, the high cost of full DFT calculations invariably
requires some form of balance to be struck between various
computational parameters such as the number of atoms, degree
of in-plane dopant disorder, k-point density, basis-set quality,
and choice of exchange-correlation functional. In our previous
DFT calculations,19,20 we employed a compact basis which
allowed us to treat as many as 800 atoms and a variety of dopant
arrangements and concentrations in the δ plane. An alternative
approach by Drumm et al.21 focused on basis-set convergence
for a single, highly ordered 1

4 -monolayer (ML) geometry. In a
followup paper,22 this approach was applied to systems with
phosphorus atoms in several adjacent atomic layers. In our
previous studies, we also assessed the merits of a mixed-

atom pseudopotential model in which atoms in the δ plane
are described as fractionally intermediate between silicon
and phosphorus. While the mixed-atom pseudopotential can
not describe the effect of explicit-atom dopant disorder on
the valley splitting (see Fig. 12 in Ref. 20), it provides a
straightforward and economical treatment that brings out the
qualitative aspects of the electronic structure.

In this work, we apply DFT to study pairs of interacting Si:P
δ layers. Using the mixed-atom pseudopotential approach, we
describe the merging of the electronic band structure of two
isolated 1

4 -ML δ layers into a single 1
2 -ML δ layer. Explicit-

atom pseudopotentials are used to illustrate the effect of dopant
placement on the interactions between layers. We relate our
results to an effective mass treatment of a pair of δ layers23

and earlier work on Si:P superlattices.13,14 Using a hybrid
approach that combines mixed and explicit-atom treatments,
we estimate accurate valley and interlayer band splittings for
realistically disordered double δ-layer systems.

II. METHODOLOGY

Two interacting δ-doped layers in silicon are described
using a highly asymmetric periodic superlattice, as illustrated
in Fig. 1(a). As in our previous studies,19,20 the unit cell
is highly elongated in the plane-perpendicular direction and
exceedingly compact in the in-plane directions; the extreme
length in the plane-perpendicular direction is required to fully
separate the interacting δ layers from their periodic images.
The typical δ-doping concentration achieved following a
phosphine saturation dose and thermal anneal3,4,24 is 1

4 ML;
various earlier studies16,20,21 have shown that at least 80
atomic layers are required to provide an adequate degree
of electronic separation for this concentration. The in-plane
unit cell [Figs. 1(b)–1(e)] has a square geometry and its
size depends on how the phosphorus dopant distribution is
represented as will be described below. In practical terms, our
calculations utilize a total of between 80 and 960 atoms in the
three-dimensional cell.

All calculations are performed using the SIESTA software.25

In the majority of cases, the valence and conduction bands
are expanded in a compact basis set of numerical atomic
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FIG. 1. (Color online) Schematic illustration of the three-
dimensional (3D) periodic superlattices and reciprocal Brillouin
zones used to represent two interacting δ layers. Panel (a) illustrates
the separation dependence of δ layers that is explored in this work.
The dimensions of the simulation cell (shown as a rectangular box
with a solid outline) are exaggerated; in the actual cells, the length is
up to 50 times greater than the width. Panels (b)–(e) show the various
in-plane repeats used, containing between one and eight atoms in the
unit cell. Panels (f)–(h) show the size and shape of the corresponding
Brillouin zones in the kx,ky plane, and their relation to the Brillouin
zone of bulk fcc silicon. Small ellipsoids are used to indicate the
position of the 1� conduction band minimum and its folding closer
to the � point for two-, four- and eight-atom repeats.

functions of single-zeta-plus-polarization (SZP) quality. A
small number of double-zeta-plus-polarization (DZP) cal-
culations were performed to assess the effects of a more
complete basis. All basis functions are radially confined such
that orbital energies are shifted by 0.01 Ry (see Ref. 25 for
details). Core levels are represented using norm-conserving
Troullier-Martins pseudopotentials.26

Electron exchange and correlation are treated using the
generalized gradient approximation (GGA; Perdew-Burke-
Ernzerhof functional; Ref. 27) on a real-space mesh with a
kinetic energy cutoff of 300 Ry. With these parameters, the
calculated silicon lattice constant is 5.58 Å for an SZP basis and
5.49 Å for a DZP basis; see Table I in Ref. 20. This compares
favorably with the experimental value of 5.43 Å, keeping
in mind the small systematic overestimate that is intrinsic
to DFT-GGA. Earlier studies,19–21 including our own, have

found that optimization of the internal atomic coordinates has a
minimal effect on the physical and electronic structure; hence,
all calculations are performed using bulk lattice positions. All
band energies and the Fermi level (EF) are reported relative to
the bulk conduction band minimum (CBM).

