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We address the role played by charged defects in doped Mott insulators with active orbital degrees of freedom.
It is observed that defects feature a rather complex and rich physics, which is well captured by a degenerate
Hubbard model extended by terms that describe crystal-field splittings and orbital-lattice coupling, as well
as by terms generated by defects such as the Coulomb potential terms that act both on doped holes and on
electrons within occupied orbitals at undoped sites. We show that the multiplet structure of the excited states
generated in such systems by strong electron interactions is well described within the unrestricted Hartree-Fock
approximation, once the symmetry breaking caused by the onset of magnetic and orbital order is taken into
account. Furthermore, we uncover spectral features that arise within the Mott-Hubbard gap and in the multiplet
spectrum at high energies due to the presence of defect states and strong correlations. These features reflect the
action on electrons/holes of the generalized defect potential that affects charge and orbital degrees of freedom,
and indirectly also spin ones. This study elucidates the mechanism behind the Coulomb gap appearing in the
band of defect states and investigates the dependence on the electron-electron interactions and the screening by
the orbital-polarization field. As an illustrative example of our general approach, we present explicit calculations
for the model describing three t2g orbital flavors in the perovskite vanadates doped by divalent Sr or Ca ions, such
as in La1−xSrxVO3 and Y1−xCaxVO3 systems. We analyze the orbital densities at vanadium ions in the vicinity
of defects and the excited defect states which determine the optical and transport gaps in doped systems.
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I. INTRODUCTION

Doped vanadium perovskites show a very rich behavior
that has been mainly explored by experimentalists during
the last decade.1–8 In contrast to the high-T c cuprates,9–14

the perovskite vanadates represent quite generally systems
with an active orbital degree of freedom.15–18 The particular
excitement with the RVO3 perovskite mother compounds,
where R = Lu, Yb, . . . , La, is the quantum interplay of
spin-orbital degrees of freedom,19–28 which is only under
partial control of weak Jahn-Teller (JT) and other couplings.29

The moderate coupling to the lattice results from the t2g

character of the outer valence electrons30 and explains that
the orbital quantum dynamics is not quenched, a property
vanadates share with other transition-metal oxides such as, for
example, titanates31,32 and iridates.33,34 The phase diagrams of
doped vanadates3 deduced from the resistivity, specific heat,
and magnetic measurements show a systematic decrease of
magnetic interactions and the onset of the metallic behavior
only at rather high doping,3 in contrast, for instance, to the
high-Tc cuprates where the metal-insulator transition (MIT)
is found at a few percent of hole doping.35 In La1−xSrxVO3,
perhaps the most investigated doped vanadium oxide, the MIT
is at x � 0.18 Sr doping,2 while Y1−xCaxVO3 is insulating
up to x � 0.50.4 This latter compound undergoes a transition
from the GC phase to the CG phase36 at rather low doping
x ∼ 0.02 within the insulating phase. It was pointed out23 that
the double exchange37–40 is the mechanism responsible for
this transition in antiferromagnetic (AF) phases, similar to the
transition from the G-type AF (G-AF) to C-type AF (C-AF)

order in electron-doped manganites.41 In addition, the change
of superexchange interaction in the vicinity of the holes42

bound to the defects has a strong influence on the relative
energy of these states.43 Remarkably, the CG spin-orbital order
persists up to the MIT.

The evolution of optical spectra with doping for these
two vanadium perovskites,4 La1−xSrxVO3 and Y1−xCaxVO3,
shows that the defects lead to impurity states which are
responsible for an absorption band deep inside the Mott-
Hubbard (MH) gap.43 This suggests that bound small polarons
are the cause of the MIT even at high doping concentrations.4

It is eventually the growth of the mid-infrared absorption under
increasing doping and the gradual shift of this absorption
toward zero energy, which accompanies the MIT. These
experimental findings call for a theoretical approach that
would address the nature of defects and the changes in the
magnetic and orbital structure induced by them in a Mott
insulator. Doping in combination with strong correlations leads
to spectral weight transfer,43 while on the other hand, the size
of the MH gap is not significantly influenced by doping.4 We
discuss these issues in this paper and point out that the defect
states here should be distinguished from those observed within
the MH gap in other circumstances such as the excitonic states
in LiCuVO4,44 or the states generated simply by doping an
orbitally ordered Mott insulator in absence of defects.45

The description of defect states in systems with strongly
correlated electrons is an outstanding problem in the theory of
condensed matter,46 and has been addressed mainly within the
Hartree-Fock (HF) approach43,47–49 and the methods based
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on density functional theory.50–52 It involves, for example,
questions such as the following: (i) What is the nature of
defect states in a strongly correlated system, i.e., as com-
pared to defects in usual semiconductors or insulators?53–55

(ii) What happens to the MH gap in the presence of defects?
(iii) Which are the new features in orbital degenerate MH
insulators as, for example, in the t2g transition-metal oxides
with active orbital degree of freedom, in contrast to doped
high-T c superconductors? (iv) Which are practicable methods
to perform reliable calculations for MH insulators that can be
extended to take into account defects and disorder? The answer
to all these questions is a formidable challenge as the defects
may strongly affect the subtle interplay of several essential
degrees of freedom, namely, spin, orbital, lattice, and charge,
as we shall see in the following.

It is remarkable that the theoretical analysis of doping
in transition-metal oxides, including manganites and also
superconducting cuprates, is usually performed in the metallic
regime where the effect of doping on the properties of a
material with strongly correlated electrons leads solely to
the modification of the electronic filling in party filled 3d

orbitals.15 This simplification is not possible in the insulating
regime where local defect fields are not screened, leading to
defect states as, for example, in the case of Ca defects in the lat-
tice of Y ions in Y1−xCaxVO3.43 Here, we explore further this
idea and analyze a model with three t2g orbital flavors. This is
a generalization of the frequently used two-flavor model (with
active {xz,yz} orbitals) for RVO3 compounds,19–23,25,26,43

motivated by earlier electronic-structure studies.56–58 The first
electron at each V3+ ion occupies the xy orbital, with energy
lowered by the crystal field, while the second one occupies
one of two degenerate orbitals, either the yz or xz, resulting
in an xy1(yz/zx)1 local configuration.

The purpose of this paper is to introduce a systematic
unbiased approach that allows one to study defect states in
strongly correlated materials. As we show in the following,
the interactions, which arise by introducing charged defects
into a Mott insulator, are numerous and all of them are
necessary in a realistic approach that is capable of predicting
experimental behavior of a doped material. We adopt here a
multiband Hubbard model59 that is supplemented by several
terms responsible for the influence of the lattice and defect
states on the electronic structure. We use it below for the
description of t2g electrons and generalize thereby earlier
approaches.17,60,61 The electronic structure will be analyzed
using the unrestricted HF approximation,62–64 which is known
to be reliable in systems with spontaneously broken symmetry,
for instance, for states wth magnetic order in multiband
models for manganites,47 CuO2 planes in high temperature
superconductors,65 and low-dimensional cuprates,66 and may
also serve to describe complex types of order such as stripe
or spiral structures.67–69 As we demonstrate in the following,
charged defects are the source of impurity states which appear
as new features within the MH gap, while the MH gap itself
is essentially unaffected in the low-doping regime.4 Hence,
the defect states are responsible for the in-gap absorption in
the optical conductivity at low doping. At the same time, we
demonstrate that the HF method used here is well designed to
treat simultaneously phenomena that arise at distinct energy
scales, the high energy ∼1 eV related to the (onsite and

intersite) Coulomb interaction around the defect states and the
low-energy scale ∼0.1 eV that is related to the orbital physics
and controls electronic transport in doped materials.

The problem addressed here pertains to general transition-
metal oxides with perovskite or layered structure, which fea-
ture a variety of interesting phenomena due to strong electron
correlations. They include MITs in undoped systems, several
phenomena with long-range (LR) coherence in doped systems,
such as high-Tc superconductivity,10–14 colossal magnetoresis-
tance, phases with magnetic and orbital order, and so on. In
particular, the doped manganese oxides with colossal mag-
netoresistance show several magnetic phase transitions70–72

that have attracted a broad interest in the interplay between
spin, orbital, and charge degrees of freedom in strongly
correlated electron systems. In this class of systems, orbitals
couple strongly to the lattice, and this coupling supports the
superexchange,73 leading to well-separated energy scales for
the structural and magnetic transition.72 In contrast, the RVO3

perovskites are a challenge for the theory of spin-orbital sys-
tems as the magnetic and orbital orders occur here in the same
range of temperatures, or even simultaneously as in LaVO3.6,74

A common feature of the RVO3 perovskites is the onset
of the G-type alternating orbital (G-AO) order below the
characteristic orbital ordering temperature TOO, which is in
these compounds relatively low, TOO � 200 K, and exhibits
nonmonotonous dependence on the ionic radius of R ions.6,74

The temperature TOO comes close to the Néel temperature
100 < TN1 < 140 K for the magnetic transition to the C-type
antiferromagnetic (C-AF) phase. This phase competes with
another AF phase in the RVO3 systems with small radii
of R ions.6 In such cases, this latter GC phase is stable
at low temperature, while the former CG phase takes over
when temperature increases. The best-known example of this
behavior is YVO3 with a transition temperature TN2 = 77 K. It
has been shown in Ref. 21 that relativistic spin-orbit interaction
is important to describe the reorientation of spins associated
with the two different types of order at this first-order
phase transition. A remarkable reversal of the magnetization
direction75,76 inside the CG phase with increasing temperature
could not be understood in the theory until now.

The principal difficulty in the theory of the RVO3 per-
ovskites is the quantum interplay of spin-orbital degrees of
freedom,19 which manifests itself in leading contributions that
emerge due to spin-orbital entanglement.24,28 Quantum effects
associated with joint spin-orbital dynamics play a role at zero
and at finite temperatures77–79 and the consequences have
been observed in several experiments28: (i) the temperature
dependence of the optical spectral weights,77 (ii) the apparent
breakdown of Goodenough-Kanamori rules for magnetic inter-
actions in the CG phase [unlike in other orbitally degenerate
systems, ferromagnetic (FM) interactions are here stronger
than the AF ones],78 (iii) the orbital-Peierls dimerization of FM
interactions in the C-AF phase20,21,27 observed in the neutron
scattering in YVO3,78 and also in LaVO3,79 as well as (iv) the
interplay between the spin and orbital correlations, which lead
to the phase diagram of the RVO3 perovskites.6 The Peierls
instability of FM chains towards dimerization occurs when
spin and orbital degrees of freedom are entangled at finite
temperature,27 and a previous theoretical study showed that
charged defects favor orbital-Peierls dimerization in the small
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doping regime.43 Furthermore, orbital fluctuations and their
competition with orbital-lattice coupling play a crucial role for
the explanation of the observed nonmonotonous dependence
of the orbital transition temperature on the radius rR of R ions
along the RVO3 series.26 Other studies support the picture
of strong orbital fluctuations and their decisive impact on the
observed physical properties.80–83 We show in the following
that in spite of the above quantum nature of the spin-orbital
order in the RVO3 perovskites, the HF approach is well
designed to capture the essential features of charge defects.

The paper is organized as follows. First, in Sec. II A, we
introduce a degenerate Hubbard model for t2g electrons in
the RVO3 perovskites and generalize it to the doped materials,
such as Y1−xCaxVO3 with Ca2+ charge defects replacing some
Y3+ ions. The model includes local and intersite Coulomb
interactions, and the Coulomb potentials induced by Ca defect
states, which change locally the electronic structure of t2g

electrons within V(3d) orbitals. We describe the treatment of
this model in the unrestricted HF approximation in Sec. II B.
In Sec. II C, we present the electronic structure obtained
for the undoped CG and GC phases in Mott insulators for
the typical parameters of RVO3. As explained there, the
electronic structures provide a realistic description and include
the multiplet structure of d3 excited states. The optimized
t2g orbitals, at a vanadium ion being the nearest neighbor of
a Ca defect, change to a new orthogonal basis due to the
defect-orbital-polarization interaction, as shown in Sec. III.
Next, we analyze the electron distribution on a bond next to a
Ca defect in the CG and GC phases in Sec. IV A, and compare
the unrestricted HF approach with the exact diagonalization
(ED). We also analyze one-particle local charge excitations
in Sec. IV B and demonstrate that their energies are well
reproduced around the defect states when the intratomic
Coulomb interaction U increases (see Sec. IV C). Next, we
consider the electronic structure for the defect states in the
CG phase in the dilute doping limit in Sec. V A, and introduce
in Sec. V B the order-parameter landscape in a doped system.
We study the effects of a finite orbital polarization in Sec. V C
and investigate the changes induced by longer-range Coulomb
interactions in Sec. V D.

This analysis is followed by the discussion of the electronic
structure in a correlated material with defect states, where
we address the gaps observed in the optical spectroscopy in
Sec. VI A and the dependence of the electron density in xy

orbitals on the defect concentration in Sec. VI B. Finally, the
paper is summarized in Sec. VII, where we also present an out-
look at possible future applications of the general unrestricted
HF method introduced in the paper in doped transition-metal
oxides. The Appendix highlights the importance of Fock terms
in the present problem and addresses the concept of optimized
orbitals in the vicinity of a charge defect.

II. MOTT INSULATOR WITH DEFECT STATES

A. Degenerate Hubbard model for t2g electrons

We begin with introducing the multiband Hubbard model
for t2g electrons designed to describe doped RVO3 perovskites,
such as the Y1−xCaxVO3 compounds. This effective model
includes only t2g orbitals at vanadium ions V3+, coupled by
effective d-d hopping elements along V–O–V bonds. Below,

we consider how this picture is modified in presence of charged
defects and, in particular, when not only the electron density
within the t2g orbitals of vanadium ions changes, but also the
presence of Ca defects introduces local interactions acting on
t2g electrons at vanadium ions in their vicinity.

The multiband Hamiltonian that describes the MH physics
of quasidegenerate t2g electrons and the perturbations by the
defect potentials consists quite generally of one-electron terms
H0 and two-electron (Coulomb and JT) interactions Hint:

H = H0 + Hint, (2.1)

H0 = Ht + HCF + Hdef, (2.2)

Hint = HU + HV + HJT. (2.3)

The one-electron part (2.2) is composed of the following terms:
(i) the kinetic energy (Ht ), (ii) crystal-field (CF) splitting
(HCF), and (iii) the perturbations generated by defects (Hdef).
Here, Hdef includes two terms:

Hdef = Himp + Hpol, (2.4)

the Coulomb potentials of the charged impurities Himp and the
orbital-polarization term Hpol. These two terms arise due to the
presence of Ca defects, and they constitute effective fields that
act on the vanadium ions in the neighborhood of defects. They
have been introduced in a simplified (two-flavor) model with
two active t2g orbital flavors {yz,zx} (Ref. 43) (see following).

