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It has recently been realized that a general class of non-Abelian defects can be created in conventional
topological states by introducing extrinsic defects, such as lattice dislocations or superconductor-ferromagnet
domain walls in conventional quantum Hall states or topological insulators. In this paper, we begin by placing
these defects within the broader conceptual scheme of extrinsic twist defects associated with symmetries of the
topological state. We explicitly study several classes of examples, including Z2 and Z3 twist defects, where the
topological state with N twist defects can be mapped to a topological state without twist defects on a genus g ∝ N

surface. To emphasize this connection we refer to the twist defects as genons. We develop methods to compute the
projective non-Abelian braiding statistics of the genons, and we find the braiding is given by adiabatic modular
transformations, or Dehn twists, of the topological state on the effective genus g surface. We study the relation
between this projective braiding statistics and the ordinary non-Abelian braiding statistics obtained when the
genons become deconfined, finite-energy excitations. We find that the braiding is generally different, in contrast
to the Majorana case, which opens the possibility for fundamentally novel behavior. We find situations where the
genons have quantum dimension 2 and can be used for universal topological quantum computing (TQC), while
the host topological state is by itself nonuniversal for TQC.
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I. INTRODUCTION

Some of the most important discoveries in condensed-
matter physics over the last few decades have been about
topological states of matter.1–4 Topological states form a
class of quantum many-body states that are distinguished by
principles of topology rather than symmetry, which implies
that they have physical properties that are robust under
arbitrary local perturbations and that are not associated with
any local order parameter. Well-known examples of such
topological properties include the existence of gapless robust
edge states, topology-dependent ground-state degeneracies,
fractional charge and statistics of topological quasiparticles,
and quantized response properties. For some topological states,
known as non-Abelian states,2 there are a finite number of
degenerate lowest-energy states for any given configuration
of topological quasiparticles. The degeneracy between these
states is topologically protected, being robust against any local
perturbation. An adiabatic motion of the quasiparticles in real
space therefore leads to a nontrivial unitary operation in the
space of degenerate ground states, which is described by
the non-Abelian statistics of the quasiparticles. Such a state
has been proposed to be used, if realized, for intrinsically
fault-tolerant, robust quantum information storage and pro-
cessing: The quantum information is stored in the topologically
degenerate states, and the operations are realized by the motion
of quasiparticles. This idea, known as topological quantum
computation (TQC),2 has been a major driving force for the
study of topological states of matter.

The discussion of topological quasiparticles in topological
states can be extended to extrinsic defects, which are pointlike
objects that are not intrinsic, finite-energy excitations of the
system, but instead have a long-ranged confining interaction
with each other.5–14 Such defects can be created and controlled
by an external field, and they may also carry non-Abelian
statistics, similar to intrinsic topological quasiparticles. How-
ever, the overall phase of the unitary operation generated

by braiding the defects is generically nonuniversal and path
dependent, due to their long-ranged interaction. Therefore,
the statistics of the extrinsic defects is only well defined up
to a phase, implying that their braiding forms a projective
representation of the braid group. This possibility is referred
to as projective non-Abelian statistics.15 A simple example of
a nontrivial extrinsic defect is the vortex in a two-dimensional
px + ipy topological superfluid,5 which has Majorana zero
modes and non-Abelian statistics similar to the topological
quasiparticles in the Moore-Read Pfaffian fractional quantum
Hall (FQH) state.18–20 The overall phase of the statistics is
undetermined due to the logarithmic interaction of the vortices.
Recently, similar extrinsic defects with Majorana zero modes
have been discussed in several other physical systems.6

Since projective non-Abelian statistics are not described by
the same mathematical framework21 as intrinsic topological
quasiparticles, there may potentially be a world of possibilities
that would be inconsistent for ordinary non-Abelian statistics.
An important direction therefore is to develop the theory of
projective non-Abelian braiding statistics and to investigate
the novel possibilities.

A second important direction is to explore ways of obtaining
exotic non-Abelian defects, beyond Majorana fermions, in
simple, experimentally achievable settings. This is motivated,
in part, by the well-known deficiency of Majorana fermions
to yield a universal gate set for TQC.21 Recently, extrinsic
defects with projective non-Abelian statistics beyond Ma-
jorana fermions have been proposed in several systems. In
fractional Chern insulators (i.e., FQH states in lattice models
without an external magnetic field),22–27 a class of states
called topological nematic states can be realized when the
Chern number of the partially occupied energy band is larger
than 1 (Ref. 9). Topological nematic states are topologically
equivalent to conventional multilayer FQH states on regular
lattices, but lattice dislocations effectively change the topology
and introduce “wormholes” between the two layers, which
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leads to the non-Abelian statistics of the dislocations. Similar
non-Abelian lattice dislocations can also be realized in ZN

rotor models.7,8,10 A different type of extrinsic defect has been
proposed on the boundary of FQH or fractional quantum spin
Hall (FQSH) states at domain walls between regions in which
the edge states obtain different mass terms.28–31

In this paper, we develop a more systematic understanding
of the projective statistics of these extrinsic defects and the
relation between different types of extrinsic defects. We study
a wide class of defects that obey projective non-Abelian
statistics, and that can be interpreted as twist defects associated
with symmetries of the topological state. The examples
discussed in the last paragraph can all be understood as
twist defects. For example, a Chern number 2 topological
nematic state is mapped to a bilayer FQH state, with a Z2

symmetry associated with exchanging the two layers. The
lattice dislocation is a Z2 twist defect in the sense that a
quasiparticle going around the dislocation once will be acted
upon by the Z2 operation of exchanging the two layers. In
the simplest case, a quasiparticle in one layer will end up
in the other layer upon winding around the dislocation.9,32

Such a Z2 twist defect can also be generalized to any other
Abelian or non-Abelian bilayer topological states. Similarly,
a ZN topological state has a Z2 symmetry associated with
electric-magnetic duality, allowing for the possibility of twist
defects that exchange electric and magnetic quasiparticles
as they encircle the defect.7,10,11,32 Other examples that we
study in this paper include the twist defects associated with
a certain particle-hole symmetry in FQH states, which are
equivalent to the edge defects in FQH/FQSH systems studied
recently,10,11,28–31,33 and the Z3 twist defects that can appear in
triple-layer FQH or topological nematic states.