Dopant distributions in the δ plane are represented using
two approaches: explicit dopant placement and mixed-atom
pseudopotentials.28,29 The mixed-atom approach allows us
to use in-plane repeats as small as one atom, whereas the
explicit-atom treatment requires larger unit cells, depending
on the dopant concentration and disorder. The majority of our
calculations use the mixed-atom approach to describe two 1

4 -
ML δ layers in a cell with a plane-perpendicular length of 200
atomic layers (denoted 200L). For one- and two-atom in-plane
repeats [Figs. 1(b) and 1(c)], reciprocal space is sampled using
16×16×1 and 10×10×1 k grids, respectively, which are suffi-
ciently converged for the purpose of this work.20 Convergence
is assisted by the use of Methfessel-Paxton smearing (Ref. 30;
polynomial of order 5, T = 298 K) which is employed for
all systems considered. For calculations using explicit dopant
representations, we use four- and eight-atom in-plane repeats
[Figs. 1(d) and 1(e)], employing k-point meshes of 8×8×1
and 5×5×1, respectively. The use of these larger in-plane
unit cells necessitates a reduction of the plane-perpendicular
repeat from 200L to 120L. For calculations involving only a
single δ layer, an 80L cell is used. The use of larger in-plane
repeats affects the band structure by progressively reducing
the Brillouin zone as sketched in Figs. 1(f)–1(h).

III. RESULTS AND DISCUSSION

A. Single δ layers

The starting point for understanding two interacting Si:P δ

layers is the band structure of an isolated layer as discussed
in detail in Refs. 15 and 17–21. The salient aspects are
summarized in Fig. 2. The elongated unit cell used for the
δ-layer calculations causes the bulk silicon band structure to
fold as shown in Fig. 2(a) when a one-atom in-plane repeat
is used. Here, the six conduction band minima split into two
sets: a twofold-degenerate band with minima at the � point,
and four 1� bands with degenerate minima at approximately
0.85 × 2π/a along the four equivalent in-plane �-Xfcc

directions. In this work, we will generally utilize in-plane
repeats that are larger than one atom, which causes the band
structure to fold into correspondingly smaller Brillouin zones
as illustrated in Figs. 1(f)–1(h). Specifically, in unit cells with
a two-atom repeat and larger (up to a 16-atom repeat), the 1�

band minima is shifted to approximately 0.15 × 2π/a. This
is shown for an eight-atom repeat in Fig. 2(b).

Figure 2(c) illustrates the effects of introducing phosphorus
dopants ( 1

4 ML) into the δ plane using our mixed-atom pseu-
dopotential representation. Doping creates an attractive poten-
tial which pulls down several conduction bands (principally
1�, 2�, and 1�) into the silicon band gap. These bands are
populated by the donor electrons, creating a two-dimensional
electron gas (2DEG). The lowest two levels, 1� and 2�, are
split by a small amount (0.006 eV). This energy difference is
commonly referred to as the valley splitting.
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FIG. 2. (Color online) Calculated band structure of (a), (b) bulk silicon, and (c)–(f) a single 1
4 -ML phosphorus δ layer in silicon for a

variety of approximations used in this work. Schematic illustrations of the dopant plane are shown above the band structures, in which the
dopant repeat pattern and the computational unit cell (which may be larger) have been outlined using gray background shading and dashed
lines, respectively. The panels show (a), (b) bulk silicon in one- and eight-atom computational unit cells, (c) 1

4 -ML mixed-atom doping,
(d) 1

4 -ML explicit dopants with a four-atom dopant repeat, (e) 1
4 -ML explicit dopants with a quasi-disordered eight-atom dopant repeat, and