The electron interactions Hint (2.3) are given by (i) local
Coulomb interactions (HU ), (ii) intersite Coulomb interactions
(HV ), and (iii) the JT effective interactions between orbitals
which are induced by lattice distortions (HJT). In the case
of RVO3 perovskites considered here, the local Coulomb
interactions are quite strong and lead to a Mott insulator
with high spin (S = 1) and orbital degrees of freedom.19,22

Depending on the parameters, the interactions in Hint support
a particular type of symmetry-broken phase,25 and one expects
coexisting spin and orbital order, either in the form of the CG

or GC phase, in agreement with experimental observations.6

The kinetic energy describes the hopping processes be-
tween nearest-neighbor V3+ sites on bonds 〈ij 〉 oriented along
one of three cubic directions γ = a,b,c in the perovskite lattice

Ht =
∑

〈ij〉‖γ

∑
α,β,σ

t
γ

αβ(c†iασ cjβσ + c
†
jβσ ciασ ). (2.5)

Here, c†iασ is the electron creation operator at the V3+ ion at site
i, with orbital flavor α and spin σ = ↑,↓. The summation runs
over all bonds 〈ij 〉‖γ . The effective hopping t originates from
two subsequent d-p hopping processes via the intermediate
O(2pπ ) orbital along each V–O–V bond. It follows from
the charge-transfer model with p-d hybridization tpd and
charge-transfer energy � (Ref. 30) that t is finite only between
two identical t2g orbitals, labeled α(γ ), that are active along a
given bond 〈ij 〉‖γ . The third orbital, which lies in the plane
perpendicular to the γ axis, is inactive as the hopping processes
vanish here by symmetry. This motivates the convenient
notation used hereafter19

|a〉 ≡ |yz〉, |b〉 ≡ |xz〉, |c〉 ≡ |xy〉, (2.6)

where the orbital |γ 〉 inactive along a cubic direction γ is
labeled by its index. Thus, if we consider an idealized case
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without lattice distortions and without defects, the hopping
conserves the t2g orbital flavor

t
γ

αβ = −tδαβ(1 − δγα). (2.7)

Using the charge-transfer model,30 one estimates the hop-
ping element t = t2

pd/� � 0.2 eV; this value appears to be
consistent with that deduced from the electronic-structure
calculations.58

The t2g orbital states are nonequivalent in the RVO3

perovskites due to the GdFeO3-like distortions,84 and one
finds that the c orbitals are occupied at every site. This is a
consequence of the CF splitting term [see Eq. (2.1)], which
favors c orbital occupation

HCF = −ε0
c

∑
i

nic , (2.8)

where niα = ∑
σ niασ , with niασ = c

†
iασ ciασ , is the electron

density operator for spin orbital {ασ } at site i. We estimated26

ε0
c ∼ t , hence, the c orbital is filled by one electron and the

second electron at any V3+ ion occupies one of the orbitals
in the {a,b} doublet, leading to a c1

i (a,b)1
i configuration at

each site i. This broken-symmetry state, which corresponds to
electron densities

〈nic〉 = 1, 〈nia + nib〉 = 1, (2.9)

within t2g orbitals at undoped V3+ ions, is stable in a Mott
insulator even for values of εc as small as 0.5t and justifies
the two-flavor model.43 Note, however, that one expects
that the cubic symmetry with niγ = 2

3 is restored at high
temperatures,19,25 but this situation will not be analyzed here.

The defect terms in H0 [Eq. (2.2)] describe Coulomb
interactions of the charged defects and the t2g electrons within
orbitals at neighboring vanadium ions and act on them as
effective fields. As explained elsewhere,43 when an Y3+ ion in
YVO3 is replaced by a Ca2+ impurity in the doped compound
Y1−xCaxVO3, the lattice is locally disturbed and the impurity
acts as an effective negative charge in the sublattice of Y
ions: it is located in the center of the V8 cube surrounding the
defect site (see Fig. 1 of Ref. 43). Such a defect is therefore
responsible for additional Coulomb interaction terms between
the impurity charge and the electron charges in t2g orbitals
of surrounding vanadium ions. The first additional term is
the Coulomb potential due to the Ca impurity Himp, which
describes the Coulomb interaction between the defect at site
m with effective negative charge Qm = e (here we adopt
e = 1) and the total t2g electron charge density operator at the
V ion at site i:

Himp =
∑
m∈D

∑
i

W (|ri − Rm|) ni , (2.10)

where ni = ∑
α niα is the electron density operator. Here, the

first sum runs over the Ca defects labeled with m ∈ D, where
the set D contains all lattice defect sites at the considered dop-
ing x in Y1−xCaxVO3. The second index i labels V ions at dis-
tance |ri − Rm| from the considered defect site m. In general,
the coordinates of the defects {Rm} are statistically distributed,
although defects will also feel some repulsion that avoids their
clustering. The defect potential of an impurity with negative
charge QD = e is of Coulomb type W (r) = eQD/εcr , where

εc is the dielectric constant (of core electrons).43 Following,
we shall employ a truncated defect potential

W (|ri − Rm|) =
{

VD if i ∈ C1
m,

0 otherwise,
(2.11)

i.e., i should belong to the V8 cube C1
m ≡ C1(Rm) formed by

eight nearest-neighbor V sites surrounding the Ca defect at
site m (V8 cube). With a dielectric constant εc � 5 for YVO3,
one finds for the defect potential VD � 1 eV.43 We note
that the truncated potential is introduced here as it provides
later on a more transparent interpretation of the spectra and
facilitates the analysis of the energy shifts of defect states.

The last term in Eq. (2.2) is the orbital-polarization term
Hpol. The V ions surround a defect site and form a V8

cube,43 occupying the positions shown in Fig. 1(a). Hpol

originates from the quadrupolar component of electrostatic
field generated by a charge defect within the lattice of V3+
ions. At each vanadium ion, the Coulomb repulsion between
the defect charge and t2g electrons favors the occupation of the
linear combinations of t2g orbitals that maximize the average
distance of the electronic charge from the defect.

Consequently, the defect-orbital interaction, called below
orbital polarization, takes the form

Hpol = D
∑
m∈D

∑
i∈Cm
α �=β

λαβ(ri − Rm)(c†iασ ciβσ + c
†
iβσ ciασ ).

(2.12)

The coefficients {λαβ(ri − Rm)} = ±1 depend on the pair of
considered orbitals αβ and on the direction ri − Rm; they are
selected to minimize the Coulomb repulsion. This is achieved
by

λab (ri − Rm) =
{

1 if ri − Rm ‖ (111),(111̄),

−1 if ri − Rm ‖ (1̄11),(11̄1),
(2.13)

λac (ri − Rm) =
{

1 if ri − Rm ‖ (111),(1̄11),

−1 if ri − Rm ‖ (11̄1),(111̄),
(2.14)

λbc (ri − Rm) =
{

1 if ri − Rm ‖ (111),(11̄1),

−1 if ri − Rm ‖ (1̄11),(111̄).
(2.15)

↑ ↑

↑ ↑

↑ ↑

↑ ↑

↑ ↑

↑ ↑

↑ ↑

↑ ↑

FIG. 1. (Color online) (a) Reference coordinates (klm) of vana-
dium ions in a representative V8 cube in YVO3. Phases with
spin-orbital order of perovskite vanadates considered in this paper
have the electron occupancies in the two magnetic phases shown
schematically in (b) C-AF/G-AO phase; (c) G-AF/C-AO phase.
The occupied orbitals {a,b,c} and their spin components {↑,↓} are
indicated at each corner of the cube.
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Note that each direction along one of the diagonals of the cube
involves two vanadium ions.

The local Coulomb interactions between t2g electrons at
V3+ ions are described by59

HU = U
∑
i,α

niα↑niα↓ +
(

U − 5

2
JH

) ∑
i,α<β

niαniβ

− 2JH

∑
i,α<β

Siα · Siβ + JH

∑
i,α �=β

c
†
iα↑c

†
iα↓ciβ↓ciβ↑.

(2.16)

Here, the spin operators for orbital α at site i, Siα , are
defined through the Pauli matrices {σx,σy,σz} and are related
to fermion operators in the standard way, i.e.,

S+
iα ≡ c

†
iα↑ciα↓ , Sz

iα ≡ 1
2 (niα↑ − niα↓) . (2.17)

The first term in Eq. (2.16) describes the intraorbital Coulomb
interaction U between electrons with antiparallel spins; the
second one stands for Hund’s exchange JH . These two param-
eters {U,JH } suffice to describe local Coulomb interactions
between t2g electrons considered here and are determined
by the effective Racah parameters {A,B,C};85 the remaining
terms are the interorbital Coulomb density-density interaction,
and the so-called “pair-hopping” term which acts in the sub-
space of doubly occupied orbitals. The choice of coefficients in
Eq. (2.16) guarantees that the interactions obey the rotational
invariance in the orbital space.59 Note that this Hamiltonian is
exact when it describes only one representation of the cubic
symmetry group (either t2g or eg) for 3d orbitals; this applies
to the present case of partly occupied t2g orbitals in the RVO3

perovskites. In general, however, the interorbital Coulomb
and Hund’s exchange interactions are both anisotropic,17 and
preserving rotational invariance requires also including onsite
three-orbital and four-orbital terms; more details may be found
in Refs. 85–88.

The LR Coulomb interaction has the usual expression

HV = 1

2

∑
i �=j,αβ

Vijniαnjβ, (2.18)

where the Coulomb interaction Vij is parametrized by the
nearest-neighbor matrix element V1:

Vij = V1

|ri − rj | , (2.19)

with coordinates ri = (ia,ib,ic) and rj = (ja,jb,jc), respec-
tively, given in integer representation. We assume that the in-
teraction parameter V1 accounts implicitly for the background
dielectric function due to the core electrons. For convenience,
we define the nearest-neighbor interaction

V1 = κVee, (2.20)

in terms of the electron-electron interaction strength Vee,
where the parameter κ =

√
3

2 represents the ratio d/a; here,
a is the V-V lattice constant and d is the distance between
the defect and the nearest V neighbor. In this paper, we
discuss results obtained either without the intersite Coulomb
interaction (Vee = 0) or with the full LR interaction.

The JT term HJT describes intersite orbital-orbital inter-
actions that follow from lattice distortions and concern the

orbital doublet {a,b}. The distortions are both of the JT
type and GdFeO3 type and jointly induce orbital alternation
in the ab planes and favor identical orbitals along the c

axis; these interactions are included here by the following
expression:19,43

HJT = Vab

∑
〈ij〉‖a,b

τ z
i τ z

j − Vc

∑
〈ij〉‖c

τ z
i τ z

j , (2.21)

where

τ z
i ≡ 1

2 (nia − nib) (2.22)

is the zth component of the orbital pseudospin τ = 1
2 along

the c axis influenced by lattice distortions. The interaction
parameters Vab > 0 and Vc > 0 influence the subtle balance
between the magnetic phases in the RVO3 perovskites,6

supporting the C-AO order, as realized for instance in the
undoped YVO3 at low temperatures (in the GC phase). These
interactions increase within the RVO3 perovskites towards the
compounds with small ionic radii, and this dependence plays a
crucial role in the detailed understanding of the phase diagram
of these perovskites.26

B. Hartree-Fock approximation

The degenerate Hubbard Hamiltonian, introduced in the
previous section to describe t2g electrons in a system with
charged defects, can be solved exactly by ED only for very
small systems. We present such calculations for a single
atom and for a bond in Secs. III and IV, respectively.
Treatment of larger systems is possible only after introducing
approximations, either in the strong-coupling regime, where
charge degrees of freedom can be integrated out,17,43 or using
HF approximation. We adopt here the latter general approach,
which requires the self-consistent calculation of the full density
matrix. We performed calculations that describe Y1−xCaxVO3

compound in the regime of low doping using finite clusters
with defects of size N × N × N , and implemented periodic
boundary conditions (PBC). We present the results obtained
for N = 8 in Secs. V and VI.

The main aim of this paper is to calculate the electronic
structure of strongly correlated and doped MH insulators,
i.e., including the defects with their complex structure. This
implies a computational challenge due to the simultaneous
appearance of the strong correlation problem and the pertur-
bations introduced by defects into the electronic structure.
Certainly, it requires reliable approximations to deal with
strong correlations and disorder simultaneously. The HF
approach is an efficient scheme which maps the interacting
electron problem onto the problem of a single particle moving
in a self-consistently determined field that stems from all other
electrons. Whether the HF approach is indeed such a reliable
scheme that fulfils the requirements stated above is the central
topic of this paper.

Before designing this calculation scheme, we would
like to emphasize the following aspects (see also the
Appendix):

(i) It has been shown43 that a HF factorization when applied
to a two-orbital model is capable to describe both the MH
gap and the defect states emerging from the lower Hubbard
band due to the defects. Even more important, the typical
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multiplet splitting of the transition-metal ions is obtained if
the factorization is performed with respect to an optimal local
basis set, i.e., with occupation numbers either close to 1 or to 0.
That is, the local spin-orbital states should be either occupied
or empty.

(ii) This requirement leads to complications in the vicinity
of defects. In particular, charge defects lead to a rotation of
the occupied local states (see Sec. III) due to the Coulomb
potential of a charged defect.

(iii) In principle, a local rotation can be specified that
removes the off-diagonal terms and defines a new optimal local
basis, i.e., orbitals having again integer occupancies (close to
1 or 0). This simple scheme, however, is not successful in
presence of kinetic energy terms. Here, the optimal local or
Wannier-type orbitals are influenced not only by local rotation
terms, but by these nonlocal terms as well.

(iv) It is important to recognize that the full unrestricted HF
scheme, i.e., including all relevant off-diagonal contributions
from interactions, can be used to determine the MH-split bands
in presence of defects. We will show here that this also holds
true for the three-flavor case. In particular, we will show by
comparison with ED that the approach provides a surprisingly
good description not only of occupied states, but also of the
unoccupied higher multiplet states.

(v) Moreover, the local rotated basis may serve as an
intermediate basis and allows one to understand more easily
the new features emerging due to the defects. For example,
due to local rotation of t2g orbitals, the flavor conservation in
hopping processes that contribute to the kinetic energy is lifted
in the rotated basis. That is, in the vicinity of defects, orbital
flavors mix not only due to local orbital rotation (off-diagonal
CF terms), but also due to the kinetic energy.

Except for a special attention to all relevant off-diagonal
Fock terms, the unrestricted HF procedure applied here is
a standard approach for tight-binding models of interacting
electrons.86–88 In general, one decouples each term describing
a two-particle interaction and replaces it by all possible one-
particle terms coupled to certain effective mean fields: density
terms in the Hartree approximation (HA), supplemented by
off-diagonal Fock terms in the HF approximation. Such
expressions are augmented by double-counting correction
terms, which are necessary to avoid double counting of the
interaction energy. We will adopt just Hartree terms in only
two cases: (i) when the interaction simulates a potential of the
lattice and Fock terms would simply be out of scope (as for
the JT terms), and (ii) when there is no one-particle term in
the original Hamiltonian that can act as a source potential for
the related off-diagonal mean fields (e.g., HU with respect to
spin degree of freedom). Note that the JT terms simulate the
potential acting on pairs of neighboring V3+ ions due to lattice
distortions and discriminating between the orbital flavors in
the doublet {a,b}.