We develop several complementary methods of computing
the projective non-Abelian braiding statistics of these twist
defects. We find that in the class of examples that we study, the
state with N twist defects can always be mapped—in a certain
precise sense—to a topological state without twist defects, but
on a genus g ∝ N surface. Then, we find that the braiding of
the twist defects realizes adiabatic modular transformations, or
Dehn twists, of the topological state on the high-genus surface.
This provides a physical way to implement elements of the
mapping class group of a topological state on a high-genus
surface. Since adding twist defects effectively increases the
genus, we refer to them as genons.34

One particularly interesting example is given by genons
in an Ising × Ising topological state. The Ising topological
state is a simple non-Abelian topological state with three
topological quasiparticles, which can be realized in Kitaev’s
honeycomb lattice model.37 By Ising × Ising, we are referring
to a bilayer state with each layer corresponding to an Ising
theory. It is known that braiding particles in the Ising theory
is not sufficient for universal TQC.21 However, we show that
utilizing the braiding of twist defects in an Ising × Ising theory
can make the state universal, since it realizes Dehn twists
of a single Ising theory on high-genus surfaces.38,39 We also
demonstrate that the average degree of freedom, that is, the
“quantum dimension,” of each twist defect in this theory is
d = 2. This provides an interesting example where a defect
with integer quantum dimension can allow for universal TQC
while the host topological state is by itself nonuniversal.

The genons are confined in the sense that there is a long-
ranged confining potential that grows with their separation.
One way to deconfine them is to gauge the symmetry they
are associated with.40 This leads to a new class of topological
states,32,41,42 where the defects are now intrinsic non-Abelian
quasiparticles. In this paper, we discuss the relation of the
braid matrices between the cases where the genons are
confined and cases where they are deconfined by gauging
the associated symmetry. In the case where the genons have
qauntum dimension

√
2, they can be interpreted as Majorana

fermions, and gauging the symmetry does not change the braid
matrix, but only makes the overall phase well-defined and
universal. In the more general situations, we find that gauging
the symmetry changes the dimension of the braid matrix, so
that strictly speaking the braiding is different, though closely
related. In the single-component case, we find that gauging
the symmetry can even change the quantum dimension of the
non-Abelian defects. These provide simple examples where
projective non-Abelian braiding statistics can give braiding
that is inequivalent to ordinary non-Abelian statistics.

The rest of this paper is organized as follows. In Sec. II, we
introduce the notion of a twist defect in a topological state and
we discuss several examples, possible physical realizations,
and we give a brief discussion of projective non-Abelian
statistics. In Sec. III, we study in detail the braiding of Z2 twist
defects in “two-component” states, which can described by
U(1) × U(1) CS theory and which include double-layer FQH
states and ZN topological states. We discuss the sense in which
the twist defects can be thought of as “genons” (subsequently,
we use “twist defect” and “genon” interchangeably in this
paper). In Sec. IV, we study Z2 genons in single-component
states, which are described by U(1)N CS theory, and we
discuss the close relation between these genons and the ones
in the two-component case. In Sec. V, we study Z2 genons
in decoupled, double-layer non-Abelian states and discuss
the possibility of universal TQC with genons. In Sec. VI,
we study Z3 genons in three-component FQH states, which
are described by U(1) × U(1) × U(1) CS theory; this provides
the first example of projective non-Abelian braiding beyond
the Z2 genon case. In Sec. VII, we discuss topological states
that are obtained when the symmetry associated with the
genons are gauged, and we discuss the relation between the
braiding of the genons before and after the symmetry is gauged.
We conclude with a discussion in Sec. VIII.

II. TWIST DEFECTS IN TOPOLOGICAL STATES

A. General definition of twist defect

A topologically ordered phase1,2 is generally characterized
by a set of topologically nontrivial quasiparticles, {γi}, for
i = 1, . . . ,Nqp, where Nqp is the number of quasiparticles.
Below, we briefly sketch the topological properties of the
quasiparticles. First, when two quasiparticles are observed
from far away, they behave like a superposition of single
quasiparticle states. This is described by the fusion rules
γi × γj = ∑

k Nk
ij γk . Second, when two quasiparticles γi,γj

wind around each other, a phase eiθk
ij is obtained, which

depends on the fusion channel k. θk
ij is referred to as the braid

statistics of the quasiparticles. When a particle is spun around
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TABLE I. Some examples of topological phases and their symmetries. ZN topological states have Z2 × Z2 symmetry associated with
both the electric-magnetic duality [(a,b) → (b,a)] and the particle-hole transformation taking quasiparticles to their conjugates: (a,b) →
(N − a,N − b), where a,b = 0, . . . ,N − 1. N -layer FQH states can have a symmetry associating with permuting layers. 1/k-Laughlin states
can have a particle-hole symmetry associated with taking a quasiparticle to its conjugate, if charge conservation is broken.

Topological states Symmetries Transformation of quasiparticles

Electric-magnetic duality Z2 (a,b) → (b,a)
ZN states

Particle-hole symmetry Z2 (a,b) → (N − a,N − b)
N -layer FQH states Layer permutation SN (a1,a2, . . . ,aN ) → (aP1 ,aP2 , . . . ,aPN

)
1/k-Laughlin FQH state Particle-hole symmetry Z2 a → (k − a)

itself by 2π , it generically gains a nontrivial phase eiθi . θi = 0
for bosons and π for fermions, and in general it can take any
value between [0,2π ). The braiding, fusion rules and spins
need to satisfy some consistency conditions but we do not
review them here.21 Mathematically, a topologically ordered
state is characterized by a unitary modular tensor category
(UMTC).21,37,43

It is possible for a topological phase to have a discrete
symmetry g which maps a quasiparticle γi to another particle
γg(i),

γi → γg(i), i = 1, . . . ,Nqp, (1)

while preserving all topological properties such as fusion
rules, braiding, and spins. All such symmetries form the
group of automorphisms of the UMTC. Table I summarizes
some examples. For instance, a ZN topological state has
N2 quasiparticles, which can be labeled as (a,b), for a,b =
0, . . . ,N − 1. The (a,0) particles are the electric particles,
while the (0,a) particles are the magnetic ones. This state
has a Z2 × Z2 symmetry. One of the Z2 symmetries is the
electric-magnetic duality (a,b) → (b,a), that is, exchanging
electric and magnetic particles. The other Z2 is associated
with taking (a,b) → (N − a,N − b), which takes the electric
and magnetic particles to their conjugates.

If charge conservation is broken, a 1/k-Laughlin FQH state
also has a Z2 symmetry, associated with exchanging quasi-
particles and quasiholes. This is because the quasiparticles
and quasiholes have the same fractional statistics and yet are
topologically distinct quasiparticles.