(f) the same as (e) but with a larger, more complete basis set. All calculations were performed using an 80L unit cell and an SZP basis set, with
the exception of (f) which uses a DZP basis. The plane-projected bulk band structure of Si is represented by a gray continuum and the Fermi
level is indicated by the dashed line. � and Xfcc correspond to the reciprocal lattice points (0,0,0) and (2π/a,0,0), respectively. Panels (b)–(f)
only show the first 20% of the full �–Xfcc range, with the axis truncated at 0.2×(2π/a,0,0).

The mixed-atom pseudopotential artificially averages the
distribution of phosphorus atoms in the dopant plane; this
acts to lessen the confinement of the donor electrons and
hence the valley splitting is rather small.20 Employing an
explicit representation of dopant atoms (i.e., distinct silicon
and phosphorus atoms) increases the confinement with a strong
effect on the band structure. This is illustrated in Fig. 2(d)
for a highly ordered arrangement of phosphorus atoms with
a four-atom repeat (highlighted by a gray background in the
dopant plane schematic). We see that (i) the near-degenerate
1�/2� bands in the mixed-atom treatment become widely
separated, leading to much larger valley splitting of 0.153 eV,
and (ii) the 1� and 1� bands, which are noninteracting in the
mixed-atom case, undergo an avoided crossing. It should be
emphasized that the four-atom dopant arrangement is almost
certainly too ordered as there is no experimental evidence that
phosphorus dopants adopt any degree of ordering in the δ

plane.
The simplest way to represent disorder using an explicit

treatment is to use a larger repeat unit that contains eight
atoms in the plane, two of which are phosphorus. These
phosphorus atoms are positioned nearest each other in the
dopant plane, corresponding to next-nearest neighbors in the
bonding network; Fig. 2(e) shows the band structure for this
arrangement. Qualitatively, the band structure is similar to that
of the mixed-atom pseudopotential, with well-defined 1�, 2�,
and 1� bands present in the band gap. Common to both is the

absence of an avoided crossing between the 1� and 1� levels.
Where the two band structures differ is in the valley splitting,
with the eight-atom explicit-disordered structure exhibiting
a pronounced separation (0.081 eV), much larger than that
of the mixed-atom (0.006 eV) and around half that of the
four-atom explicit-ordered system [0.153 eV; cf. Fig. 2(d)].
These features of the eight-atom band structure quantitatively
match those of an even larger disordered arrangement with a
16-atom repeat for which the valley splitting is 0.076 eV [cf.
Figs. 10(c) and 10(d) in Ref. 20].

While economic, the SZP basis set is associated with errors
in the band energies as has been previously described for
bulk silicon (see Table I in Ref. 20) and an ordered four-atom
repeat of phosphorus in δ-doped silicon.21 Figure 2(f) shows
the band structure of the eight-atom explicit-disordered system
calculated using a more complete DZP basis set. Qualitatively,
the DZP and SZP band structures are very similar, with the
largest difference being the smaller bulk silicon band gap.
For the valley splitting, we calculate a value of 0.063 eV
with a DZP basis, 0.018 eV smaller than the SZP case. This
DZP value is our best estimate for the valley splitting in
a realistically disordered 1

4 -ML δ layer within a DFT-GGA
framework.

The mixed-atom, explicit-ordered and explicit-disordered
representations as well as the SZP and DZP treatments each
have their own distinct advantages and disadvantages. The
mixed-atom treatment is appealing due to the conceptual
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simplicity of its band structure and the much reduced com-
putational cost. The two explicit representations provide a
more rigorous treatment of the band structure (principally,
the valley splitting), but this gain comes at considerable
computational cost due to the large in-plane repeats required.
Of the two explicit-atom treatments, explicit-disorder provides
the best description of realistically disordered structures,
but the computational cost makes this high-level treatment
unsuitable for systematic investigations. A similar balance
governs the choice between SZP and DZP basis sets: SZP
offers numerical stability and computational speedups, while
the DZP treatment provides band energies which are closer
to the basis-set converged limit,21 albeit at considerable
computational cost. One of the challenges in this work is
to balance these three levels of approximations, namely,
mixed atom versus explicit atom, ordered versus disordered
dopants, and SZP versus DZP bases. Here, we employ all three
approaches in various combinations. We first use the mixed-
atom approach with an SZP basis to qualitatively describe
the physics of two interacting δ layers. This is followed in
turn by a refined treatment at selected, critical distances using
explicit dopants in both ordered and disordered arrangements.
Lastly, we assess the effects of a full DZP treatment on our
results.