As a matter of fact, Fock terms become active only if their
off-diagonal mean fields are finite. This can happen only if
either a one-particle term in the original Hamiltonian (a source
for the specific off-diagonal mean field) induces their finite
value or we choose, as an initial state of the self-consistent
procedure, a state that requires them to be finite. This second
case is never realized in the studies we perform in this paper.
Accordingly, we will adopt only Fock terms that couple either

the same orbitals at neighboring sites (as in the kinetic energy)
or couple different orbitals at the same site (as in the orbital-
polarization interaction term ∝D). These latter Fock terms will
turn out to be of fundamental importance to describe faithfully
the physics of t2g electrons in presence of defects. We remark
that the HA is applied to the onsite interactions HU in a way
similar to that used to implement local Coulomb interactions
within local density approximation (LDA) in the so-called
LDA + U method.89

Given the above prescriptions, the derivation of the unre-
stricted HF equations is standard and we do not present it here
in extenso; more details can be found, for instance, in Refs. 86
and 87. Following this procedure, one arrives at an effective
one-electron HF Hamiltonian

HHF =
∑
iασ

εiασ niασ +
∑
iαμσ

βiαμσ c
†
iασ ciμσ

+
∑
〈ij〉

∑
αμσ

t
γ

iαjμ;σ c
†
iασ cjμσ . (2.23)

This Hamiltonian can be diagonalized numerically, and the
mean fields appearing in the parameters (see below) of the HF
Hamiltonian (2.23) and the HF orbitals can be determined self-
consistently within an iterative procedure. The orbital energies
εiασ are defined as follows:

εiασ = ε0
c δcα + U 〈niασ̄ 〉 + (U − 2JH )

∑
μ �=α

〈niμσ̄ 〉

+ (U − 3JH )
∑
μ �=α

〈niμσ 〉 +
∑
j (i)

Vij 〈nj 〉 + VD

∑
m∈D

ξim

+ 1

2
Vab(δaα − δbα)

∑
j (i)∈ab

〈
τ z
j

〉

− 1

2
Vc(δaα − δbα)

∑
j (i)∈c

〈
τ z
j

〉
. (2.24)

We have introduced the orbital moments 〈τ z
j 〉 for the nearest

neighbors j of the considered site i in the same plane ab

and along the c axis, respectively, labeled j (i). The parameter
ξim = 1 if the site i belongs to a cube which surrounds a
particular defect labeled by m in Eq. (2.11), i.e., i ∈ Cm,
and ξim = 0 otherwise. The above equations may be further
simplified by introducing total electron densities {ni} and
magnetizations {mi} at site i and electron densities {niα} and
magnetizations {miα} per orbital α at site i:

ni ≡
∑
ασ

〈niασ 〉, (2.25)

mi ≡
∑

α

〈niα↑ − niα↓〉, (2.26)

niα ≡
∑

σ

〈niασ 〉, (2.27)

miα ≡ 〈niα↑ − niα↓〉. (2.28)

One finds

εiασ = ε0
c δcα +

(
U − 5

2
JH

)
ni − 1

2
(U − 5JH )niα

− 1

2
σ (U − JH )miα − 1

2
σJHmi +

∑
j (i)

Vij 〈nj 〉 + VDξi

045132-6



DEFECT STATES AND EXCITATIONS IN A MOTT . . . PHYSICAL REVIEW B 87, 045132 (2013)

+ 1

2
Vab(δaα − δbα)

∑
j (i)∈ab

〈
τ z
j

〉

− 1

2
Vc(δaα − δbα)

∑
j (i)∈c

〈
τ z
j

〉
. (2.29)

Note that the onsite charge repulsive term U (ni − 1
2niα) −

5
2JH (ni − niα) does not contain self-interactions. The terms
that depend on magnetic moments {miμ} are responsible for
the magnetic order found in the realistic regime of parameters
(see Secs. V and VI). In the weak-coupling regime, where
the system is metallic, these terms give magnetic instabilities
driven by the Stoner parameter,90 being in the present three-
orbital model IHF = U + 2JH .

Near the defect at site m, one finds the local off-diagonal
elements of the HF Hamiltonian βiαμσ at site i ∈ Cm given by
the orbital-polarization term (2.12) and by the Fock terms of
the Coulomb interaction

βiαμσ =
∑
m∈D

ξim{Dλαμ(ri −Rm) − (U−3JH )〈c†iμσ ciασ 〉},

(2.30)

where the parameters {ξim} are defined as in Eq. (2.24). As
we show in Secs. III and IV, the second term in Eq. (2.30) is
crucial for D �= 0 as it renormalizes the orbital mixing term
∝D and makes it possible to find the orbitals that optimize
the energy of the system. The hopping parameters tiαjμσ are
renormalized by the Fock term that stems from the intersite
Coulomb interaction (2.18),

tiαjμσ = tγαμ − V1〈c†jμσ ciασ 〉, (2.31)

and this renormalization is, for instance, responsible for the
different bandwidths of the minority and the majority bands in
transition metals.87 According to the nearest-neighbor nature
of the “source” term (the kinetic energy), also the related Fock
terms stem from the nearest-neighbor Coulomb interaction
matrix element V1. As a matter of fact, as discussed above, all
other Fock terms will simply vanish.

C. Undoped Mott-Hubbard insulator

We begin with discussing the reference electronic structure
of the two phases with broken symmetry in spin and orbital
space relevant to YVO3: the CG phase and the GC phase. The
spin and orbital orders in these phases are shown schematically
in Figs. 1(b) and 1(c), respectively. Unrestricted HF calcula-
tions have been performed for an 8 × 8 × 8 supercell with
PBC; larger systems have also been considered. In the case
of an undoped system, a smaller supercell such as 6 × 6 × 6
or even 4 × 4 × 4 would suffice as the HF convergence is
indeed very fast and the final results for charge, spin, and
orbital density distributions as well as for the total and orbital
resolved density of states (DOS) do not depend on system
size, in both symmetry-broken phases, for sufficiently large N

(N � 4). Within our numerical studies, we have used several
parameters which are considered realistic for YVO3, but here
we present only the representative results obtained for two
parameter sets given in Table I.

In the relevant regime of parameters for the RVO3

perovskites, the electrons in undoped YVO3 are localized

TABLE I. Standard parameter sets used in the numerical calcu-
lations; all parameters are given in eV. Defect potential VD (2.11)
contributes only in doped systems.

Set t ε0
c U JH Vab Vc VD

A 0.0 0.1 4.0 0.6 0.03 0.05 1.0
B 0.2 0.1 4.0 0.6 0.03 0.05 1.0

as in a Mott insulator. We consider here the same set of
parameters as used previously in Refs. 25 and 43: t = 0.2 eV,
ε0
c = 0.1 eV, U = 4 eV, and JH = 0.6 eV. The value of

t = 0.2 eV has been estimated using the charge-transfer
model. For Hund’s exchange JH , we have adopted a value
that is somewhat screened with respect to its atomic value
J atom

H = 0.64 eV.25 Finally, the value of U has been selected
in order to obtain a value for the superexchange parameter
J = 4t2/U = 40 meV, which is consistent with the results ob-
tained in neutron scattering experiments for spin excitations.78

As regards the JT parameters Vab and Vc, we have chosen
values that are in the expected range for LaVO3.

The value of the CF potential ε0
c = 0.1 eV guarantees that,

in absence of the orbital-polarization interaction D, the c

orbital is occupied at each V3+ ion. In this parameter range, and
as long as any defect is absent, one may simplify the calculation
of the electronic structure in the HF approximation as the spin
of the c electron determines the magnetic moment at each
vanadium ion, which is in the high-spin (HS) state (S = 1) due
to finite Hund’s exchange. In this respect, the HF calculations
reduce to those performed within the simplified two-flavor
model.43 Depending on the starting initial conditions, one
finds two locally stable configurations, the CG and the GC

phases shown schematically in Figs. 1(a) and 1(b), with
a uniformly distributed charge of two electrons at each
vanadium ion.

The current self-consistent unrestricted HF calculations,
performed in the undoped regime, give the electronic structures
of the CG and the GC phases,91 shown in Figs. 2 and
3. For the present parameters, t2g electrons are fairly well
localized (as t � U ) and a broken-symmetry ground state is
found. In such a case, the HF approach is rather successful
and provides not only a good description of the occupied
states, but also a quite satisfactory description of the excited
ones. In fact, in the present case also the structure of the
upper Hubbard band (UHB) is quite well reproduced. To
demonstrate this, let us consider first the CG phase. At a
representative atom in position (0,0,0) [see Fig. 1(b)], one
finds the DOS with well-separated occupied states in the
lower Hubbard band (LHB) and with empty states in the
UHB, which consists of three peaks. The almost-classical
ground state corresponds to an occupied wave function |c↓b↓〉.
While the c electron is perfectly localized (nc � 0.993), the
occupancy of the b orbital is somewhat lower than one,
nb � 0.977. This is due to weak fluctuations of the orbital
flavor between nearest-neighbor sites along the c axis, where
all spins are aligned (C-AF) and orbitals alternate (G-AO).
Consequently, the |a↓〉 state has finite low-electron density
(na � 0.016).
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ω

ω

ω

γσ
ω

ω

↓ ↓ ↓

↑↑

↑

FIG. 2. (Color online) Densities of states for the Mott insulator
in the CG phase calculated for an 8 × 8 × 8 periodic cluster: (a) total
DOS N (ω) (left scale) and the total electron filling n(ω) (right scale);
(b) local spin-orbital DOSs Niασ (ω) at the atom at site i = (0,0,0),
orbital α, and spin σ . The spectra reflect the spin-orbital order at
(0,0,0) and ↓-spin (↑-spin) states are drawn by solid (dashed) lines,
respectively. Vertical dashed line indicates the Fermi energy at ω = 0;
parameters as in set B in Table I.

The unoccupied part of electronic structure, the UHB,
consists of three distinct maxima [see Fig. 2(a)]. The lowest
one corresponds to the HS excitation and the system is a Mott
insulator with a large MH gap: �MH � 2.20 eV. This value is
obtained as the difference between the energies measured at the
center of gravity (the first moment) of the peaks corresponding
to the highest occupied and the lowest unoccupied HF
orbitals: |b↓〉 and |a↓〉, respectively [see Fig. 2(b)]. Note
that the value of the MH gap is given here by the energy
of the HS charge excitation d2

i d2
j

⇀↽ d3
i d1

j to the S = 3
2 spin

state,

EHS = U − 3JH , (2.32)

with a a1b1c1 configuration of ↓-spin electrons in the fully
localized (atomic) limit.17

The UHB contains also low-spin (LS) excited states. As
pointed out before,43 their excitation energies obtained in the
HF approximation (at εc = 0),

ELS1 � U − JH , (2.33)

ELS2 � U + JH (2.34)

are systematically lower by JH than the exact ones and the
upper state is doubly degenerate instead of the lower one,
as the quantum-fluctuation driven processes (spin-flip and

ω

ω

ω

γσ
ω

ω

↓
↓

↓

↑
↑

↑

FIG. 3. (Color online) Densities of states as obtained for the Mott
insulator in the GC phase for an 8 × 8 × 8 system: (a) total DOS
N (ω) (left scale, heavy line), the same for the CG phase (thin line)
shown for comparison, and the total electron filling n(ω) (right scale);
(b) local spin-orbital DOSs Niασ (ω) at site (0,0,0), orbital α, and spin
σ . Here, ↓-spin (↑-spin) states are shown by solid (dashed) lines,
respectively. Fermi energy and parameters as in Fig. 2.

“pair-hopping” terms) are neglected.92 For the considered
ground state |c↓b↓〉, one finds first a LS (S = 1

2 ) state with
the |a↑〉 state occupied [see Fig. 2(b)]. The energy of this
excitation, measured from the energy of the highest occupied
|b↓〉 state, is ELS1 = 3.37 eV, which is indeed very close to the
value obtained from Eq. (2.33) in the atomic limit (U − JH ) =
3.4 eV. The two remaining LS states have energies
E

(c)
LS2 = 4.47 eV and E

(b)
LS2 = 4.64 eV, corresponding to double

occupancies in the c and b orbitals, respectively. These states
have been labeled with the added electron to the ground state
[|c↑〉 and |b↑〉 in Fig. 2(b)]. The above energies are again very
close to the atomic limit values εc + (U + JH ) = 4.5 eV and
(U + JH ) = 4.6 eV, respectively.

The maxima in the total DOS N (ω) are well separated from
each other. This can be clearly seen in the total electron filling
up to energy ω,

n(ω) =
∫ ω

−∞
dω′N (ω′), (2.35)

which is almost constant in-between the maxima correspond-
ing to different states [see Fig. 2(a)]. In particular, no states
can be found within the MH gap.

The overall picture obtained for the GC phase is very
similar, again with the LHB accompanied by three peaks
in the UHB (see Fig. 3). In this case, the G-AF ground
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state makes the electrons even more localized and one finds
(down-spin) electron densities nc � 0.993, nb � 0.989, and
na � 0 at the representative (0,0,0) atom [see Fig. 1(c)]. The
system is a good MH insulator with total electron filling
n(0) = 2. A better electron localization than in the CG phase
may also be concluded from a somewhat increased value of
the MH gap, �MH � 2.24 eV. The low-spin excitations are
found now at energies ELS1 = 3.57 eV, E

(c)
LS2 = 4.53 eV, and

E
(b)
LS2 = 4.62 eV. The largest difference with respect to the

CG phase of 0.2 eV is found for the LS1 excitation energy
ELS1 [see Fig. 3(b)]. We suggest that this increased excitation
energy originates from a highly localized (a↑) component
within the ab plane (in the GC phase) as the very same orbital
is stronger localized here at the neighboring sites along the
a and b directions than in the CG phase. We also note the
increased height of the peaks, which indicates again stronger
localization.

In summary, we have shown by the HF analysis of both
CG and GC phases that the DOS consists of the LHB and the
UHB, and that the latter has a well-defined internal structure of
excited states. The MH gaps are very similar in both magnetic
structures for the chosen set of parameters. In the next sections,
we analyze the change of local electronic state near charged
defects introduced by doping and show how such defects
change the above idealized electronic structure.

III. OPTIMIZED ATOMIC ORBITALS

To develop systematic understanding of the evolution of
the electronic structure under increasing doping, it is helpful
to analyze first the atomic problem for a representative atom
near a Ca defect embedded in the CG phase of YVO3. Thus,
we consider the atomic limit, i.e., no hopping (t = 0), as in
the parameter set A of Table I. The HF mean-field terms act
on the electronic states of such an embedded atom with the
ground state |c↓b↓〉 [see Fig. 4(a)]. This problem is solved
self-consistently in the HF approximation described in the
previous section and the solution is systematically compared
to the ED results obtained for the very same external mean
fields.

Although the electronic configuration d2 at an undoped V3+
ion in the vicinity of the defect does not change with respect to

↑ ↑

FIG. 4. (Color online) Reference electronic configurations con-
sidered in the reference ground state at D = 0 in Secs. III and IV
for (a) a single atom (dot) in the CG phase; (b) a bond (solid line
connecting two dots) along the c axis in the CG phase; (c) a bond
(solid line connecting two dots) along the c axis in the GC phase. In
each case, the state |c↓b↓〉 is selected as the initial ground state at the
(0,0,0) atom. The relative position of the defect state in the center of
each cube is marked by a filled (red) sphere.