In a bilayer FQH state, there can be a Z2 symmetry
associated with exchanging layers. In an N -layer FQH state
the symmetry of permuting the layers is SN , which may be
broken to a smaller subgroup, such as ZN .

Given a topological phase with such a symmetry, a twist
defect is an extrinsic defect of the system, labeled by the
symmetry g, such that a quasiparticle γi gets transformed
to γg(i) as it braids around the twist defect (see Fig. 1).
Such twist defects generally have a nontrivial quantum
dimension and lead to topological degeneracies. Therefore,
every automorphism of the UMTC is associated with a twist
defect that realizes projective non-Abelian statistics.

The twist defects discussed above are related to recent
discussions in the mathematical physics literature,8,44–47 where
the mathematical theory of twist defects and boundaries
between topological states is currently under investigation.

There are also twist defects that cannot be included in the
definition above: those that act trivially on the topologically

distinct quasiparticles, but have a nontrivial action on local
operators. In these situations, it is possible but not guaranteed
that the twist defect will have a nontrivial quantum dimension.
One example is a system with charge conservation, where the
twist defect has the effect of sending a quasiparticle to its
conjugate. In an IQH state, such defects can trap Majorana
zero modes, even though the IQH state does not have any
topologically nontrivial quasiparticles. A second example is a
superconductor, with the Z2 symmetry that takes the electron
c → −c. The vortex in p + ip topological superconductors,
which traps a Majorana zero mode, can then be interpreted as
a twist defect that acts on the fermions by this Z2 symmetry as
they encircle the vortex. In these cases, the nontrivial quantum
dimension is protected by a fermion parity symmetry.

B. Physical realizations

Recently, twist defects have been shown to occur in
a number of different physical realizations. These include
dislocations in topological nematic states realized in FCI with
higher Chern number C > 1 (Ref. 9), at certain junctions in
gated bilayer FQH states,48 dislocations in exactly solvable
ZN topologically ordered models,7,8,10,11 and superconductor-
ferromagnet domain walls at the edge of 2 + 1D TIs and
FTIs.28–30,33

The topological nematic state realization of the twist
defects9 is based on the Wannier state representation of
FCI.49 This representation established a mapping between
one-dimensional Wannier states of an FCI system and the
Landau level wave functions in the Landau gauge in an
ordinary FQH system. By such a mapping, a Chern number

FIG. 1. Worldline of quasiparticle γi and twist defect, labeled by
g. Braiding γi around the twist defect changes the quasiparticle to
γg(i). The arrow indicates the time direction.
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C = 1 band is mapped to a Landau level. The validity of
the Wannier state representation approach has been confirmed
in C = 1 states with filling 1/2 and 1/3 (Refs. 50 and 51).
FCI with C > 1 bands have also been studied in analytic and
numerical works.9,52–54 In the Wannier state representation,
a band with Chern number C > 1 is mapped to a C-layer
quantum Hall system.9 In contrast to ordinary multilayer
quantum Hall systems, the different effective layers in this
system are related by lattice translations, which implies that
lattice dislocations can act as twist defects: As a reference point
encircles the dislocation, it is translated by the Burgers vector
of the dislocation and may effectively belong to a different
layer of the effective FQH system.

The realization of twist defects as lattice dislocations in
the ZN models is similar.7,10 In some lattice models of the
ZN states, the electric particles (ZN charges) belong to the
even sublattice, while the magnetic particles (ZN vortices)
belong to the odd sublattice. A lattice dislocation can create
a situation where an excitation that encircles it starts in
the even sublattice and ends in the odd sublattice, which
therefore implies that the dislocation can act as a twist defect
whereby electric and magnetic particles are exchanged upon
encircling it.

As we explain in subsequent sections, the superconductor-
ferromagnet domain walls at junctions of IQH/FQH states
can be viewed as twist defects in several different ways:
They can be viewed as twist defects associated with a Z2

particle-hole symmetry of the Abelian QH states, or they can
be mapped onto double-layer FQH states, in which case they
are associated with the Z2 layer exchange symmetry.

C. Projective non-Abelian braiding statistics

The twist defects are extrinsic defects of the topological
phase, not finite-energy, intrinsic excitations. Therefore, sepa-
rating twist defects will typically cost an energy that grows
with the distance between them, either logarithmically or
linearly, depending on whether the associated symmetry is
a continuous symmetry of the state. This is similar to the
vortices in topological superfluids (and thin-film topological
superconductors), which also have a logarithmic energy cost
associated with separating vortex/antivortex pairs. In these
cases, we say that the defects are confined.

Since the defects can have a nontrivial quantum dimension,
braiding them can lead to non-Abelian braiding statistics.
However, since well-separated twist defects still have an
energy cost that grows with the separation, the overall phase
of the braiding statistics is not well defined. To see this,
observe that simply moving one quasiparticle in a small circle
without encircling any other quasiparticle still accumulates a
phase from the non-negligible change in energy of the state
during the process. Since the overall phase of the statistics
is not well defined, these twist defects form a projective
representation of the braid group. In contrast, in a conventional
non-Abelian state, the non-Abelian quasiparticles are finite-
energy, deconfined excitations, and the overall phase of the
braiding is topological. Therefore, the braiding of non-Abelian
quasiparticles in a true non-Abelian state forms a linear
representation of the braid group.

The quasiparticles of a true non-Abelian state are subject to
the mathematical constraints of a UMTC. However, the twist
defects, since they form a projective representation of the braid
group and are not intrinsic quasiparticles, are described by
a different mathematical theory (see, e.g., Ref. 13), and, in
principle, are not constrained in the same way. This opens the
possibility of fundamentally novel behavior. The difference
between twist defects with projective non-Abelian statistics
and intrinsic topological quasiparticles is discussed further in
Sec. VII, and the application to UMTC is discussed in Sec. V.

III. Z2 TWIST DEFECTS IN TWO-COMPONENT
ABELIAN STATES

In this section, we concentrate on the properties of Z2 twist
defects in Abelian states that can be described by U(1) × U(1)
CS theory. This includes two-component FQH states1 and ZN

topological states. The Lagrangian is given in terms of two
U(1) gauge fields, a and ã:

L = m

4π
(a∂a + ã∂ã) + l

4π
(a∂ã + ã∂a), (2)

where m and l are any integers and a∂a ≡ εμνλaμ∂νaλ. To
describe ZN topological states, we set m = 0 and l = N

above. This theory encodes the topological properties of these
topological states. As we review below, the Z2 twist defects
in these states are non-Abelian defects, carrying a quantum
dimension

√|m − l| (Refs. 9 and 32). Based on the field theory
description in Refs. 9 and 32, we derive the braid matrix of the
Z2 twist defects.