B. Double δ layers: Mixed-atom representation

We start by describing the interaction of two 1
4 -ML δ layers

using a large 200L unit cell, a two-atom in-plane repeat, and
the mixed-atom pseudopotential approach. Figure 3 shows the
progression of the band structure as the δ-layer separation dδδ

is reduced from 80L [Fig. 3(a)] to 0L [Fig. 3(f)]. At 80L,
the two δ layers are effectively separated. This is evident
in the fact that the band structure is virtually identical to
that of the corresponding single-layer structure [cf. Fig. 2(c)],
except that all bands are doubled. As dδδ is reduced to 32 and
16L [Figs. 3(b) and 3(c), respectively], the pair of 1� bands
split apart, indicating that the interaction between the two
dopant layers commences with these bands. At 12L separation

[Fig. 3(d)], a splitting of the lower-lying � levels becomes
apparent as well. By 8L [Fig. 3(e)], the upper branch of
the 1� pair has almost merged with the bulk CBM and the
interacting � bands have split by more than 0.1 eV. The last
panel [Fig. 3(f)] shows the two layers completely merged
into a single 1

2 -ML δ layer. This 1
2 -ML layer exhibits all

the band-structure characteristics of the isolated 1
4 -ML layer,

except that the 1�/2� and 1� levels are pulled deeper into the
band gap due to the stronger confinement generated by 1

2 -ML
phosphorus dopants.

With Fig. 4 we consider the same system but focus on
the band minima for a larger set of separations dδδ . Also
plotted in Fig. 4 is the Fermi level EF and the plane average
of the doping potential halfway between the two δ layers.
Looking first at the band minima, the figure further highlights
the observations made above. We see that the 1� bands begin
to split at separations below 40L, whereas the 1� and 2�

bands only interact at separations below 20L. The data show
how one interaction branch is stabilized, evolving into the 1�,
1�, and 2� band minima of the merged 1

2 -ML system, while
the other branch becomes rapidly destabilized. At very close
separations, dδδ less than 2L, the band minima flatten out.
These separations no longer correspond to a pair of δ layers, but
rather represent a single layer with a degree of vertical dopant
disorder. Such disorder is known16,18 to have little effect on
the band energies provided the vertical dopant distribution is
small in comparison to the width of the doping potential.

Figure 5 shows the plane-averaged donor density and
doping potential at four δ-layer separations (0, 12, 32, and
80L). The doping potential (red line in Fig. 5) is calculated
as the difference between the electrostatic potentials of δ-
doped and undoped supercells. At a separation of 80L, the
doping potential is effectively the sum of two noninteracting
potentials, each of which exhibits the well-known V-shaped
appearance characteristic of single δ layers. The independence
of the two δ layers at this separation is reflected in the fact
that the doping potential at the midpoint plane is essentially
zero (<0.05 meV). As the δ layers approach, the tails
of the individual potentials begin to overlap, lowering the
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midpoint potential to −0.011 and −0.129 eV at separations of
32 and 12L, respectively. At 0L the potentials have completely
merged into a single V-shaped potential at the midpoint. The
donor density distribution (blue line in Fig. 5) was calculated
by integrating over all bands between the bulk valence band
maximum and the Fermi energy. The evolution of the donor
density closely mirrors the dopant potential. With decreasing
separation, the midpoint donor density is seen to gradually
increase, illustrating the merging of two isolated 2DEG’s into
one.