γ↓

FIG. 5. (Color online) Electron densities nγ↓ in the pristine
orbitals γ ∈ {a,b,c} for an atom embedded in the CG phase [see
Fig. 4(a)] as functions of increasing orbital polarization D. Solid
lines from HF, dashed lines from HA, and hollow circles from ED.
Parameters as in set A of Table I.

the Mott insulator described in Sec. II C, the occupied orbitals
are now modified due to the electron polarization term (2.12).
Here, we focus on the description of a single atom and compare
the HF results with those of the ED with the aim at validating
the scheme that will be used in Secs. V and VI for the bulk. The
results are mainly presented for varying polarization parameter
D, responsible for the adjustment of the orbitals to the field
which acts on them.

The set of t2g orbitals {a,b,c} [Eq. (2.9)], also called
pristine orbitals hereafter, is selected as orthogonal basis in
the undoped YVO3 by lattice distortions, which lower the c

orbitals by a finite CF energy ε0
c . A priori, t2g orbitals are

expected to adjust to the orbital-polarization field D in the
vicinity of a defect and a new set of orthogonal orbitals will
become the optimal basis for the embedded atom. We have
determined this optimal basis using the self-consistent HF
calculations described in the previous section and found that all
three pristine t2g orbitals {a,b,c} are strongly modified; already
for D = 0.1 eV, the occupied orbitals look quite different
from {a,b,c} ones (see the following). This gradual orbital
rotation can be easily recognized by analyzing the electron
densities nγ↓ ≡ 〈nγ↓〉 and the off-diagonal elements of the
density matrix 〈c†γ↓cξ↓〉 shown in Figs. 5 and 6, respectively,
for the CG phase.

The electron densities are nc↓ = nb↓ = 1 and na↓ = 0 for
the reference state at D = 0. One finds that they change
fast with increasing D for the orbitals a and b (Fig. 5),
while the decrease in the electron density within the c orbital
is slower. Therefore, in the weak polarization regime of
D < 0.02 eV, the two-flavor model43 is sufficient. On the
contrary, for D � 0.1 eV, all three orbitals contribute to
the ground state with similar electron densities: the electron
densities in the a and b orbitals are almost equal and nc↓ < 0.8.
Certainly, the two orbitals occupied in this case are quite
different from the pristine c orbital and one of the doublet
{a,b} orbitals and the full orbital space have to be considered.
This observation is further supported by the values of the
off-diagonal matrix elements (Fig. 6), which become similar to
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〈
γ↓

ξ↓
〉

FIG. 6. (Color online) Off-diagonal elements 〈c†γ↓cξ↓〉 (γ �= ξ )
of the density matrix for spin-down pristine orbitals for an atom
embedded in the CG phase [see Fig. 4(a)] as functions of increasing
orbital polarization D. Solid lines from HF, dashed lines from HA,
and hollow circles from ED. Parameters as in set A of Table I.

each other for D � 0.1 eV, while for D < 0.02 eV, the orbital
mixing is large only between the a and b orbitals. For the
largest value of D = 0.5 eV studied here, all three t2g orbitals
are almost equally occupied (Fig. 5) and the off-diagonal
orbital elements are almost the same for each pair (Fig. 6).

It is very remarkable that the HF results presented in Figs. 5
and 6 agree exactly with the ED results. This shows that
the quantum fluctuations, going beyond HF approximation,
are irrelevant for the ground state in the present regime of
parameters. In fact, the electron localization and the symmetry
breaking in the spin and orbital space, which follow from the
large value of U , suppress quantum fluctuations around the
exact state with two occupied optimal orbitals. In contrast,
the results obtained within the simpler HA (without Fock
orbital terms) turn out to be completely unsatisfactory and this
approximation gives an unrealistic description of the orbital
states (see Figs. 5 and 6). Within HA, the orbitals b and c

are almost unchanged and remain still the occupied orbitals
even for relatively large values of D > 0.1 eV, where also
their rotation (mixing) hardly occurs. This demonstrates that
the Fock terms are essential in the present problem, as these
off-diagonal terms are responsible for a gradual adjustment of
the orbital subsystem to the orbital-polarization term (2.12),
which drives the orbital mixing.

The gradual evolution of the two occupied rotated orbitals
{|b′〉,|c′〉} (and the unoccupied orbital {|a′〉}) relative to
the original t2g basis as function of the orbital-polarization
field D is illustrated by the overlap functions 〈γ↓|ξ ′↓〉
in Fig. 7. The initial state with occupied orbitals {|b〉,|c〉}
changes gradually with increasing D and the occupied orbitals
{|b′〉,|c′〉} are linear combinations of the pristine ones. One
finds once more that, except for the region of rather small
D < 0.02 eV, all three pristine orbitals contribute and the
orbitals are strongly modified. The new states |c′〉 and |a′〉
arise as linear combinations of all three t2g orbitals {a,b,c}. In
contrast, the occupied orbital state |b′〉 has no component with
|c〉 orbital character and is just a linear combination of {a,b}
orbitals. By considering solely this orbital state, one could

⎪〈
γ↓

⎪ξ
↓〉

⎪

FIG. 7. (Color online) Fractions of pristine orbitals {|γ 〉} in the
rotated orbitals {|ξ ′〉} for an atom embedded in the CG phase [see
Fig. 4(a)] as functions of increasing orbital polarization D. Parameters
as in set A of Table I.

therefore justify a posteriori the two-orbital model,43 but we
note that (i) the actual ground state involves the occupied
|c′〉 orbital too, which has a significantly modified shape with
respect to the original |c〉 state, and (ii) the presence of finite
kinetic energy between such orbital states will induce a further
redistribution of the pristine orbital character over the two
occupied orbitals {|b′〉,|c′〉}, and will also modify the |a′〉
orbital contributing to excited states. The difference found
here between the a and b orbital character in the occupied
|c′〉 state follows from the mean fields that arise due to the JT
interactions.

The local orbital basis gradually rotates and adjusts itself to
the orbital polarization when D increases, as shown in Fig. 8.
The Coulomb repulsion between the exceeding electron at the

FIG. 8. (Color online) Optimal orbital basis for an embedded
atom in the CG phase at position (0,0,0) [see Fig. 4(a)] for increasing
orbital-polarization field D. The defect which is the source of the
orbital-polarization term is located at position ( 1

2 , 1
2 , 1

2 ). The three
rotated orbitals are labeled by γ = a′,b′,c′, with the orbitals b′ and c′

occupied in the ground state. At D = 0 eV (first column), {a′,b′,c′}
orbital coincides with {a,b,c}. Parameters as in set A of Table I.
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Ca defect in the center of the V8 cube [see Fig. 4(a)] and the
V3+ ion adjusts the shape of the occupied orbitals {|b′〉,|c′〉} in
such a way that the electrons involved increase their distance
from each other, and not too much of the JT and CF energy
is lost. Therefore, the orbital shapes become all nonequivalent
for D > 0 and evolve gradually into two geometrically similar
occupied orbitals {b′,c′}, with c′ practically lying in the plane
perpendicular to the direction along which the defect resides,
and the empty cigarlike a′ orbital, directed towards the defect
site. This final configuration can be easily recognized at the
largest studied value D = 0.5 eV. In the large-D regime, the
rotated wave functions are

|a′〉 = 1√
3

(|a〉 + |b〉 + |c〉), (3.1)

|b′〉 = 1√
2

(−|a〉 + |b〉), (3.2)

|c′〉 = 1√
6

(−|a〉 − |b〉 + 2|c〉). (3.3)

In a doped system, a hole will go into the topmost occupied
orbital |b′〉, which is an odd linear combination of |a〉 and |b〉,
and does not contain the third c flavor.

When D is finite and the CF term as well as the mean-field
terms acting on the atom are neglected, the local problem given
by the orbital polarization maps onto the hole-hopping problem
on a triangle, with the energy spectrum {−D, −D, +2D}.
Having two electrons at the V3+ ion, the two degenerate
states with energy −D are then occupied. The increasing
similarity of the occupied states anticipated from this result is
indeed observed when D increases in presence of other terms.
In-between D = 0 and the largest value D = 0.5 eV studied
here, one can distinguish two qualitatively different regimes:
(i) for small D � 0.02 eV, only the orbitals {a,b} mix, while
the c orbital still does not change as it is stabilized by the
CF energy ε0

c = 0.1 eV; (ii) when D becomes of the order
of ε0

c , the c orbital is destabilized and all three orbitals rotate
further towards their final shapes. The case of D ∼ 0.05 eV
shown in Fig. 8 gives orbitals that are already close to those
found at the largest studied value D = 0.5 eV. Note also that
weak JT interactions counteract the orbital rotation, but the
orbital polarization is the dominating term for the present set
of parameters, and the basis rotation is practically completed
already for D � 0.1 eV (see Fig. 7).

Orbital polarization influences also the one-particle ex-
citations of an atom close to a defect. Given the ground-
state energy E0(dn) of a Mott insulator in the dn electronic
configuration, these excitations in correlated insulators are
calculated as follows: for exciting a hole, as in photoemission
(PES) spectra,

Em = Em(dn−1) − E0(dn); (3.4)

and similarly for adding an electron, corresponding to inverse
photoemission (IPES) spectra,93

Em = Em(dn+1) − E0(dn). (3.5)

We determined the excitation energies for an atom embedded
in the CG phase in proximity of a defect using the unrestricted
HF approximation and compared them with the corresponding
ED results, as shown in Fig. 9. For the sake of convenience,

μ

Δ

FIG. 9. (Color online) Excitation energies Em for an atom
embedded in the CG phase [see Fig. 4(a)] measured with respect to
the chemical potential, as functions of increasing orbital polarization
D. Solid lines from HF (heavy/light lines for occupied/unoccupied
states) and hollow circles from ED (the color scale on the right
indicates the spectral weight of each level, as well as the size of
the symbols). The MH gap is found between the LHB and the HS
state of the UHB; the labels of the LS excited states refer only to the
regime D � 0. The chemical potential μ is fixed at the center of the
MH gap �MH. Parameters as in set A of Table I.

the chemical potential μ, fixed as usual in the center of the
MH gap, is subtracted in each case.

In the HF spectra, one finds two PES excitations that
correspond to removing an electron either from b′ or c′
orbitals; the energy difference between them is small and
comes from the CF splitting ε0

c . These states form the occupied
LHB. The apparent decrease in energy present in Fig. 9,
(∂Em/∂D) ∼= −1.5 instead of the expected (∂Em/∂D) ∼= −1,
follows from the subtraction of the chemical potential. The
four excitations at positive energies correspond to the four
possible d3 excited states analyzed for the undoped case in
Sec. II C: (i) the HS state has the lowest energy and the
|a↓〉 state is occupied; (ii)–(iv) in the three LS states with
higher energies, a ↑-spin state is occupied in one of the
three orbitals. Notably, these excitation energies depend rather
strongly on the orbital polarization D. The energy of the
HS state (Sz = − 3

2 ) increases with increasing D when all
three orbital flavors are occupied with the same spin, and
(∂Em/∂D) ∼= 2 before chemical potential subtraction. As a
matter of fact, such increase concerns also the LS2 excited
state with Sz = − 1

2 and |c′↑〉 state occupied. On the contrary,
the remaining two LS states of the UHB have either (a′↑) or
(b′↑) occupations by the ↑ spin and their energies decrease.
Note that the energies of the HS and of these latter LS excited
states cross for a value of D > 0.5 eV, but we have estimated
that so large values of D are unrealistic.

A comparison of the HF results with the exact results found
using ED for an embedded atom close to a defect gives an
excellent agreement for the LHB and even for the lowest
HS excited state of the UHB. This may be expected as these
three states have no quantum corrections. On the contrary, as
already pointed out in Sec. II B, in the LS sector one finds
that the excitation energies for D = 0 are lower by ∼JH than
the exact values.43 When D increases, the spectral weight
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moves from the high-energy LS2 state with Em − μ > 4 eV
to the lower-energy excitations with Em − μ ∼ 3 eV. This
is in contrast to the HF results, where the one-electron
wave functions do not allow for any spectral weight transfer,
and instead the excitation energies change and interpolate
between the relevant energies in a continuous way. Already for
D � 0.15 eV, one finds that the spectral weight found in the
ED has moved completely to the lower-energy regime charac-
teristic of LS1 states, and when D increases further, there is
one excitation with large spectral weight that follows roughly
the two lower HF excitations of LS character, and the third one
with increasing energy, similar to the one found in the HF (see
above). Rather small energy difference between the ED ener-
gies and the HF ones found here demonstrates that the quantum
effects are quenched in the orbital system when the orbital
polarization D is sufficiently large. Even more importantly, a
satisfactory agreement between the energies found in the HF
approximation and the exact values in the LS sector shows that
the HF states correctly adjust themselves to the underlying in-
teractions and simulate the actual multielectron states in a very
realistic way.

One may wonder again whether the HA would not give at
least a satisfactory description of the excitations being close
to the MH gap, as we have shown above that for all of them
the quantum corrections to the HF energies are negligible.
Instead, the HA fails also here in a rather spectacular way:
one finds that the MH gap exhibits a qualitatively incorrect
behavior and decreases with increasing orbital polarization D,
and even the structure of the LHB, with two PES excitations
of almost equal energies, is not correctly reproduced (see
Fig. 10). Large systematic deviations are also found for the
higher LS excited states. All these misleading features follow
from the incorrect local basis rotation with increasing orbital
polarization D, and thus from the incorrect evolution of the
orbital electron densities shown in Fig. 5. It can be concluded
that, at least in case of conflicting external fields (e.g., the
CF, the JT interaction, and the orbital polarization), the HA is
totally unsatisfactory.

μ

FIG. 10. (Color online) Excitation energies Em for an atom
embedded in the CG phase [see Fig. 4(a)] obtained in the HF (solid
lines) and in the HA (dashed lines) for increasing orbital polarization
D. The energies Em are measured with respect to the chemical
potential μ (dotted line). Parameters as in set A in Table I.

IV. A BOND NEAR THE DEFECT STATE

The electronic structure in the vicinity of defects depends
also on the kinetic energy (2.5). While in the undoped bulk
(Sec. II C), the kinetic energy is diagonal and couples two
atomic t2g states with the same orbital flavor at neighboring
sites, this is no longer the case close to defects where the local
orbital basis has to adjust to the actual fields acting on each
atom (see Sec. III). Therefore, one expects that qualitative
changes may arise with respect to the case of an embedded
atom when electron hopping contributes. The analysis of an
embedded bond presented in this section addresses this issue
and serves to deepen and improve the understanding of the
HF results presented for the bulk in the low-doping regime,
analyzed in Secs. V and VI.

A. Electron densities induced by orbital polarization

We consider first a representative bond 〈ij 〉 in the CG

phase, shown in Fig. 4(b). The c orbitals are occupied at both
sites of the bond (in the absence of defects, i.e., at D = 0)
and the JT interactions (2.21) favor the b (a) orbital occupation
at the lower (upper) site. This case is the most interesting one as
the spin order is FM and the two electrons in the {a,b} orbital
doublet can delocalize along the bond. The kinetic energy
is strongly suppressed by large local Coulomb interactions,
but still one finds, within the ED, that orbital fluctuations
along the bond contribute and modify the electron densities
niγ↓ for γ = a,b at D = 0 (see Fig. 11). Such fluctuations
are very important and support the FM coupling along the
vertical bonds in the undoped material.19 As we show below,
the HF approximation may be still used although it is unable
to treat orbitally entangled states,24,28 as these fluctuations
are quenched by external fields, including orbital polarization
D > 0. In contrast, no fluctuations occur for the localized c

electrons and their density is perfectly reproduced by the HF
approximation.