A. Bulk geometrical picture

The twist defects introduced above are point defects:
Far away, no local operator can distinguish their presence.
However, for the purpose of understanding the behavior of
the twist defects, it is helpful to imagine that the twist
occurs along a single branch cut that connects them. This
is similar to supposing that the phase winding of a vortex in
a superconductor is all localized to a single cut connecting a
vortex/antivortex pair.

The twist defects introduce new noncontractible loops into
the system, along which the quasiparticles can propagate. For
example, with two pairs of Z2 twist defects on a sphere, there
are two distinct noncontractible loops (Fig. 2). The key feature
of the twist defects is that their presence yields a nontrivial
algebra for quasiparticle loop operators corresponding to these
noncontractible loops. For example, consider the case of two
decoupled 1/m Laughlin FQH layers [denoted (mm0) states],
where the twist defect exchanges the layers. The two loops
a and b effectively cross only once, because a quasiparticle
goes from one layer to another as it passes through the branch
cut, and the quasiparticles in two different layers have trivial
mutual braid statistics. This leads to the magnetic algebra

W (a)W (b) = W (b)W (a)e2πi/m, (3)

where W (C) is the operator that tunnels a Laughlin quasipar-
ticle around the loop C. The explicit expression of W (C) is
given later in Eq. (7). The ground states form an irreducible
representation of this quasiparticle loop algebra, which in this
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FIG. 2. (Color online) A pair of twist defects induces two distinct
noncontractible loops, labeled a and b. For twist defects in (mm0)
states, these loops effectively cross only once, leading to a magnetic
algebra for the quasiparticle loop operators. Here, the branch cut
indicated by the dashed line connecting two dislocations is merely a
gauge choice, which is similar to supposing that the phase winding of
a vortex in a superconductor is all localized to a single cut connecting
a vortex/antivortex pair.

example is |m|-dimensional. Therefore, we can conclude that
the twist defects have a nontrivial quantum dimension.

Proceeding with the example of the (mm0) states, with n

pairs of twist defects on a sphere, we can define 2(n − 1)
noncontractible loops (see Fig. 3), ai , bi for i = 1, . . . ,n − 1,
such that ai and bj effectively cross exactly once if i = j and
do not cross otherwise.

Using these noncontractible loops, the quasiparticle loop
algebra now becomes

W (ai)W (bj ) = W (bj )W (ai)e
δij 2πi/m. (4)

Thus, we have n − 1 copies of the magnetic algebra, and
therefore a finite-dimensional irreducible representation of
dimension |m|n−1. This shows that the quantum dimension
of each twist defect in the (mm0) states is

√|m|.
It is possible to derive the above results more concretely

by starting with the field theory (2). Here we briefly review
the field theory in the presence of twist defects developed in
Ref. 32. In the U(1) × U(1) CS theory, a pair of Z2 twist defects
can be modeled as a pair of points, connected by a branch cut
γ such that at the branch cut, the two gauge fields a and ã obey
twisted boundary conditions. Defining

A =
(

a 0
0 ã

)
,

this means

lim
p→p±

0

A(p) = lim
p→p∓

0

σxA(p)σx (5)

FIG. 3. (Color online) n pairs of twist defects induces 2(n − 1)
distinct noncontractible loops, ai,bi , for i = 1, . . . ,n − 1. For twist
defects in the (mm0) states, the quasiparticle loop operators give
rise to n − 1 copies of the magnetic algebra, leading to |m|n−1

topologically degenerate states.

FIG. 4. (Color online) The U(1) × U(1) CS theory with n pairs
of dislocations on a sphere can be mapped to a U(1) CS theory on a
genus g = n − 1 surface, Mn−1. Mn−1 consists of two copies of the
original space. A new U(1) gauge field, c, is defined on Mn−1, such
that c = a on the top half and c = −ã on the bottom half of Mn−1

(Ref. 32).

for every point p0 on γ (Ref. 55). The limit p → p
+(−)
0 means

that the limit is taken approaching one particular side (or the
other) of γ . This ensures that quasiparticles encircling a twist
defect get transformed by the Z2 action,

σx =
(

0 1
1 0

)
.

In the presence of n > 1 pairs of twist defects, it is possible
to consider a single U(1) gauge field c on a doubled space,
Mn−1, where Mn−1 is a genus g = n − 1 surface (see Fig. 4).
As shown in Fig. 4, c = a for points in the top half of Mn−1

and c = −ã for points in the bottom half of Mn−1. The original
U(1) × U(1) CS theory (2) can then be shown to be equivalent
to a U(1)m−l CS theory on Mn−1:32

L = m − l

4π

∫
Mn−1

c∂c. (6)

The quasiparticle loop operators W (C) defined earlier in the
context of the (mm0) states are written in the field theory as

W (C) = Pei
∮
C

c·dl . (7)

Such a theory has a ground-state degeneracy of |m − l|n−1,
which shows that the Z2 twist defects have a quantum
dimension

√|m − l| (Refs. 9 and 32). If the n pairs of
twist defects were placed on a genus g surface instead of a
sphere, then the ground-state degeneracy would be given by
|m2 − l2|g × |m − l|n−1, where the factor |m2 − l2|g comes
from the “bare” degeneracy of the manifold on which the twist
defects are placed.

Equipped with the field theory description, we can now
derive the non-Abelian statistics of the Z2 twist defects. The
explicit mapping to the high-genus surface is particularly
useful for understanding the braiding properties. First, we
exchange the twist defects on the sphere, and then we can
visualize how the noncontractible loops transform under the
exchange. From Figs. 5(a) and 5(b), we can see that under a
counterclockwise exchange B12 of the defects labeled 1 and 2,
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FIG. 5. (Color online) (a) A loop that encloses the twist defects labeled 2 and 3 is mapped to the b cycle of the torus. (b) Effect of a
counterclockwise exchange of 1 and 2. By following the effect on the noncontractible loop, we see that in terms of the genus g surface, it has
the effect of a Dehn twist along an a cycle. Thus, the original b loop becomes the loop b + a after counterclockwise exchange of 1 and 2.
(c) A loop that encloses a pair of twist defects connected by a branch cut is an a cycle of the genus g surface. (d) Effect of a clockwise exchange
of 2 and 3. We see that the a loop gets mapped to the a + b loop. Thus, the clockwise exchange of 2 and 3 is equivalent to a Dehn twist along
the b loop.

the loops transform as

B12 : b → b + a. (8)

From Figs. 5(c) and 5(d), we see that under clockwise exchange
of the defects labeled 2 and 3,

B
†
23 : a → a + b. (9)

Therefore, we see explicitly that the braiding of the twist
defects corresponds to adiabatic modular transformations
(Dehn twists) in the effective genus g surface. The adiabatic
Berry phase associated with braiding twist defects is then given
by non-Abelian adiabatic Berry phases associated with Dehn
twists, which were computed in Ref. 56 for U(1) CS theory.
Note that, as discussed in Ref. 56, these non-Abelian adiabatic
Berry phases are well-defined only up to the overall phase of
the matrix, reflecting the fact that the non-Abelian braiding
statistics are projective.