It is instructive to correlate the evolution of the midpoint
potential with that of the band minima. This comparison is
made in Fig. 4 where the midpoint potential is included as
a red line. It can be seen that the deviation of the midpoint
potential from zero at a separation of around 32L is associated
with the onset of splitting of the two degenerate 1� levels.
Only at smaller separations, around 16L, does the lowering of
the midpoint potential lead to splitting of the 1�/2� levels.
Note that the midpoint potential and band minima are plotted
on the same scale, demonstrating that the depth of the potential
is similar in magnitude to the band-splitting arising from
interactions between δ layers.

Our results thus far have a number of points of contact
with earlier theoretical studies in the literature. Rodriguez-
Vargas and Gaggero-Sager23 used a Thomas-Fermi model to
describe interacting pairs of n-type δ-doped layers in silicon.
For three different dopant concentrations ( 1

85 , 1
52 , and 1

10
ML), they describe the interlayer splitting as a function of
separation. Qualitatively, their diagrams are similar to our
Fig. 4, with higher-lying bands interacting at larger separations
than lower-lying bands. Due to the lesser confinement at these
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Calculations were performed using mixed-atom pseudopotentials in
a 200L cell.

lower dopant concentrations, the layers begin interacting at
considerably larger separations (180L for 1

85 ML) as compared
to our high-density 1

4 -ML case (onset below 40L as discussed
above). The low concentrations considered by Rodriguez-
Vargas and Gaggero-Sager correspond to the donor densities
achieved when δ layers are fabricated by molecular-beam-
epitaxy techniques.31 We instead focus on the high-density
( 1

4 ML), atomically sharp δ layers that can be fabricated by
phosphine dissociation and thermal incorporation.3,4,24 Rele-
vant also are two theoretical studies which have considered
δ-layer interactions in periodic superlattices. Scolfaro et al.13

used effective mass theory to study a wide range of dopant
concentrations and periodic repeat lengths. Their data show
that with increasing dopant concentration, the onset of splitting
commences at shorter superlattice repeats. For example, at a
doping concentration of 1

52 ML, splitting of the longitudinal
(�) level commences at a periodic repeat of approximately
110L, while at 1

10 ML, splitting commences around 70L. These
values follow a trend that is compatible with our values at
1
4 ML. Scolfaro et al.13 also report in their Fig. 4 high dopant
concentration data for a periodic repeat of 50 Å (i.e., 37L). Our
1
4 -ML calculations (corresponding to a donor concentration of
1.7×1014 cm−2) are consistent with their data in that at a
40L separation we see no splitting of the transverse (�) band
and minimal splitting of the longitudinal (�) band. Recent
DFT calculations reported by Drumm et al.21 studied 1

4 -ML δ

layers, with a particular question being the number of silicon
layers required to electronically separate a δ layer from its
periodic image. They report well-separated results for 80L
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supercells, and small bandshifts (around 0.04 eV) at 40L. This
too is consistent with our result (Fig. 4), keeping in mind that
superlattice interactions commence at slightly longer range
than pair interactions.

C. Double δ layers: Explicit dopant representation

The mixed-atom pseudopotential model is a simplified
treatment which neglects the discrete nature of the dopant
atoms. To quantify this effect, we considered two characteristic
separations, 32L and 12L, using an explicit dopant model.
As discussed above, these separations are just within the
onset of interlayer splitting in the 1� and 1�/2� bands,
respectively. Use of explicit-atom doping requires us to define
the precise arrangement of dopant atoms in the plane and
their relative registry from one plane to the next. Figure 6
compares for these two separations the band structure of four
explicit-atom arrangements with two mixed-atom calculations.
The arrangement of the phosphorus atoms in each layer is
illustrated at the top. With the exception of the rightmost panels
in Fig. 6, all of the calculations employ an SZP basis. The first
three of these explicit dopant structures (i.e., the left half of

Fig. 6) employ an ordered four-atom pattern in both δ layers,
differing only in the relative registration of the phosphorus
atoms between the two planes. The fourth explicit dopant
structure employs the quasi-disordered eight-atom pattern
in each layer. The SZP-basis mixed-atom pseudopotential
calculations [Figs. 6(e) and 6(k)] are included for reference;
the DZP-basis calculations of the same structure are discussed
in the following section.