As in the case of a single atom analyzed in Sec. III,
an increasing orbital polarization D modifies the occupied
orbitals and thus the electron densities (see Fig. 11). Full

γ↓

FIG. 11. (Color online) Occupations of pristine orbitals niγ↓ at the
embedded bond 〈ij〉 along the c axis in the CG phase [see Fig. 4(b)]
as functions of increasing orbital polarization D. Solid lines from HF
and hollow circles from ED. Parameters as in set B in Table I.

045132-12



DEFECT STATES AND EXCITATIONS IN A MOTT . . . PHYSICAL REVIEW B 87, 045132 (2013)

γσ

↓ ↑

↓ ↑

↓ ↑

FIG. 12. (Color online) Occupations of pristine orbitals niγ↓ at the
embedded bond 〈ij〉 along the c axis in the GC phase [see Fig. 4(c)]
as functions of increasing orbital polarization D. Solid lines from HF
and hollow circles from ED. Parameters as in set B in Table I.

symmetry in the orbital occupancies is preserved, provided
one interchanges the orbital flavors {a,b} ↔ {b,a} between the
sites i = 1 and j = 2. Similarly as in the embedded-atom case,
the orbitals of the doublet active along the c axis mix easier, and
this mixing competes with the JT effective interactions, which
act on them at each site. The orbital polarization overrules
the effective molecular fields, which act on the {a,b} orbitals,
already for D = 0.03 eV (see Fig. 11), and the trend in the
ED results changes; in the regime of small D, the filling of the
occupied {1b,2a} orbitals n1b↓ = n2a↓ first slightly increases
with increasing D with respect to the one at D = 0, but next
when D increases further it starts to decrease and the orbital
entanglement is suppressed. In this latter regime, one again
finds a perfect agreement between the HF and the ED results,
which show once more that the HF method is very reliable for
states with broken symmetry. Note that, as long as the orbital
fluctuations dominate for very small values of D < 0.02 eV,
the orbital electron densities almost do not change, being
stabilized by the orbital entangled state that also counteracts
the rotation of c orbitals in this regime. On the contrary, in
the regime of large D > 0.1 eV, the electron densities are
very similar to those found in Sec. III for an embedded atom
(cf. Fig. 5).

It is of interest now to compare the evolution of electron
densities with increasing D between the CG and the GC

phases. The latter phase features much less quantum fluctu-
ations, as the AF spin order is present here also along the
c axis and finite electron hopping would generate LS states
unfavored by Hund’s exchange. Therefore, the hopping is
suppressed also along vertical bonds in agreement with the
double-exchange mechanism,38 at least in the HF picture
where quantum fluctuations are almost completely neglected.
Therefore, even when the electron hopping is finite, the kinetic
energy is totally suppressed in this symmetry-broken state at
D = 0, and the electron densities are as in Eqs. (2.9) (see
Fig. 12). When D increases, the orbital rotation towards the
optimal orbital basis in the limit of large D takes place (see
Fig. 8) and the orbitals are again locally adjusted by the
orbital-polarization term. Notably, the electron densities for

μ

FIG. 13. (Color online) Excitation energies Em for the embedded
bond 〈ij〉 along the c axis within the CG phase [see Fig. 4(b)] as
functions of increasing orbital polarization D. Solid lines from HF
(heavy/light lines for occupied/unoccupied states) and hollow circles
from ED (the intensity scale and marker size gives the spectral weight
of each level). Parameters as in set B in Table I.

the initially filled {1b,2a} and empty {1a,2b} orbitals are here
more distinct than in the CG phase as the kinetic energy, which
helps to make the electronic distribution almost symmetric,
is absent. Altogether, the excellent agreement found in this
case between the HF and the ED results confirms the more
classical character of the GC phase with respect to the
CG one.

B. One-particle excitations

We determined also the excitation energies, defined in
Eqs. (3.4) and (3.5), for the embedded bond. Overall, the results
found for the CG phase (see Fig. 13) resemble those obtained
for an embedded atom (see Fig. 9). A qualitatively new feature
in the ED is the broadening of the Hubbard subbands, found
for the LHB and for the individual excitations that belong
to the UHB. This broadening comes from the action of the
kinetic energy which mixes the occupied states at both sites of
the bond 〈ij 〉 leading to bonding and antibonding states that
are modified by the JT effective interactions. As for the atom,
U is the dominating energy scale and the MH gap increases
linearly with D. There are four excitation energies that belong
to the LHB and stem from two excitations at each ion of the
considered bond. Having these splittings in the one-electron
states, it is natural to expect that also the three-electron states
will occur in certain energy intervals for each (HS or LS)
excited state. The number of excited states in the HS states is
two as there could be two states filled by three electrons, one
at each site.

The analysis of the LS states is more subtle here than in
the embedded atom case, as not only four LS2 states (two at
each atom) split off with increasing D, but because also their
spectral weight is transferred from the LS2 states to energies
characteristic of the LS1 excitations. All in all, the qualitative
picture found before for the embedded atom is confirmed here
for the embedded bond, and again the LS1 excitations, which
correspond to creating doubly occupied orbitals of b character
or single occupations in the a↑ orbital, stay roughly in the
same distance from the LHB independently of the value of D,
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μ

FIG. 14. (Color online) Excitation energies Em for the embedded
bond 〈ij〉 along the c axis within the GC phase [see Fig. 4(c)] as
functions of increasing orbital polarization D. Solid lines from HF
(heavy/light lines for occupied/unoccupied states) and hollow circles
from ED (the intensity scale and marker size indicate the spectral
weight of each level). Parameters as in set B in Table I.

while the LS excitations at higher energies are finally the ones
that involve double occupancies in the c orbital. The distance
between these states and the HS excitations is close to 3JH , the
value deduced from the multiplet splitting.17 We remark that
the HF approximation gives excitation energies that reproduce
quite well the values obtained within the ED. This holds in
particular for the LHB and for the HS states of the UHB.

Given the more classical character of the GC phase, the
LHB and the UHB are even more pronounced in this case
(see Fig. 14). Here, the splittings arising from the finite kinetic
energy and found in the CG phase are absent. Accordingly,
the dependence of the one-hole (PES) and the one-electron
(IPES) excitation energies is very similar to that found for a
single embedded atom in this phase (not shown). The LHB
consists of two excitations that correspond to adding a hole
to one of the occupied orbitals: either the c orbital, at the
lower energy because of the crystal field, or the orbital in
the {a,b} doublet locally favored by the JT interactions. These
excitations have been found both in the ED and in the HF at
exactly the same energies.

The situation for the electron excitations at high energy is
again more subtle. Here, one finds in ED four LS excitations
at energy U with respect to the ground state, and they split off
with increasing orbital polarization D: the ones with a roughly
constant energy distance from the LHB do correspond to the
double occupancy of b orbital or single occupations in the
a↑ orbital, while the ones that follow from double occupancy
of c orbital exhibit a similar energy increase with increasing
D as the HS state. Already in the range of relatively small
D ∼ 0.05 eV, the spectral weight is transferred from the LS2
excitations to lower energies, and the excitation energy of
U + 2JH is not observed in the ED results anymore.

Here again, the HF approximation reproduces all trends
found in the ED results, but instead of the spectral weight
transfer of the ED, one finds that the evolution of the HF wave
functions simulates very well the ED findings at sufficiently
large values of D. Systematic errors in the HF, due to the
absence of quantum fluctuations, have been found only in the

regime of small D < 0.1 eV, where the HF energies interpolate
between the excitation energies U − JH and U + JH (lower by
JH than the corresponding ED values at D = 0) and the values
expected from the ED at sufficiently large D. Altogether, the
agreement between the HF and ED is better in the regime of
large D, where the quantum effects in the orbital space are
suppressed.

C. Localization by Coulomb interaction U

So far, the results have shown that the HF approximation
provides a realistic description of the electron density distri-
bution in the occupied orbitals as well as of the excitation
energies. This latter feature is not guaranteed in the HF
approach by itself, but follows here from the relatively large
value of U = 4 eV, which drives the electron localization and
suppresses quantum fluctuations [except for spin fluctuations,
fluctuations related to the “pair-hopping” term in Eq. (2.16),
and the orbital fluctuations along FM bonds]. Here, we show
that the results obtained for the selected parameters are actually
valid in a broad range of values for the Coulomb parameter U .

We fix Hund’s exchange parameter JH = 0.6 eV, which
is responsible for the HS value (S = 1) at V3+ ions in the
ground state of the undoped system YVO3. Given this choice,
we varied the parameter U in a quite broad range of values
starting from U = 2.0 eV.94 As we have shown in Fig. 13,
a relatively small value of D = 0.03 eV suffices to suppress
the orbital fluctuations along the considered c bond in the CG

phase. In this regime of parameters, the excitation energies Em

given by the HF approximation are in reasonable agreement
with the ED ones (see Fig. 15), and only the LS states have
systematically lower energies than their ED counterparts, as
discussed in Sec. III. As a matter of fact, this holds in the whole
range of U > 2.0 eV, i.e., in the entire physical range of local
interactions relevant for transition-metal oxides.94

The dependencies of the one-hole and the one-electron
excitations on U are complemented by the electron densities
projected onto the orbitals of t2g symmetry shown in Fig. 16.
The c orbitals are almost filled in the entire explored range

μ

FIG. 15. (Color online) Energy levels in the embedded bond 〈ij〉
along the c axis within the CG phase [see Fig. 4(b)] as functions of
increasing Coulomb interaction U for D = 30 meV. Solid lines from
HF and hollow circles from ED (the intensity scale and marker size
indicate the spectral weight of the level). Other parameters as in set
B in Table I.
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γ↓

FIG. 16. (Color online) Occupations of spin-down pristine
orbitals within the embedded bond 〈ij〉 along the c axis in the CG

phase [see Fig. 4(b)] as functions of increasing Coulomb interaction
U for D = 30 meV. Solid lines from HF and hollow circles from ED.
Other parameters as in set B in Table I.

of U . They are relatively robust with respect to orbital
polarization for the present small value of D = 30 meV, but
nevertheless the density nic gradually decreases from nic = 1
at U = 2.0 eV to nic � 0.92 at large U = 10 eV. This evolution
of the electron densities nic follows from the behavior of the
orbital doublets {a,b} at both sites.

First, in the regime of small U , electrons are not localized
as the charge excitation energy is the same as the hopping
parameter. The ED gives then the densities 0.58 (0.42) for the
more (less) filled orbitals at the lowest considered value of
U = 2.0 eV. The HF approach almost perfectly reproduces
these densities. Increasing U suppresses the electron hopping
along the bond, and the electron densities are gradually
modified. The many-electron quantum state found in the ED is
mainly determined by the fields acting on the orbital system:
the JT effective fields from the neighboring atoms and the
orbital-polarization term. In the regime of U < 3.5 eV, the
change of the electron densities is markedly slower in the ED
than in the HF approximation, as here quantum fluctuations
contribute. Only for higher values of U , both calculations agree
with each other showing once more that the HF approximation
is reliable in the entire strongly correlated regime of large U

due to the stabilization of symmetry breaking in spin-orbital
space, which suppresses quantum fluctuations.

D. Ground state for the embedded bond

One may wonder how accurate the HF approximation is
for the total energy of the considered bond. When the bond
forms, one gains binding energy due to the kinetic energy.
The binding energy can be computed as the energy difference
between the energy of a bond and that of two single atoms:

E(U ) ≡ Ebond(U ) − 2Eatom(U ). (4.1)

Thereby, one has to take into account the different numbers
of neighbors in each case. An atom is surrounded by six
neighbors, each of them providing mean fields acting on the
orbitals. In contrast, each atom of the bond has just five external
neighbors, while the interactions along the bond are rigorously

α

β

FIG. 17. (Color online) Hartree-Fock results (solid lines) for
the superexchange contribution to the binding energy Esex(U ) are
compared to ED (circles) for an embedded bond 〈ij〉 along the c axis
in the CG and the GC phases for D = 30 meV. For convenience,
the U dependence is expressed by a nonlinear scale (top) and by
the perturbative scaling functions βCG(U ) (4.3) and βGC(U ) (4.4),
respectively. Other parameters as in set B in Table I.

(approximately) included in the ED (HF). This generates a
correction term α to Eq. (4.1) included in Fig. 17, where we
analyze the superexchange contribution to the binding energy
Eex(U ) defined as

Esex(U ) ≡ E(U ) − E(∞). (4.2)

The binding energy E(U ) [Eq. (4.1)] calculated in the ED
can be compared with the strong-coupling approach of Ref. 25
to estimate the energy increments for the embedded bond
and for the embedded atom in both magnetic phases: the CG

and the GC phases. In the regime of large U � t , one finds
asymptotic behaviors that suggest to use

βCG(U ) ≡ t

U − 3JH

, (4.3)

βGC(U ) ≡ 9t

U − 1
3JH

(4.4)

as scaling parameters. The value of βCG(U ) [Eq. (4.3)] is
obtained by considering HS excitations, while the value of
βGC(U ) [Eq. (4.4)] is derived as an average value over the LS
excitations allowed in this case. These quantities have been
used to plot the superexchange energy Esex(U ) (4.2) for a
single bond embedded in each magnetic phase considered
here (see Fig. 17). We show the data for the same range
of U values (2 eV � U � 10 eV) adopted in Figs. 15 and
16, respectively, which correspond to β(U ) � 1.0 in both
phases, and βCG(U ) > 0.024 [βGC(U ) > 0.183] in the CG

(GC) phase.
The analysis of the electron density distribution in Sec. IV C

suggests that the local Coulomb interactions are sufficiently
strong to localize the electrons if U > 3.5 eV (see Fig. 16),
and one expects that the strong-coupling expansion in powers
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of t/U should be valid. This is also confirmed by the present
analysis of the binding energy E(U ) [Eq. (4.1)]: the numerical
results obtained from the ED and the HF method agree very
well in this regime for the CG phase (see Fig. 17). Even
more surprising is the fair agreement between the ED and the
HF calculations found for smaller values of U < 3.5 eV (see
Fig. 17). This result shows that the strong orbital quantum
fluctuations in the CG phase along the c axis19 are well
accounted for within the unrestricted HF approach. In the GC

phase, the agreement is even better and the dependence on
βGC(U ) is practically linear in the entire regime of considered
values of U , i.e., for U > 2.0 eV. This confirms a quite
strong electron localization in this phase, with the AF spin
order preventing electronic transport and acting as a confining
potential at each site of the bond.