Using the relation to Dehn twists, we can now immediately
obtain the braid matrices. Consider two pairs of twist defects
on a sphere, so that we are mapped to a U(1)m−l CS theory on
a torus. Let us consider a basis that consists of wrapping the
quasiparticles around the b direction of the torus:

|n〉, n = 0, . . . ,|m − l| − 1. (10)

This corresponds to diagonalizing W (a), while W (b) acts as a
raising operator:

W (b)|n〉 = |n + 1 mod|m − l|〉,
(11)

W (a)|n〉 = e2πin/(m−l)|n〉.
Dehn twists along a noncontractible loop C will be denoted
by UC . Based on the previous discussion,

B12 = Ua, B
†
23 = Ub. (12)
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It was found56 that Ua are diagonal in the above basis, and
given by

Ua|n〉 = eiθ eiπn2/(m−l)+iπn(m−l)|n〉, (13)

where the overall phase eiθ depends on details of the path, not
only on its topology. In order to compute Ub, we observe that

U
†
b = S†UaS, (14)

where S is the modular S matrix, which exchanges the a and
b cycles:

S : a → b, b → −a. (15)

The adiabatic modular transformation associated with S is
given by56

Sαβ = 1√|m − l|e
−2πiαβ/(m−l). (16)

Therefore,

(U †
b )αδ = eiφ

|m − l|
|m−l|−1∑

β=0

eiπβ(m−l)+iπ(β2+2β(α−δ))/(m−l), (17)

where the overall phase eiφ again depends on nonuniversal
details of the path.

Therefore, we find that in the presence of the twist defects,
there is a group of projective non-Abelian braiding statistics
associated with the braiding of the defects, along with the
braiding of the quasiparticles around the defects. These are
generated by the unitary operators

{Bi,i+1,W (ai),W (bi)}. (18)

The generalization of the braid matrices to n > 2 pairs
of twist defects is straightforward, since for the U(1)m−l CS
theory, the states associated with each handle of the genus
g = n − 1 surface are independent.

We see that the effect of the n twist defects is to introduce
a set of nontrivial quasiparticle loop operators that satisfy the
same algebra as the quasiparticle loop operators of a U(1)m−l

CS theory on a genus n − 1 surface, and that braiding of the
twist defects is directly related to elements of the mapping
class group of this theory on the high-genus surface. In order
to emphasize the connection between the twist defects and the
high-genus surface, we refer to the twist defects as genons. All
of the twist defects considered in this paper have this property,
and therefore in this paper we use “twist defects” and “genons”
interchangeably.

B. An example: Majorana braiding as Dehn twist
of 1/2 Laughlin state

The simplest case where genons are non-Abelian is for the
case |m − l| = 2, in which case they have quantum dimension√

2. We therefore expect that a Majorana zero mode is
localized at the defect, and the braiding statistics should be
associated with the braiding of Ising anyons.

Let us consider the case where we have n = 2 pairs of
genons on a sphere, which maps us to a genus g = 1 surface.
In this case, there are |m − l|g = 2 ground states. The braiding

of the genons, given by the Dehn twists are

Ua = eiθ

(
1 0
0 i

)
, Ub = eiφ 1

2

(
1 + i 1 − i

1 − i 1 + i

)
. (19)

Observe that Ua is, up to an overall phase, the same as the
braid matrix of Ising anyons.2 In other words, Dehn twists in
the U(1)2 CS theory are equivalent to projective Ising braiding
statistics, due to this profound relation to Z2 genons.

In addition to the braiding of the genons, we can also braid
quasiparticles around genons to get

W (a) =
(

1 0
0 −1

)
, W (b) =

(
0 1
1 0

)
. (20)

C. 1 + 1D edge CFT picture

It is helpful to derive the above results in a different
way using the one-dimensional chiral Luttinger liquid edge
theory. This will give us a different perspective on how to
compute the topological degeneracy and braiding statistics, it
will connect to the more standard zero-mode analysis used in
other contexts,6 and it will help give a different protocol for
carrying out the braiding. The latter will be useful depending
on the physical realization of the genons. We start with a brief
review of the field theoretic analysis of the 1 + 1 edge CFT
in Ref. 9. First, we align all of the defects along a single
line, and we cut the system along the line. Then, we have two
counterpropagating chiral Luttinger liquid theories, with the
left-moving one localized on one edge, and the right-moving
one on the other edge. The edge theory for U(1) × U(1)
CS theory described by a generic K matrix is given by the
action57,58

Sedge = 1

4π

∫
dxdt[KIJ ∂tφLI ∂xφLJ − VIJ ∂xφLI ∂xφLJ ],

(21)

where in our case

K =
(

m l

l m

)
.

φLI denotes left-moving chiral bosons for I = 1, . . . ,dim K

(Ref. 59). Here and below the repeated indices I,J are
summed. The field φLI is a compact boson field with radius
R = 1:

φLI ∼ φLI + 2π. (22)

Quantizing the theory in momentum space yields1

[∂xφLI (x),φLJ (y)] = −i2πK−1
IJ δ(x − y). (23)

Integrating the above equation gives

[φLI (x),φLJ (y)] = −iπK−1
IJ sgn(x − y). (24)

The electric charge density associated with φLI is given by

ρLI = 1

2π
∂xφLI , (25)

and the I th electron operator is described by the vertex
operator

�eLI = eiKIJ φLJ . (26)
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Note that normal ordering is left implicit (i.e., eiKIJ φLJ ≡:
eiKIJ φLJ :). If we consider the FQH state on a cylinder, we
will have a left-moving chiral theory on one edge, and a right-
moving chiral theory on the other edge. For the right-moving
theory, the edge action is