We consider first a separation distance of 32L [see top row
of panels, (a)–(f), in Fig. 6]. As seen earlier, the 1� band in
the mixed-atom pseudopotential [Figs. 3(b) and 6(e)] exhibits a
small interlayer splitting of 0.015 eV, while the 1/2� bands re-
main unaltered. In the corresponding explicit-dopant structures
[Figs. 6(a)–6(c)], a much larger valley splitting occurs, against
which the splitting due to the interlayer interaction is dwarfed.
This contrast between the valley and interlayer splitting is most
clearly seen for the explicit-disordered case [Fig. 6(d)] that
has no avoided crossing. For the three ordered arrangements,
the interlayer splitting is only apparent in those bands around
the avoided crossing which have 1� character. The lowest
(adiabatic) band in Figs. 6(a)–6(c) is nearly degenerate around
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FIG. 6. (Color online) Band structures for 1
4 -ML double δ layers, at separations of 32 and 12 layers (L), using four explicit representations

and the mixed-atom pseudopotential. The schematic diagrams in the top row illustrate the different atomic representations within the dopant
planes, with the gray square denoting the in-plane unit cell. With the exception of panels (f) and (l), which were computed using a DZP basis,
all calculations were performed using an SZP basis. Only the first 20% of the �–Xfcc range is shown, with the axis truncated at 0.2×(2π/a,0,0).
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TABLE I. Valley splitting (VS) and interlayer splitting (ILS)
energies for single and double δ layers using mixed-atom and
explicit-disordered representations. All calculations are performed
with an SZP basis, and energies are reported in eV. Splitting for the
double δ-layer systems are averages of the 1/2� bands (Ref. 32).
The 1� splittings for the 12L are vertical band-energy differences
measured from the minimum in the lower branch.

2×Si:P-δ

1×Si:P-δ (32L) (12L)

VS Mixed 0.006 0.007 0.007
Explicit 0.081 0.081 0.082

ILS (�) Mixed <0.001 0.033
Explicit <0.001 0.034

ILS (�) Mixed 0.015 0.154
Explicit 0.014 0.141

the � point, with a small splitting emerging as it mixes with
the diabatic 1� band. The splitting is also evident to the left
of the avoided crossing (i.e., closer to the � point) in one of the
higher bands close to the Fermi level. We note that the three
registries of the ordered four-atom patterns [Figs. 6(a)–6(c)]
give rise to virtually identical band structures, showing that
at this separation distance the relative placement of dopants
between the two layers has little effect on the electronic
structure. Returning to the explicit-disordered case [Fig. 6(d)],
we observe an interlayer splitting (ILS) of the 1� band of
0.014 eV. As seen in Table I, almost exactly the same value is
obtained for the mixed-atom pseudopotential, highlighting the
utility of the mixed-atom representation. The valley splitting
(VS) for the explicit-disordered case is 0.081 eV, which is
significantly smaller than in the explicit-ordered cases, in line
with the reduction seen for the single-layer band structure
(Fig. 2).

At a separation distance of 12L, both the 1�/2� and
1� bands participate in the interaction between layers. In
the band structure, the effect of explicit doping is most
easily appreciated by comparing the explicit-disordered case
[Fig. 6(j)] with the mixed-atom pseudopotential in Fig. 6(k). In
both cases, the 1� band undergoes a large splitting (0.141 and
0.154 eV, respectively; see Table I) with the upper branch
almost merging with the conduction band. Table I further
shows that for the 1�/2� bands, the interlayer splitting in the
explicit-disordered and mixed-atom cases is very similar, being
0.034 and 0.033 eV, respectively.32 The valley splitting in the
explicit-disordered case is much larger than in the mixed-atom
case (0.082 and 0.007 eV, respectively). As a consequence,
with the mixed-atom pseudopotential, the interlayer splitting is
larger than the valley splitting, while for the explicit-disordered
structure, the converse occurs. The largest valley splittings
are seen for the three explicit-ordered cases [Figs. 6(g)–6(i)]
where the band structures are complicated by the 1�/1�

avoided crossing. Here, the interlayer splitting again varies
according to the degree of adiabatic mixing, with the lowest
bands transitioning from a smaller splitting associated with
the diabatic 1� band to a larger splitting of the 1� band. In
contrast, the 2� band, which does not participate in the avoided
crossing, exhibits a more uniform interlayer splitting. We note

in passing that at this shorter separation the avoided crossing
is more sensitive to the registry of the ordered dopant planes,
with the bands being slightly shifted relative to each other. We
reiterate, however, that this type of ordering is unlikely to be
present in experimentally prepared double δ layers, and thus
the explicit-disordered case in Figs. 6(d) and 6(j) provides
the most realistic representation of the double δ-layer band
structure at the SZP level.

D. Hybrid approach for double δ layers

A full DZP treatment of an explicitly disordered double δ-
layer system lies beyond the computational reach of this work;
however, examination of Table I suggests a hybrid strategy for
estimating the valley splitting and two interlayer splittings
in the DZP regime. This strategy is based on two important
observations from our SZP calculations: (i) the valley splitting
of interacting double δ layers is the same as that of individual
δ layers, and (ii) the interlayer splitting of the � and �

bands is the same in both the mixed-atom and explicit-atom
representations. Accordingly, we can confidently estimate the
DZP valley splitting in the double δ-layer case by performing
a single δ-layer calculation using a quasi-disordered explicit-
atom dopant arrangement with a DZP basis [see Fig. 2(f)].
We can similarly estimate the DZP interlayer splitting by
performing a mixed-atom calculation for a double δ-layer
system with a DZP basis [Figs. 6(f) and 6(l)]. Both of these
calculations are computationally tractable, whereas a DZP
calculation of a quasi-disordered double δ-layer system is not.

Our best estimates for the interlayer and valley splitting
at separations of 32L and 12L are given in Table II, with the
corresponding mixed-atom band structures shown in Figs. 6(f)
and 6(l). For the valley splitting, the double-layer systems
have the same (average) splitting as the single-layer case.
The only caveat is for extremely close separations at which
the two layers are effectively merged into a single layer at
twice the concentration. For the interlayer splittings, all of
our best-estimate values are larger (by roughly 5–10%) than
their SZP equivalents in Table I, with the obvious exception
of ILS(�) at 32L, which is negligible in each case. This
observation of increased interlaying splitting with a DZP basis
can be intuitively interpreted by considering the width of the
donor density distribution in single δ layers, about 15% larger
with a DZP basis than with SZP.21 Accordingly, the increased
interlayer splitting is completely consistent with the traditional
overlap model from molecular orbital theory in which splitting
of atomic energy levels correlates with the spatial extent of the

TABLE II. Best estimates for the valley splitting (VS) and
interlayer splitting (ILS) using our hybrid approach. All energies
are in eV.

2×Si:P-δ

1×Si:P-δ (32L) (12L)

VS Explicit 0.063
ILS (�) Mixed <0.001 0.035
ILS (�) Mixed 0.017 0.169
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free-atom wave functions and the associated bond integral (see
Ref. 33).

IV. CONCLUSION

In summary, we have used a density functional theory
model to examine changes in the electronic structure of
phosphorus δ-doped layers in silicon as the distance between
δ-doped layers is altered. Using a combination of mixed-atom
and explicit-atom pseudopotentials, we showed that the band
structure is largely unchanged for separations above 40 layers
(40L). For separations below 40L, the 1� band undergoes
splitting which increases in magnitude as the separation
decreases. Splitting of the � bands is only seen for separations
less than 16L. We show that the mixed-atom representation
provides a useful approximation to an explicit-atom system
with a quasi-disordered arrangement of dopants in the δ plane.
In an unexpected finding, we observed that the interlayer
splitting of the mixed-atom and explicit-atom representations

are virtually identical. Coupled with the observation that
the valley splitting in double δ-layer system is the same as
single δ layers, this opens up a hybrid strategy for estimating
double δ-layer energy splittings of DZP-basis quality without
having to perform the full explicit-atom quasi-disordered
calculation. The hybrid strategy provides a recipe for future
work, enabling the calculation of double δ-layer splittings at
arbitrary separations and dopant concentrations.
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