V. DEFECTS IN THE DILUTE LIMIT

A. Orbital polarization and the electronic structure

The role of defects in transition-metal oxides is subtle due to
strong electron correlations, which manifest themselves in the
multiplet structure of the MH bands. As a result of the orbital
degeneracy, strong orbital polarization and relevant relaxation
processes occur in the vicinity of charged defects. Since a
Ca defect replaces a Y-ion in YVO3, each defect has eight
vanadium neighbors that form a cube shown in Fig. 1; hence,
the orbital degeneracy, which is controlled by the spin-orbital
order in these compounds, is locally strongly affected by the
defects.43 The (occupied) orbitals in the neighborhood of the
defect are polarized, i.e., rotated. This leads to a violation
of the flavor conservation and, consequently, to a noticeable
modification of the hopping matrix in the rotated t2g basis.
Moreover, for each Ca defect, a hole appears in its proximity,
bound to it by the Coulomb potential of the charged defect
itself. Since these holes can move, controlled by the double-
exchange mechanism, they will affect the spin-orbital order
further.43 In addition, the chemical potential, due to the doped
holes, will lie in a defect band inside the MH gap. Finally, also
these defect states are subject to strong electronic correlations
and display their own MH physics.

Our main aim here is to investigate whether the MH mul-
tiplet splitting can be reliably obtained within the unrestricted
HF framework for the three-flavor t2g case, i.e., in presence of
defect potentials, various orbital-relaxation processes, kinetic
energy of doped holes, and electron-electron interactions.
Here, we consider the dilute limit of low-electron doping
x � 0.05, where the defects can be treated as well separated
from one another. For more clarity, we also limit ourselves
to hole doping for only one orbital flavor and one spin.
Therefore, to demonstrate this, we focus below on several
rather transparent cases of increasing complexity:

(A) defect states in a multiband MH insulator in absence
of orbital polarization and of Coulomb interaction among the
electrons;

(B) role of orbital polarization;
(C) role of LR electron-electron interaction (Coulomb gap

of defect states);
(D) orbital polarization and relaxation of Coulomb gap of

defect states.

For the sake of clarity and simplicity, we will not con-
sider here the effect of LR defect potentials and the self-
consistent screening of LR interactions, which results from
the doping induced by the impurities. As our focus is on the
strong-correlation aspects and in order to get easy-to-interpret
eigenstates and spectral distributions, we shall not discuss the
effects of disorder here, i.e., the defects will always be well
annealed and in the dilute limit.

B. Order-parameter landscape and defects

Unrestricted HF approach allows us to treat large inhomo-
geneous systems, i.e., with defects, interfaces, nanostructures,
etc. We have seen earlier for a two-flavor model that the
Mott-Hubbard gap and the multiplet structure are faithfully
reproduced for the strongly correlated transition-metal oxide
systems. A central requirement of the unrestricted HF to work
is broken spin and orbital translational symmetry. Accordingly,
vanadate perovskites, such as Y1−xCaxVO3, provide an ideal
ground for this approach as spin and orbital orders in these
compounds are present in a wide doping regime, actually up
to the metal-insulator transition. Therefore, the unrestricted
HF is the method of choice in our case. Nevertheless, it is
not clear a priori how well the method works in the vicinity
of defects in view of orbital polarization and hole motion. To
explore this is our central goal.

Moreover, the HF provides a basis for subsequent many-
body perturbation treatments. However, it should be noted
that here such a perturbative treatment will not be performed
with respect to an “uncorrelated” U = 0 state, but with respect
to the HF ground state. This latter state already features the
MH gap and the higher multiplet structure. In fact, it was
already pointed out that the fundamental MH splitting, i.e., the
energy difference of the LHB and the high-spin Hubbard band
�HS = (U − 3JH ) is obtained exactly within HF. We shall
see in the following that there are other gaps, e.g., between
defect states, which suffer from the well-known overestimation
of gap energies within HF theory. A subsequent many-body
perturbation treatment of the screening of interactions is
expected to cure such deficiencies of the HF approach.

In general, HF calculations require a self-consistent op-
timization of all expectation values that define the final
HF Hamiltonian, the HF ground state, and the excitations.
Complete information to construct the HF Hamiltonian is
thus contained in the order-parameter landscape, which is
defined by the full set of effective fields. It contains already
the rotations of occupied (and unoccupied) orbitals due to
defects and doping. As an example, we display the diagonal
occupation numbers in the CG phase for the three-flavor
calculation performed with PBC in Fig. 18. It shows maps
of local magnetizations

mγ (k,l,m) = nγ↑(k,l,m) − nγ↓(k,l,m) (5.1)

for an 8 × 8 × 8 cube of V ions and, from left to right, for
the orbital character γ = c,b,a and a + b. Two planes are
presented: the top row represents the front face of the cube at
l = 0, while the bottom row shows the l = 1 plane.

The left panels reflect the C-type magnetic order of the
electrons in c orbitals. The central panels show the same
magnetic order for the b and a electrons. Here, in addition,

045132-16



DEFECT STATES AND EXCITATIONS IN A MOTT . . . PHYSICAL REVIEW B 87, 045132 (2013)

FIG. 18. (Color online) Map of the orbital magnetization densities mγ (k,l,m) [Eq. (5.1)] in the dilute well-annealed CG phase with
x = 0.015 625 = 1

64 , obtained for a 8 × 8 × 8 cluster [from positive to negative mγ (k,l,m), see color scale on the far right]. The coordinates
k = 0, . . . ,7 are along the horizontal axis, and m = 0, . . . ,7 along vertical axis, while the top row represents the l = 0 and the bottom row the
l = 1 plane. Four panels (from left to right) for different orbital flavor: γ = c, γ = b, γ = a, and γ = a + b, respectively. Parameters: Vee = 0,
VD = 1 eV, and D = 0, others as in set B in Table I.

one recognizes a checkerboard structure, which represents the
G-type orbital order of the a and b electrons. In the right panel,
magnetic densities of electrons in a- and b-type orbitals are
summed up and reveal again the C-type magnetic structure.
While the magnetization density has a perfect alternation
between two sublattices in the l = 1 plane, four defects disturb
it in the l = 0 layer (top row), as seen for b and a orbitals, and
also for their sum.

The number of defects in the system corresponds in this
case to hole doping x = 1

64 . Here, the arrangement of the
defects is well annealed, i.e., LR defect repulsion has been
considered and, therefore, the defects are regularly spaced.
The defects are visible in the top panel of Fig. 18 and are
located between the planes l = 0 and 1. The perpendicular
feature in the a + b panel reflects the motion of the doped holes
along the c direction, but bound to the respective defects. From
the b panel, one can also see that all four holes in the l = 0
plane have b-down character, as assumed. We next analyze the
one-particle excitation spectra for such a cluster obtained in
the HF approach.

C. Excited states in the three-flavor model

In the following, we shall investigate the HF excitation
spectra for the four scenarios (A)–(D) introduced above. We
will analyze only the CG phase as this phase is the relevant
one for moderately doped Y1−xCaxVO3, and we first focus on
the dilute doping case of x = 1

64 .
(A) We begin the discussion with the first scenario, where

orbital-polarization effects and LR Coulomb interactions are
not considered, i.e., D = 0 and Vee = 0. The strong defect
potential VD = 1.0 eV confines a single-doped hole per defect
to the nearest-neighbor V sites of a defect, which form a cube.
The corners of the V8 cube are equivalent with respect to the
defect potential yet not with respect to the spin and orbital
orders. This implies that a (b↓) hole can delocalize only along

a (vertical) bond along the c axis because of the AF order
in the (horizontal) ab plane. The kinetic energy of the a and
b electrons in the ab plane is quenched due to the double-
exchange-type coupling to the spins of the c electrons.43

To explore this symmetry breaking and its consequences
for the excitations, we investigate in Fig. 19 the total DOS
N (ω) together with the local partial DOS Niγσ (ω) for the two
sites (0,0,0) and (0,0,1) of the active bond, i.e., the bond doped
with a hole, and for a site (1,1,0) on an undoped spectator
bond. The chosen spectator bond corresponds to the same spin
polarization as the active bond, thus in principle the hole could
delocalize into its states too. However, this is not observed for
the typical range of values of t (and other parameters). The
total DOS in Fig. 19(a), obtained for the 8 × 8 × 8 cluster,
shows the same multiplet splitting as discussed for the atom
in Sec. III. We recognize the LHB and the three multiplet
subbands forming the UHB. The fundamental MH gap opens
between the LHB and the HS subband of the UHB; the splitting
of these bands is given by the gap

�HS = EHS − ELHB = U − 3JH , (5.2)

and is reproduced exactly in the HF approach. In contrast, the
actual MH gap

�MH = U − 3JH − Weff (5.3)

is reduced by an effective bandwidth Weff . Due to the defects
and their potentials, defect states are split off from the LHB.
In other words, all single-particle states in the vicinity of the
defect are shifted upwards by the defect potential VD (for
simplicity, we consider here only the case of a nearest-neighbor
defect potential). These states lie now inside of the MH gap.
The transitions from the occupied defect states D to the upper
HS Hubbard subband define the in-gap absorption and the
optical absorption gap which we denote �opt. At the same
time, the spectral weight moves out of the LHB, similar as in
the doped Hubbard model.95
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FIG. 19. (Color online) (a) Total DOS N (ω) (left scale) and
average electron filling n(ω) (right scale) in the dilute well-annealed
CG phase with defect concentration x = 1

64 , obtained using an
8 × 8 × 8 cluster. The inset shows N (ω) near the Fermi energy ω = 0.
Panels (b)–(d) show individual DOSs Niασ (ω) for orbital α and spin
σ , together with the total DOS N (ω) (thin lines). The atom coordinate
(0,0,0), (0,0,1), or (1,1,0) is indicated in each case and on the cube
represented near each panel on the right. Parameters as in set B in
Table I, and D = 0, Vee = 0.
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FIG. 20. (Color online) (a) Total DOS N (ω) (left scale) and
average electron filling n(ω) (right scale) in the dilute well-annealed
CG phase with defect concentration x = 1

64 , obtained using an
8 × 8 × 8 cluster. The inset shows N (ω) near the Fermi energy ω = 0.
Panels (b)–(d) show individual DOSs Niασ (ω) for orbital α and spin
σ , together with the total DOS N (ω) (thin lines). The atom coordinate
(0,0,0), (0,0,1), or (1,1,0) is indicated in each case and on the cube
represented near each panel on the right. Parameters as in set B in
Table I, and D = 0.05 eV, Vee = 0.
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The defect states would be completely filled, if there were
not one doped hole per defect. This fixes the chemical potential
μ inside the defect band. It is useful to consider the integrated
(averaged) electron density n(ω) per site [Eq. (2.35)] displayed
in Fig. 19(a) (see right scale). The chemical potential μ is then
determined from the average of μ− and μ+, which are obtained
from the relation

n(μ±) = n0 − x ± ε (5.4)

in the limit ε → 0, where n0 = 2 is the average number of
electrons per site in the undoped three-flavor model and x is
the defect (hole) concentration. As can be seen from the inset
in Fig. 19(a), the chemical potential falls into a small gap at the
upper edge of the defect band D. In the following, we denote
this gap as the transport gap �tr as it would be a relevant
measure for the conduction in the defect band.

Deeper insight into the nature of the defect states and the
transport gap is obtained by considering the local partial DOS
Niγσ (ω), shown in Figs. 19(b)–19(d) for sites (0,0,0) and
(0,0,1), which form the active bond, and at the (1,1,0) V ion,
a spectator site with two electrons. The defect, indicated by
a red dot, lies in the center of the cube at ( 1

2 , 1
2 , 1

2 ). The two
electrons at the spectator site (1,1,0) occupy the (c↓) and (b↓)
local orbitals as can be seen from Fig. 19(d). They lie below
the chemical potential μ indicated by the perpendicular dashed
line.

The doped hole has (b↓) character and is localized on
the active bond displayed in Figs. 19(b) and 19(c). On both
sites, the (c↓) orbitals are occupied, while the remaining (a↓)
electron can delocalize on the vertical bond, i.e., parallel to
the c axis, consistently with the FM correlations in the C-AF
phase. This delocalization leads to a splitting into bonding and
antibonding states on the active bond

�BA ∼ 2
√

V 2
JT + t2, (5.5)

where the bonding-antibonding gap �BA is determined by the
resonance integral t and the JT interaction VJT ≈ Vab − 1

4Vc

in the case of the G-AO order. In Figs. 19(b) and 19(c),
�BA ≈ 0.4 eV is essentially determined by the hopping-matrix
element t = 0.2 eV, while VJT ≈ 0.02 eV. That the |a↓〉
occupation is asymmetric along the active bond is a result
of the JT interactions and the underlying G-type orbital order.

The origin of the “transport gap” �tr is evident in this case
and we identify it here with the gap between the topmost
occupied orbital on a spectator bond, i.e., |b↓〉 orbital at site
(1,1,0) and the unoccupied antibonding state on the active
bond. This energy is

�tr ∼
√

V 2
JT + t2 + VJT, (5.6)

and for the present parameters one finds in Fig. 19 that
�tr ≈ 0.22 eV, and is essentially determined by the kinetic
energy. It is important to realize that within the HF scheme,
occupied (unoccupied) orbitals correspond to electron removal
(addition) energies. These processes need not refer necessarily
to the same defect, but can occur at different defects. Thus, �tr

is the energy gap for the hopping processes between different
defects within the defect band.

The energies of the occupied (c↓) orbitals differ strongly at
different ions [see Figs. 19(b)–19(d)]. This is a consequence
of the different local occupation numbers, which enter the
HF energies. Obviously, this also affects the energies of the
unoccupied orbitals. The defect states have their own MH gap
as can be seen, for example, in Fig. 19(d). Inserting an (a↓)
electron on site (1,1,0), in addition to the already present (c↓)
and (b↓) electrons, leads to the HS defect state |c↓b↓a↓〉
at ω ∼ 2.0 eV. Finally, at higher energies, one recognizes
the LS defect multiplet states |c↓b↓γ↑〉, with γ = a,b,c,
respectively.

(B) The effect of the Coulomb potential of the defect is
to rotate the occupied orbitals in the vicinity of the defect
such that their energy is minimized. This polarization effect,
described by Hpol and controlled by the parameter D, was not
considered in the first scenario. The second scenario represents
a calculation within the same parameter set of the first scenario,
with the exception for finite D = 0.05 eV. The total DOS N (ω)
shows a clear change of the DOS of the defect states in the
vicinity of μ, which is amplified in the inset of Fig. 20(a).
While there was a pronounced transport gap in the absence of
orbital polarization, here this gap has almost disappeared (or
is of marginal size).

The main effects of orbital polarization can be revealed by
inspecting the local partial DOS Niγσ (ω). As we observe in
Figs. 20(b) and 20(c), which reflect the changes on the sites of
the active bond, the (c′↓) orbital has now some admixtures of
(a↓) and (b↓) flavors. More importantly, Figs. 20(b) and 20(c)
show that the bonding and antibonding states are defined by
linear combinations of |a↓〉 and |b↓〉 states, and have no longer
pure (a↓) character, as it was the case in Figs. 19(b) and 19(c).
This mixing is a consequence of the flavor nonconservation in
the rotated t2g basis and of the resulting off-diagonal terms in
the kinetic energy.

The most important feature in this second (B) scenario is the
formation of a bonding-antibonding splitting on the spectator
bond, as can be seen in Fig. 20(d). At first glance, this may
look puzzling as both states are occupied, so there is no obvious
net energy gain that may drive such a splitting. Inspection of
energies and occupation numbers shows that the level splitting
is due to a combined mechanism: the rotation of the c orbital is
favored when its energy coincides with the level of the bonding
orbital. Thus, we observe here an orbital rotation induced by
bonding-antibonding splitting on the spectator bonds.