Sedge = 1

4π

∫
dxdt[−KIJ ∂tφRI ∂xφRJ − VIJ ∂xφRI ∂xφRJ ],

(27)

so that

[φRI (x),φRJ (y)] = iπK−1
IJ sgn(x − y), (28)

the charge is

ρRI = 1

2π
∂xφRI , (29)

and the electron operator is

�eRI = e−iKIJ φRJ . (30)

When m is odd, the electron operators are fermionic, so we
need to ensure that �eRI (x)�eLJ (y) = eiπKIJ �eLJ (y)�eRI (x).
This can be done by introducing commutation relations:

[φLI (x),φRJ (y)] = iπK−1
IJ . (31)

Now suppose we have n pairs of genons, such that going
around each genon exchanges the two layers. Each pair of
genons is separated by a branch cut. Let us align all the
genons, and denote the regions without a branch cut as
Ai , and the regions with a branch cut as Bi [Fig. 6(A)].
Now imagine cutting the system along this line, introducing

FIG. 6. (Color online) The edge-state understanding of the
topological degeneracy. (a) The genons are oriented along a single
line, and then the system is cut along the line, yielding gapless coun-
terpropagating edge states along the line. The original topological
state is obtained from gluing the the system back together by turning
on appropriate interedge tunneling terms. (b) Depiction of the two
branches (red and blue) of counterpropagating edge excitations. The
arrows between the edge states indicate the kinds of electron tunneling
terms that are added. Away from the genons, in the A regions, the
usual electron tunneling terms involving tunneling between the same
layers, �

†
eRI�eLI + H.c., are added. In the regions including the

branch cuts separating the genons, twisted tunneling terms are added:
�

†
eR1�eL2 + �

†
eR2�eL1 + H.c.

counterpropagating chiral edge states. The gapped system with
the genons can be understood by introducing different electron
tunneling terms in the A and B regions [Fig. 6(B)]:

δHt = g

2

{
�

†
eL1�eR1 + �

†
eL2�eR2 + H.c. if x ∈ Ai,

�
†
eL1�eR2 + �

†
eL2�eR1 + H.c. if x ∈ Bi.

(32)

Introducing the variables

φ1 = φL1 + φR1,

φ2 = φL2 + φR2,
(33)

φ̃1 = φL1 + φR2,

φ̃2 = φL2 + φR1,

we rewrite Eq. (32) as

δHt = g

{∑
I cos(KIJ φJ ) if x ∈ Ai,∑
I cos(KIJ φ̃J ) if x ∈ Bi.

(34)

It is helpful to rewrite the above as

δHt = g cos

(
m + l

2
φ+

){
cos

(
m−l

2 φ−
)

if x ∈ Ai,

cos
(

m−l
2 φ̃−

)
if x ∈ Bi,

(35)

where φ± = φ1 ± φ2, and φ̃± = φ̃1 ± φ̃2. One way to under-
stand the topological degeneracy was explained in Ref. 9. In
the absence of the twist defects, there are |(m + l)(m − l)|
states, associated with the distinct eigenvalues of ei(φ1±φ2),
which are given by e2πip±/(m±l), for p± integers. Physically,
eiφI corresponds to a quasiparticle tunneling process, where
a quasiparticle from the I th layer is annihilated at one edge,
tunnels around the torus, and is created at the other edge. In
the presence of the n pairs of twist defects, the eigenvalue of
eiφ+ is globally pinned everywhere [see Eq. (35)] while eiφ−

can take |m − l| different values in each of the Ai regions. The
operator ei(φ̃1−φ̃2) is unphysical and not gauge-invariant,9 so we
cannot label the states by its eigenvalues in the B regions. This
yields a total of |(m + l)(m − l)n| states and agrees with the
bulk calculation of Sec. III A, with the extra factor of |m2 − l2|
due to the fact that in this case the defects were placed on a
torus instead of a sphere.

Now we can use the 1 + 1D edge theory to understand
the braiding statistics of the defects. In order to calculate
the braiding and to understand the connection to zero modes
localized at the defects, we consider quasiparticle tunneling
operators near each genon:

α2i−1 = eiφ1(xAi
)e−iφ̃1(xBi

),

β2i−1 = eiφ2(xAi
)e−iφ̃2(xBi

),
(36)

α2i = eiφ̃2(xBi
)e−iφ2(xAi+1 ),

β2i = eiφ̃1(xBi
)e−iφ1(xAi+1 ),

for i = 1, . . . ,n, where xAi
and xBi

are the midpoints of the
Ai and Bi regions, respectively. Physically, these operators are
quasiparticle tunneling operators, projected onto the ground-
state subspace where the fields are constant within each
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FIG. 7. (Color online) Physical meaning of the zero-mode opera-
tors αi and βi . In subsequent figures, we use the bottom figure, which
is more precisely described by the top figure.

region. Figure 7 displays the quasiparticle tunneling process
described by these operators. The operators αi and βi are zero
modes:

[H,αi] = [H,βi] = 0, (37)

where H is the edge Hamiltonian including the tunneling
terms (32). In the ground-state subspace, as discussed above,
the value of ei(φ1+φ2) is pinned everywhere. Thus,

α2i+1β2i+1 = 1, α2iβ2i = e
2πi
m−l . (38)

Therefore, there is a single independent zero-mode operator,
αi , which satisfies an algebra:

αnαn+k = αn+kαne
i2π/(m−l), (39)

where k > 0. For |m − l| = 2, αi are Majorana fermions. For
|m − l| > 2, this can be viewed as a generalization of the
Majorana fermion algebra, which is usually referred to as a
Z|m−l| parafermion algebra.60

Alone, the zero-mode operators αi are not physical gauge
invariant operators, as they correspond to the quasiparticle
motion along an open path. However, proper combina-
tions of them are physical gauge-invariant operators. For
example,

W
†
1 (ai+1) = α2i+1β2i+2, W

†
2 (ai+1) = β2i+1α2i+2, (40)

describe quasiparticles from layers 1 and 2, respectively,
tunneling around the pair of genons 2i + 1, 2i + 2. Similarly,

W
†
1 (bi) = α2iβ2i+1, W

†
2 (bi+1) = β2iα2i+1, (41)

where ai and bi are as shown in Fig. 3. Using the alge-
bra of these quasiparticle tunneling operators in the edge
theory, we can obtain the algebra of the quasiparticle loop
operators

W1(ai)W1(bi) = W1(bi)W1(ai)e
2πi/(m−l). (42)

Note that from Eq. (38), it follows that W1(C) ∝ W
†
2 (C). It is

useful to note that

αm−l
2i+1 = 1, αm−l

2i = (−1)m−l−1, (43)

so that

Wm−l
I (ai) = Wm−l

I (bi) = 1. (44)

FIG. 8. (Color online) Effect of a clockwise braid on the zero
modes α1 and α2. (a) α1 → α2. (b) α2 gets transformed to a
combination of two loop, β1β

†
2 , and α2. Therefore, α2 → α2α

†
1α2,

where recall that βi = α
†
i . As explained in the text, there is an ordering

ambiguity between α2 and α
†
1α2 that is fixed with an additional

constraint.