Interestingly, the antibonding band on the spectator bond
is pinned to (but remains below) the chemical potential,
whereas the antibonding state on the active bond is confined
at (but remains above) the chemical potential. This leads to
a vanishing transport gap �tr. However, this also implies a
remarkable constraint in the system; namely, the hole can not
delocalize from the active bond into the opposite spectator
bond with the same spin orientation.

Another quite important consequence of the orbital flavor
mixing is the collapse of the charge polarization on the active
bond. Whereas in the absence of orbital polarization in scenario
(A) there is a pronounced accumulation of a-type charge at site
(0,0,1) and of hole density at site (0,0,0) triggered by the JT
interaction, one observes an essentially complete collapse of
the combined a plus b charge polarization on the active bond
in the case of D = 0.05 eV [see Figs. 20(b) and 20(c)].
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FIG. 21. (Color online) (a) Total DOS N (ω) (left scale) and
average electron filling n(ω) (right scale) in the dilute well-annealed
CG phase at hole doping x = 1

64 , obtained using an 8 × 8 × 8 cluster.
The inset shows N (ω) near the Fermi energy ω = 0. Calculation
includes the LR Coulomb interaction Vee = 0.2 eV. (b) Dependence
of DOS N (ω) of defect states and Coulomb gap near the Fermi energy
ω = 0 on increasing strength of LR Coulomb interaction: Vee = 0
(solid line, black), 0.2 eV (dashed line, red), 0.5 eV (dashed-dotted
line, blue), 1.0 eV (dashed-double-dotted line, dark green). For
increasing strength of Vee, the features in N (ω) move away from
the Fermi energy ω = 0. Other parameters as in set B in Table I and
D = 0.

D. Role of long-range Coulomb interaction

Next, we turn to the effects of the LR Coulomb interaction
in presence of defect states. In insulators, the Coulomb
interaction is screened by the dielectric constant ε0 of the
system; yet, the interaction keeps its ∼1/ε0r LR character.
Here, ε0 represents the background dielectric screening due
to the “core” electrons. These are in our case all electrons
apart from those of t2g type. The screening arising from
t2g electrons, which is for instance essential for the MIT, is
explicitly included in the Hamiltonian of the system.

In the next scenario (C), the LR Coulomb interaction (2.20)
is taken into account and parametrized via Vee (instead of
ε0), while the orbital polarization is neglected (D = 0), as in
scenario (A). The DOS is displayed in Figs. 21(a) and 21(b).
Its comparison with Fig. 19(a) shows that the LR Coulomb
interaction has no significant effect on the ionic multiplet
structure, as one might expect. There is, however, a significant
change in the size of the energetic splittings between the
different defect states in the vicinity of the chemical potential,
as one can see from the insets in Figs. 19(a) and 21(a). The

FIG. 22. (Color online) Transport gap �tr in the well-annealed
CG-AO phase with doping concentration x = 1

64 as a function of
electron-electron interaction coupling Vee and orbital-polarization
strength D. Results obtained for an 8 × 8 × 8 cluster with the
parameters as in set B of Table I.

fine structure of the levels is here basically as in Figs. 19(c)
and 19(d). The peaks in the inset stem from the occupied
{(c↓),(b↓)} orbitals at the spectator sites as well as from
the (a↓) bonding/antibonding levels at the active bond. The
main effects of the nonlocal LR electron-electron Coulomb
interaction are (i) to enlarge the bonding-antibonding splitting
and (ii) to increase the polarity of the active bond.

The transport gap �tr opens between the topmost occupied
|c↓b↓〉 states on the spectator site and the unoccupied |a↓〉
antibonding state on the active bond. Figure 21(b) shows that it
increases almost linearly with increasing LR electron-electron
interaction 0 < Vee < 1.0 eV. Indeed, this dependence of �tr

on Vee is summarized in Fig. 22. The line A-B shows
the evolution of �tr with the increasing value of Vee for
vanishing polarization field D = 0. In the absence of nonlocal
electron-electron Coulomb interaction, the origin of the gap
is the bonding-antibonding splitting due to the kinetic energy
gain of the single a electron on the active bond. With increasing
Vee, the charge polarization of the bond grows and the kinetic
energy is suppressed. At large Vee, the gap �tr is determined
by the nonlocal Coulomb interactions, i.e., essentially by the
nearest- and further-neighbor ones. The increase of �tr along
the line A-B in Fig. 22 may be approximated in terms of
the electron-electron interaction parameter Vee, the hopping
integral t , and the JT coupling VJT as follows:

�tr ≈
√

(Vee/2 + VJT)2 + t2 + Vee/2 + VJT. (5.7)

We emphasize that, in these systems, the Coulomb gap in
the defect states is a consequence of the complex structure
of the defects in combination with the electron-electron
interactions. We note that this mechanism is distinct from
the disorder-induced Coulomb gap of Shklovskii and Efros.96

We have already seen that the doped holes in the dilute
doping regime have no effect on the multiplet splitting away
from the defects. On the other hand, on general grounds we
would expect that the present Coulomb gap in the defect
band is overestimated within the HF approximation, and
will be reduced by dielectric screening, i.e., obtained by
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FIG. 23. (Color online) (a) Total DOS N (ω) (left scale) and
average electron filling n(ω) (right scale) in the dilute well-annealed
CG phase with x = 1

64 , as obtained using an 8 × 8 × 8 cluster
for finite LR Coulomb interaction Vee = 0.2 eV. The inset shows
N (ω) near the Fermi energy ω = 0. (b) DOS N (ω) of defect states
and Coulomb gap near the Fermi energy ω = 0 for increasing
strength of LR Coulomb interaction: Vee = 0 (solid line, black),
0.2 eV (dashed line, red), 0.5 eV (dashed-dotted line, blue), 1.0 eV
(dashed-double-dotted line, dark green). For increasing strength of
Vee, the features in N (ω) move away from the Fermi energy ω = 0.
Other parameters as in set B in Table I and D = 0.05 eV.

a many-body treatment beyond the HF approach. We shall
see next that already the inclusion of orbital polarization
gives rise to a substantial screening and reduction of the
Coulomb gap.

Finally, we consider scenario (D), which includes both LR
electron-electron Coulomb interaction and orbital-polarization
effects in the vicinity of the defects. The DOS is displayed in
Figs. 23(a) and 23(b). Comparison of the insets in Figs. 23(a)
and 21(a) shows the strong reduction of �tr in the present case
of D = 0.05 eV from the value found with D = 0. Similarly,
Figs. 23(b) and 21(b) make apparent the strong reduction of
the gap at D = 0.05 eV not only for Vee = 0, but also for larger
values of Vee.

To summarize, the central observations concerning the
transport gap are (i) the decrease of �tr with increasing
polarization D, and (ii) the increase of �tr with increasing
LR electron-electron Coulomb interaction strength Vee. These
findings are summarized in Fig. 22. The strong impact of
the orbital-polarization D term on �tr is seen between the
A and C points, where the transport gap is reduced by
a factor ∼3 when D increases from 0 to 0.05 eV. This

Δ

FIG. 24. (Color online) Three characteristic gaps in the spectra
for increasing doping x: the Mott gap �HS [Eq. (5.2)] deduced from
the energy of the HS transitions (triangles), the optical gap �opt

between the defect states and the HS UHB (squares), and the transport
gap �tr within the defect states (circles), determined from the flat
region in n(ω) at ω = 0. The three gaps are obtained for the dilute
well-annealed doped CG phase using an 8 × 8 × 8 cluster, and for
two values of D: D = 0 (solid lines, black) and D = 0.05 eV (dashed
lines, red). Parameters as in set B in Table I and Vee = 0.2 eV.

strong suppression of the transport gap change found here
for relatively weak polarization interaction D is consistent
with fast orbital rotation induced by this term, presented in
Sec. III.

VI. DISCUSSION

A. Gaps in the electronic structure

In our HF study we have encountered three fundamental
energy scales typical of doped MH insulators. They are
displayed in Fig. 24 for the dilute doping regime x � 0.05
investigated here. In decreasing-size order, these energies
represent (i) the Mott gap computed as the energy of the
HS charge transitions [Eq. (5.2)], (ii) the optical gap �opt

relevant for the in-gap absorption, which opens between the
occupied (unoccupied) defect states inside the MH gap and
the unoccupied (occupied) states of the HS part of the UHB
(the LHB), and (iii) the lowest-energy excitation gap within
the defect states �tr [Eq. (5.7)] of relevance for transport. The
reported data are obtained for a finite value of the LR Coulomb
interaction strength Vee = 0.2 eV, and for two different values
of the orbital-polarization parameter D, corresponding to
scenarios (C) and (D). Note that the gaps �HS and �opt in
Fig. 24 are inferred from the peak positions in the DOS and
correspond to the absorption maxima and not to the onset of
the absorption.

It is evident that only �tr is significantly affected by the
orbital-polarization term (Fig. 22). We note here that while the
screening of electronic interactions is generally obtained by
many-body perturbation theory beyond the HF approximation,
for example, by resummation in random phase approximation,
the screening of Coulomb interactions at defects is already, to
a large extent, contained on the Hartree level and taken care
of by charge and orbital relaxation effects around the defects.
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This explains why finite orbital polarization D leads to such a
strong reduction of the transport gap.

These characteristic scales may be compared with the
experimental data4 for the doping dependence of the optical
absorption spectra for Y1−xCaxVO3 and La1−xSrxVO3. They
reveal HS Mott transition energies �HS of about 2.2 and 1.8 eV,
respectively. The Mott-gap energy is essentially independent
of doping, as found in the present HF approach. Only close
to the MIT, the intensity of the MH absorption fades away.
The most remarkable feature in optical spectroscopy is the
appearance of an in-gap absorption related to defect states:
the intensity of this absorption grows with doping. The
characteristic energy of the in-gap absorption �opt (read off
at the peak positions) is independent of doping in the dilute
limit.

At higher defect concentrations, which go beyond the
present model calculations designed for the dilute limit, i.e.,
for x < 0.05, the energy of the absorption peak decreases and
eventually collapses for doping concentration approaching the
MIT. For example, in the case of Y1−xCaxVO3, �opt ∼ 1.2 eV
up to x = 0.10.4 In La1−xSrxVO3, this absorption is centered
at about 0.80 eV for x < 0.10, while the in-gap absorption
peak shifts to ∼0.3 eV at the doping concentration x = 0.168,
i.e., close to the MIT.4 In the high-concentration regime, it
will be important to include the dielectric screening due to the
doped holes.

Activated transport in La1−xSrxVO3 has been reported first
by Dougier and Hagenmuller,97 who observed an activation
energy �tr ∼ 80 meV at x � 0.05 doping. Transport in
these systems has been extensively discussed by Mott98

and identified as Anderson type, i.e., controlled by defects.
For Y1−xCaxVO3, activated behavior of the resistivity was
reported for the Ca-doping range x < 0.3.1,5,99 In particular,
Sage et al.5 reported the activation energies Ea = 0.124, 0.106,
and 0.064 eV at doping x = 0.1, 0.2, and 0.3, respectively.
The values for �tr in Fig. 24 are of similar size when
orbital polarization D = 0.05 eV is included. Noticing these
qualitative trends, we point out here that a quantitative analysis
of the above experimental data will be possible only after
extending the present model to the regime of higher doping
x > 0.1.

B. Orbital density distribution

Spin-orbital order in RVO3 compounds is typically dis-
cussed by considering only the subspace of a and b

orbitals.19,75 While such a simplified picture may be sufficient
for the undoped compounds, it becomes questionable when
the system is doped. One important and obvious perturbation
mixing the orbitals is the interaction with the dopands. In fact,
this interaction triggers the orbital polarization Hpol, induced
by the polarization constant D in Eq. (2.12). Figure 25 displays
the total filling within c and a + b orbitals (defined with respect
to the original unrotated orbital basis) as function of doping x.
We see that, as expected, the c occupation remains unchanged
when the orbital polarization is absent (at D = 0), i.e., holes go
only into the a and b orbitals. Instead, the situation is reversed
for D = 0.04 eV and the c occupation is here more strongly
reduced than the a + b occupation.

γ

FIG. 25. (Color online) Average total electron filling nγ in the c

orbitals (nc, circles) and in the {a,b} orbital doublet (nab, squares),
as obtained using an 8 × 8 × 8 cluster in the dilute well-annealed
CG phase, for increasing doping x and for two values of the
orbital-polarization interaction: D = 0 (solid lines) and D = 0.04 eV
(dashed lines). Other parameters as in set B of Table I, and Vee = 0.

This, at a first glance, very surprising and counter-intuitive
result can be understood by recalling that the lowest (occupied)
local states rotate from pure c character at D = 0 to a linear
combination of c and {a,b} at finite D in the vicinity of the
defects (see Sec. III). It is important to realize that this rotation
involves all V neighbors of the defect. Thus, the concentration
of V ions affected by the redistribution of electronic density is
much larger than the concentration of doped holes; this effect
explains the strong change of occupancy seen in Fig. 25.

Considering the strong admixture of a and b orbital
character in the rotated c′ orbital, one may wonder whether
this does not necessarily imply a complete breakdown of any
analysis based on a two-flavor description. Such concerns are
certainly justified when matrix elements of local orbitals come
into play as, for example, in the calculation of the intensities of
the transitions investigated in optical or RIXS spectroscopies.
We emphasize that in cases where models merely rely on the
fact that the rotated c′ orbital is the lowest orbital in the t2g

sector and is always occupied, qualitative conclusions based
on two-flavor models remain valid.

Further insight into the variation of electronic filling in
different orbitals at increasing doping x can be gained by
inspecting the occupied single-particle states at a spectator site
(1,1,0) in the vicinity of a defect at ( 1

2 , 1
2 , 1

2 ) for finite orbital
polarization D = 0.05 eV, as displayed in Fig. 26. This figure
highlights the formation of bonding and antibonding states on
spectator bonds, which involve the (a↓) and (b↓) orbitals as
well as the (c↓) orbital (but with a much reduced splitting). An
important feature here is that the chemical potential is pinned
at the upper edge of the antibonding band. This guarantees that
the spectator states are blocked for doped holes!

Another important effect of D is that, with respect to
the rotated basis, the hopping matrix no longer conserves
flavors, which is the case for the original t2g basis. Therefore,
large polarization D leads to a strong mixing of orbitals
with different character in the vicinity of defects also via
the kinetic energy. One may wonder which mechanism leads
to the bonding-antibonding splitting on the spectator bond

045132-22



DEFECT STATES AND EXCITATIONS IN A MOTT . . . PHYSICAL REVIEW B 87, 045132 (2013)

γσ
ω

ω

↓

↓

↓ ↓

↓

↓

↓

FIG. 26. (Color online) Occupied part of the (spin-orbital)-
resolved defect state DOSs Niασ (ω) for orbital α and spin σ at
the atom (1,1,0) which belongs to undoped (spectator) bond, as in
Fig. 20(d), obtained in the dilute well-annealed doped CG phase
(x = 1

64 ) using an 8 × 8 × 8 cluster. Parameters as in set B of Table I,
D = 0.05 eV, and Vee = 0.

although both states are occupied such that there is no evident
energy gain as, for instance, in the case of the JT splitting or
the Peierls distortion. Here, we observe that the splitting is
induced by the orbital rotation (at finite D) and the appearance
of the off-diagonal hopping processes along the (vertical) c

axis. Remarkably, even for the rotated c orbital, hopping along
the c axis is now possible, as one can see from a small splitting
of the DOS for c electrons in Fig. 26.

VII. SUMMARY AND CONCLUSIONS

Before summarizing, we recall the fundamental problem
in strongly correlated systems: the typical multiplet splitting
of the transition-metal ions can be obtained in the localized
limit by a Hartree factorization performed with respect to an
optimal local basis set, i.e., a basis with occupation numbers
being close to either 1 or 0. That is, the local spin-orbital states
should be either occupied or empty: intermediate values for the
occupation numbers would signal the breakdown of the Mott
gap in the Hartree approximation, which ultimately happens
when the kinetic energy increases and dominates over electron
localization triggered by the local interactions. The former
requirement, however, leads to complications in the vicinity
of defects. This follows from a rotation of the occupied orbital
states of the V ions due to the local orbital-polarization fields
associated with charged defects.

In principle, a local rotation could be specified that removes
the off-diagonal polarization terms and defines a new optimal
local basis, i.e., again with occupancies either close to 1 or
0, and a fully developed Mott gap. This simple scheme is not
applicable when some nonlocal terms are present (as, e.g.,
the kinetic energy term). Yet, it is important to recognize that
the unrestricted Hartree-Fock (HF) (and not Hartree) scheme,
i.e., including the relevant off-diagonal contributions from
(local and nonlocal) interactions, can be used to determine
the Mott-Hubbard split bands in the presence of defects.
We have found that this also holds true for the three-flavor
case. In particular, we have shown, by comparison with exact
diagonalization, that the HF approach provides a surprisingly
faithful description not only of the occupied, but also of the
unoccupied, higher multiplet states. It is the latter aspect

that is particularly surprising here as it is known that the
HF approach is designed to describe the occupied states
in the best possible way, while for the unoccupied states
one expects a considerably poorer description (e.g., electron
affinities).

Basic features of the character of wave functions and
excitation spectra, which reflect the interplay of strong cor-
relations and the orbital-polarization field D due to a defect,
are already well represented by the HF study of a single ion
or a bond embedded into the electronic structure of a large
cluster reflecting the Mott insulator with spin-orbital order.
These studies and their comparison with exact diagonalization
allow us to conclude that the HF calculation describes well
(i) the effect of the orbital polarization on the wave functions
in the three-flavor case, and (ii) the multiplet structure for an
atom (Sec. III). A further investigation for an embedded bond
(Sec. IV) highlights the interplay of the orbital-polarization
field D and the kinetic energy. Comparison of the HF results
for partial densities and excitation spectra (i.e., photoemission
and inverse photoemission) with exact diagonalization data
shows good agreement in the whole D range. An exception
are extremely small values of D, where the exact wave
function is entangled, a feature that can not be captured
within the HF. A particularly good agreement between the HF
and exact diagonalization is obtained for the binding energy
basically for all values of U > 2 eV. The binding energy
for the CG phase is found to be much larger than that for
the GC phase. This higher binding energy, together with the
double-exchange mechanism realized on ferromagnetic bonds,
is responsible for the increasing stability of the CG phase on
increasing the doping and leads to the experimentally observed
magnetic phase transition in Y1−xCaxVO3 at very low doping,
x ∼ 0.02.43

The description of doped carriers in Mott insulators, such
as in the R1−xAxVO3 compounds (R = Y, La, and A = Ca, Sr,
etc.) or in LaVO3/SrVO3 superlattices,100 is a computational
challenge due to the interplay of strong correlations, defect-
induced local deformations of the wave functions, and spin-
orbital order. It is evident that to deal with strong correlations
and defects, for sufficiently large systems, requires carefully
chosen approximations. In this work, we have shown that the
unrestricted HF method fulfills all essential requirements. In
particular, we have seen that even the unoccupied states at
high energy, i.e., those reflecting the multiplet structure of
the Mott insulator at orbital degeneracy, are well described
in a doped system. The same holds true for the perturbed
electronic structure in the vicinity of the charged defects. The
HF approach is an efficient scheme which maps the interacting
electron problem onto the problem of a single particle moving
in a self-consistently determined field of the other electrons.
Therefore, it is applicable for large systems, systems with
defects, heterostructures, and interfaces. Very relevant for
the success of the method in describing Mott insulators
are the broken symmetries reflecting the underlying spin-
orbital order. Fortunately, the spin-orbital order in R1−xAxVO3

compounds persists up to the metal-insulator transition, thus,
the assumption of spin-orbital order in the unrestricted HF
scheme is here fully justified.

Having shown that the HF approach provides a faithful
description of excited states of single defects in systems with
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broken symmetries, we investigated the electronic structure
of an 8 × 8 × 8 cluster for finite defect concentrations in the
dilute doping regime. The aim here is to resolve the complex
nature of defect states and their manifestation in the excitation
spectra. A single A defect, for example, a divalent A ion in
R1−xAxVO3, adds a hole into the t2g shell of V(3d) states. In
the dilute limit, this hole is not freely moving but is pinned
by the charge of the defect essentially to a cube of V ions
surrounding the defect A in its center.

This study demonstrates that the excitation spectra of
the intrinsic, orbital-degenerate Mott insulator are strongly
modified by adding defects. We address here only some points
relevant for experimental studies. An important observation
is that the fundamental excitations, such as the Mott gap
and the multiplet energies, are not affected by doping in the
dilute regime. The defects generate defect states inside the
Mott-Hubbard gap, as observed.4 Due to the intrinsic doping,
the chemical potential lies inside the defect band. The spectral
weight of defect states is taken from the LHB. We have argued
that the in-gap absorption observed in the optical conductivity
experiments performed for several doped vanadate systems
can be identified with these states.

Moreover, we observe in the HF excitation spectra for
the CG phase a transport gap inside the defect band, which
corresponds to the removal of an electron at one defect and
the addition at another defect in the neighborhood. In the
absence of electron-electron interactions, this gap is essentially
determined by a bonding-antibonding splitting resulting from
the c-axis kinetic energy of a doped hole confined by the defect.
The inclusion of LR Coulomb interactions between electrons
∼Vee leads to an approximately linear increase of the transport
gap with Vee. Thus, these interactions promote the transport
gap to a Coulomb gap. By combining Coulomb interactions
and the mechanism of orbital polarization, we find a reduction
of the size of the Coulomb gap. This can be considered as
screening in the vicinity of the localized defect, i.e., screening
contained already at the HF level.

An important motivation of this work was the study of
the three-flavor case, particularly in connection with defects
in the RVO3 perovskites. Usually, spin-orbital order in the
perovskite vanadates is discussed in terms of a simplified
two-flavor ({a,b}) model.43 We have shown here that defects
lead indeed to a strong change of occupied orbitals, e.g., the
occupied c orbitals, in the vicinity of charged defects due to
orbital polarization. Yet, we have also shown that the topmost
occupied local orbitals, i.e., the orbitals that are relevant for
the doped holes, are mainly of {a,b} character as in the
two-flavor description. It is this latter observation that leads
to the conclusion that the interaction of doped holes and the
spin-orbital degrees of freedom are in fact similar in the two
models.

Summarizing, the central result of this paper is establishing
that the unrestricted HF approach is well designed to describe
the electronic structure of charged defects in doped transition-
metal oxides with active orbital degrees of freedom, in
presence of strong electron correlations. This study provides
valuable insights into the changes of the electronic structure
in doped Mott-Hubbard systems under doping. While the
positions of the Hubbard subbands are not affected by doping,
their spectral intensity changes and new defect states occur

within the Mott-Hubbard gap. These new states are observed
in the optical spectroscopy and their weight increases with
doping.

Finally, we remark that the HF approach represents a natural
basis for a subsequent many-body perturbative treatment. It
should be noted that the unrestricted HF method already
provides the Mott-Hubbard gap and the higher-energy multi-
plet excitations. Thus, the proper many-body treatment would
start from a reasonable Slater determinant, which reflects the
correlated electronic structure of the spin-orbital ordered Mott
insulator. We have shown that the fundamental Mott gap is
correctly described by the HF in the framework of the multi-
band Hubbard model. Therefore, the many-body treatment
will hardly affect the Mott-Hubbard gap, yet it may further
improve higher multiplets, and it will certainly contribute
to the screening of the long-range Coulomb interactions and
lead to an extra reduction of the Coulomb gap in the defect
states.
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APPENDIX: HARTREE VERSUS HARTREE-FOCK
APPROXIMATION AND OPTIMAL BASIS

The remarkable successes of the LDA + U approach89 in
describing the various aspects of the electronic structure of
strongly correlated materials,101–103 including the magnetic
order and the MH gaps, suggest that the Hartree (or mean-field)
approximation for the electron-electron interactions in the
appropriate orbital basis could be sufficient to design an
efficient and realistic scheme to determine the electronic
structure. This experience, however, is based on undoped
systems, where the occupation numbers for the atomic orbitals
(such as t2g or eg orbitals at transition-metal ions in the
correlated oxides) used in the LDA + U calculations are
either close to 1 or close to 0. This latter condition is
actually necessary to produce an essentially correct multiplet
splitting, i.e., these orbitals are already the properly chosen
orbitals to implement the electron interactions in the Hartree
scheme. This is always the case in an undoped Mott insulator,
which explains the success of the LDA + U approach.101–103

Note also that the orbital basis is then identical at every
site.

However, in a system with defects, the occupied orbitals
(here we consider ↓-spin ones) belong to an orbital basis,
which adjusts itself due to the external polarization field
[Eq. (2.12)] (see Sec. III). As a result, for an atom one finds
new rotated orbitals {|ξn〉}, introduced in Sec. III. Similar
situation occurs in a bond but in addition the orbitals are then
delocalized over two atoms in the CG phase (see Sec. IV).
Hence, we write the HF orbitals for ↓-spin electrons {|ξn〉} as
a linear combination of the original t2g orbitals {|ia〉,|ib〉,|ic〉}
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TABLE II. Decomposition of the local orbital basis [Eq. (A1)]
onto the original t2g basis given by the elements |α(n)

iγ |2 [Eq. (A2)] for
↓-spin electrons, as obtained for an atom (atom, n = 1,3,5) and for a
bond with two atoms i = 1,2 (bond, n = 1, . . . ,6) in the CG phase,
with D = 0.05 eV. Other parameters as in Table I: set A (atom) and
set B (bond).

Bond

Orbital γ Atom i = 1 i = 2 Total

ξ1 c 0.8616 0.0058 0.0058 0.0116
b 0.0832 0.3100 0.1842 0.4942

a 0.0552 0.1842 0.3100 0.4942
ξ2 c 0.4117 0.4117 0.8234

b 0.0556 0.0326 0.0882

a 0.0326 0.0556 0.0882
ξ3 c 0.0032 0.4337 0.4337 0.8674

b 0.5381 0.0430 0.0232 0.0662

a 0.4587 0.0232 0.0430 0.0662
ξ4 c 0.0096 0.0096 0.0192

b 0.3293 0.1611 0.4904

a 0.1611 0.3293 0.4904
ξ5 c 0.1352 0.0786 0.0786 0.1572

b 0.3787 0.1150 0.3063 0.4213

a 0.4861 0.3063 0.1150 0.4213
ξ6 c 0.0605 0.0605 0.1210

b 0.1470 0.2925 0.4395
a 0.2925 0.1470 0.4395

[Eq. (2.6)] at site i:

|ξn〉 =
∑

i

c∑
γ=a

α
(n)
iγ |iγ 〉 . (A1)

Here, i = 1 and n = 1,3,5 for an atom, while i = 1,2 and
n = 1, . . . ,6 for a bond along the c axis. As an example, we
give in Table II the expansion coefficients∣∣α(n)

iγ

∣∣2 ≡ |〈ξn|iγ 〉|2 (A2)

obtained for a representative value of D = 0.05 eV. These
coefficients were obtained by applying the unrestricted HF
approximation as described in Secs. III and IV.

It is important to realize that the Fock terms that stem from
interorbital Coulomb interactions between electrons with the

same spin play an essential role in optimizing the orbital basis
near charge defects. Indeed, the polarization term (2.12) acts as
a field and contains onsite interorbital averages 〈c†iασ ciβσ 〉 with
α �= β, which are responsible for the orbital rotation and the
change of the local basis. By comparing the occupied orbitals
for an atom and for a bond in the C-AF phase at finite value
of t = 0.2 eV (see Table II), one finds that further change of
the orthogonal basis occurs at each site due to finite kinetic
energy along the FM bond.104 Note that the orbital labels
{n} in Table II are assigned to the orbital functions {ξn} in
sequence of their increasing HF energy. The orbitals |ξ1〉 and
|ξ3〉 are occupied for an atom, while for the bond the number of
occupied orbitals is doubled and also the orbitals |ξ2〉 and |ξ4〉
are occupied: they are characterized by similar orbital densities
as those in the orbitals |ξ1〉 and |ξ3〉 for the atom, respectively,
but the energies of the latter two orbitals are interchanged in
the bond.

The local electron-electron interactions are rotationally
invariant,59 and the Hartree scheme could in principle be
applied to any set of locally orthogonal orbitals including the
basis of rotated orbitals discussed above. If one could find such
a rotated basis with the self-consistently determined orbital oc-
cupations being just either 0 or 1, Hartree approximation would
be again sufficient as in the LDA + U scheme. Mean fields
would then suffice to come quite close to the exact solution (as
for a single atom, see Sec. III), and to reproduce the multiplet
structure of the UHB. In such a case, Fock terms simply vanish
and one can neglect them from the very beginning despite the
fact that terms that could drive finite values of the off-diagonal
averages are present in the HF Hamiltonian.

Summarizing, we conclude that the off-diagonal Fock
elements are essential within the HF scheme and are necessary
to arrive at the final optimal orbitals adjusted to the defect
states. It is only in this orbital basis that the electronic
structure in a Mott insulator faithfully reproduces the multiplet
splittings. Therefore, possible extensions of the LDA + U

scheme to doped Mott insulators will have to use downfolding
procedure105 to a proper tight-binding model106 in which full
unrestricted HF calculations could be performed. Designing
such a scheme which has to go beyond the present LDA + U

approach89 is indeed very challenging; it would make it
possible to investigate not only doped Mott insulators but also
interfaces,29,52 heterostructures,100 or other composite materi-
als with defect states in correlated insulators in the future.
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accompanied by C-type orbital order (with the same occupied
orbitals along the c cubic axis and alternating orbitals within the
ab plane) a GC phase, and the phase with C-type antiferromagnetic
order (ferromagnetic spin order along the c cubic axis and
staggered moments within the ab plane) and staggered orbitals
in all three directions a CG phase.

37P. G. de Gennes, Phys. Rev. 118, 141 (1960).
38J. van den Brink and D. Khomskii, Phys. Rev. Lett. 82, 1016 (1999).
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