The irreducible representation of this algebra contains |m −
l|n−1 states. This is simply the 1 + 1D edge CFT understanding
of the bulk geometric construction described in Sec. III A.

Using the zero-mode operators αi , we can develop a 1 + 1D
CFT understanding of the braiding of the twist defects. First,
consider how the quasiparticle loop operators are transformed
under a clockwise exchange of the defects 1 and 2, which we
denote by the unitary operator B

†
12. The result can be inferred

simply by the diagrams; we draw the physical processes
associated with α1 and α2, and then we consider the effect of
the clockwise braid, keeping the open ends fixed. From Fig. 8,
we can see that B†

12α1B12 = eiϕα2 and B
†
12α2B12 = eiθα2α

†
1α2.

We can fix the relative phase eiϕ = eiθ by using the fact that
the braiding of 1 and 2 should keep invariant the eigenvalues
of the loop operator W1(a) = α

†
1α2 that encircles the pair. We

can partially fix the remaining phase by observing that the
Z2 layer exchange symmetry implies B

†
12β1B12 = eiϕβ2 and

B
†
12β2B12 = eiϕβ2β

†
1β2. Using Eq. (38), we can then determine

that ei2ϕ = e−2iπ/(m−l). Thus, we find

B
†
12α1B12 = eiπk−iπ/(m−l)α2,

(45)
B

†
12α2B12 = eiπk−iπ/(m−l)α2α

†
1α2,

where the integer k = 0 or 1 indicates a remaining ambiguity
in the phase eiϕ that we have not yet fixed. This implies that
the physical loop operators transform as

B
†
12W1(a1)B12 = W1(a1),

(46)
B

†
12W1(b1)B12 = eiπk+iπ/(m−l)W

†
1 (a1)W1(b1).

Using the fact that Wm−l
1 (a1) = Wm−l

2 (b1) = 1, we can use the
constraint [

B12,W
m−l
1 (b1)

] = 0 (47)

to fix k = 1 in the case when m − l is odd.
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From the above transformation, we can find the braid
matrix, B12. First, we pick a basis of the |m − l| states:

W1(b1)|n〉 = |n + 1 mod |m − l|〉,
(48)

W1(a1)|n〉 = e2πin/(m−l)|n〉.

Then consider

B
†
12|n〉 = eiθ eiπkn+inπ/(m−l)(W †

1 (a1)W1(b1))n|0〉
= eiθ eiπkn−iπn2/(m−l)|n〉, (49)

where the overall phase eiθ depends on details and is not
topological. Recall that k = 1 when m − l is odd. When m − l

is even, we cannot fix k using this approach; the two different
choices of k = 0 or 1 are related by a basis transformation
|n〉 → |n + (m − l)/2〉. Alternatively, note that B12(k = 0) =
W

−(m−l)/2
1 (b1)B12(k = 1)W (m−l)/2

1 (b1) when m − l is even.
When m − l is odd, we see that the braid matrix B12

computed in this way agrees precisely with that obtained
through the bulk geometric approach of Sec. III A [see
Eq. (13)]. When m − l is even, we see that the case k = 0
agrees with Eq. (13).

D. An alternative approach: Braiding without
moving the defects

Now, instead of carrying out the braiding by a continuous
counterclockwise motion of the twist defects, we consider
a somewhat different protocol that can be implemented by
considering a path purely in the 1D Hamiltonian of the
CFT.61,62 This protocol may be more readily realizable in
a physical system by, for example, gating. It also helps us
compare more directly with the braiding statistics of related
defects obtained in Refs. 28–31.

First, let us define the following Hamiltonian:

Hab = −|t |(e−i2πθab/(m−l)α†
aαb + H.c.), (50)

which couples the zero modes located at the a and b defects.
This has the effect of generating an energy gap in the
degenerate subspace formed by the a and b defects. The phases
θab determine the eigenvalue of α

†
aαb on the ground state.

Now we can consider the following two-step process:

H (τ ) =
{

H2→3 = (1 − τ )H34 + τH24, τ ∈ [0,1],

H1→4 = (2 − τ )H24 + (τ − 1)H12, τ ∈ [1,2].

(51)

As is shown in Fig. 9, in the first half of the process τ ∈ [0,1],
the Hamiltonian H2→3 moves the zero mode at defect 2 to
defect 3. In the second half, the Hamiltonian H1→4 moves the
zero mode at defect 1 to defect 4. We set θ12 = θ34 so that
up to a translation, this is a closed path in the Hamiltonian
projected onto the low-energy subspace, which exchanges
the zero modes α1 and α2. It is therefore a one-dimensional
protocol for braiding the defects that does not require motion
in both directions and, depending on the realization of the twist
defects, can be realized physically by gating.6

FIG. 9. (Color online) Illustration of 1D protocol for carrying
out an effective braiding process. This protocol does not require a
continuous motion in both directions and may be easier to implement
in many physical realizations, for instance through gating.

In order to understand the effect of these processes on the
ground-state subspace, we first observe that the operators

O1 = α2α
†
3α4,

(52)
O2 = α

†
1α2α

†
4,

commute with the two processes,28,29 respectively:

[H2→3,O1] = 0,
(53)

[H1→4,O2] = 0.

Using this, we can now obtain the effect of this process on the
zero modes α1 and α2. We let Pa→b(τ ) be the projector onto
the ground-state sector of Ha→b(τ ). First, we define integers
k1, k2, and k3 such that

θ34 ∈ (k1 − 1/2,k1 + 1/2),
(54)

θ24 ∈ −(k2 − 1/2,k2 + 1/2) − (m − l + 1)/2.

We find

P2→3(0)O1P2→3(0) = e2πik1/(m−l)α2,
(55)

P2→3(1)O1P2→3(1) = e−iπ+iπ(2k2−1)/(m−l)α4α
†
3α4.

Here, the projection P2→3(τ )O1P2→3(τ ) keeps track of the
evolution of the zero mode while we increase τ from 0 to
1. When τ = 0, that is, when α3 and α4 are coupled, we see
from the first equation that α2 is a zero mode of the system.
When τ reaches 1, namely when α2 and α4 are coupled, the
second equation indicates that the zero-mode operator evolves
to α4α

†
3α4 with an additional U(1) phase. Similarly, for the

second half of the process (τ increases from 1 to 2), we use
another projection P1→4(τ )O2P1→4(τ ) to follow the change
of the zero mode:

P1→4(1)O2P1→4(1) = e−iπ+iπ(2k2−1)/(m−l)α
†
1, (56)

P1→4(2)O2P1→4(2) = ei2πk1/(m−l)α
†
4.

Thus, in the second half of the process, the zero mode evolves
from α

†
1 to α

†
4 with a additional U(1) phase factor. Also, we note

that α4α
†
3α4 commutes with the second process, H2→3(τ ), and

so is unchanged. After the process is over, the configuration of
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the defects is actually equivalent to the starting point and we
can relabel α4 as α2 and α3 as α1. Therefore, we conclude, in
terms of the braid matrix,

B
†
12α2B12 = −ei iπ

m−l
(2k2−2k1−1)α2α

†
1α2,

(57)
B

†
12α1B12 = −ei π

m−l
(2k2−2k1−1)α2.

From this, and following the same steps as in the previous
section, we find that the 1D braiding protocol gives

B12|n〉 = eiθ eiπ(n−(k2−k1))2/(m−l)|n〉. (58)

Comparing with Eq. (49), we see that this 1D braiding protocol
yields an extra integer degree of freedom, (k2 − k1), which
depends on the phases θ24 and θ34. We can interpret these
braidings as the pure braiding of Eq. (49), combined with the
action of the Wilson loop operators W1(b1).

IV. Z2 CHARGE CONJUGATION TWIST DEFECTS IN
SINGLE-COMPONENT ABELIAN STATES

A. Charge conjugation twist defects

References 28–31 considered another type of extrinsic
defect created by the coupling between a superconductor and
the edge states of a FQH state or a fractional quantum spin Hall
state. In a FQH state, the defect occurs between the normal
interedge tunneling region and the superconducting pairing
region. In a fractional quantum spin Hall state, the defect
occurs between superconducting and ferromagnetic regions
along the edge. In both systems, the role of the superconductor
is to break charge conservation. In the following we do not
review their proposals in more detail, but we discuss the
understanding of this defect as a twist defect, and its relation
to the Z2 twist defect discussed in the previous section.

To begin with, we consider Abelian topological states that
are described by U(1)N CS theory, namely the 1/N -Laughlin
FQH states:

L = N

4π
εμνλaμ∂νaλ. (59)

These states have N quasiparticles, {γi} for i = 1, . . . ,N , with
topological spin θa and fractional charge qa

θa = πa2

N
, qa = a/N. (60)

θa is defined modulo π when N is odd (fermions) and modulo
2π when N is even (bosons), while qa is defined modulo 1. The
mutual statistics between quasiparticles γa and γb is given by

θab = 2πab/N, (61)

which is defined modulo 2π .
We see that when charge conservation is broken, this theory

has a Z2 symmetry associated with

γa → γN−a. (62)

In the CS field theory, this symmetry is implemented as

a → −a. (63)

This implies that we can consider twist defects associated
with this Z2 symmetry. As in the previous section, we align all
the twist defects, and we cut the system along a line to obtain

counterpropagating edge states. The electron operator on each
edge is

�eL = eiNφL, �eR = e−iNφR . (64)

Now, in the untwisted A regions, we consider the usual
hopping, �

†
eL�eR + H.c. ∝ cos(Nφ). In the twisted regions,

we apply the Z2 action to one of the chiral edge states: φR →
−φR , to get the tunneling term �

†
eL�

†
eR + H.c. ∝ cos(Nθ ),

where

φ = φL + φR,
(65)

θ = φL − φR.

Thus, we have

δHt = g

2

{
(�↑�↓ + H.c.) if x ∈ Ai,

(�†
↑�↓ + H.c.) if x ∈ Bi,

= g

{
cos(Nθ ) if x ∈ Ai,

cos(Nφ) if x ∈ Bi.
(66)

This is precisely what has been considered in Refs. 28–30
and 33, where it was observed that the defects have quantum
dimension

√
2N .

B. Relation to genons in two-component states

Now let us consider the Z2 genons in the two-component
theories with K matrix

K =
(

m l

l m

)
.

In this theory, the two kinds of tunneling terms that we add are
[see Eq. (35)]

δHt = g cos

(
m + l

2
φ+

){
cos

(
m−l

2 φ−
)

if x ∈ Ai,

cos
(

m−l
2 φ̃−

)
if x ∈ Bi.

(67)

Now observe that if we define

φL± = φL1 ± φL2,
(68)

φR± = φR1 ± φR2,

and further define

θ− = φL− − φR− = φ̃−, (69)

then

δHt = g cos

(
m + l

2
φ+

) {
cos

(
m−l

2 φ−
)

if x ∈ Ai,

cos
(

m−l
2 θ−

)
if x ∈ Bi.

(70)

Since both tunneling terms contain cos( m+l
2 φ+), φ+ is pinned

everywhere and in the low-energy sector can be replaced
by a constant. Now we see that in the Luttinger liquid
theory, the two different tunneling terms are identical to the
superconductor-ferromagnetic terms in the FQSH edge [see
Eq. (66)]. This explains the agreement between the braiding
matrices computed from the Dehn twists of the high-genus
surface (Sec. III) and that computed in Refs. 28–30.

In Eq. (66), the defects have quantum dimension d =√
2N , while in the two-component case, they have quantum
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dimension d = √|m − l|. Therefore, d2 is not restricted to be
even in the latter case. The reason is that in the two-component
case, the coefficient of the boson fields in the cos terms can
have half-integer values [see Eq. (70)], while it is restricted to
be integer in the FQSH setup (66). This can be traced to the fact
that the boson fields θ− and φ− are compactified on a circle:
(θ−,φ−) ∼ (θ− + 2π,φ− + 2π ). Therefore, cos(m−l

2 θ−) and
cos(m−l

2 φ−) are not individually invariant under such a gauge
transformation if m − l is odd. However, in the two-component
case, this is allowed, because whenever one of φLI or φRI

are advanced by 2π , both θ− and φ+ or φ− and φ+ will
change by 2π , so that the products cos(m+l

2 φ+) cos(m−l
2 θ−)

and cos(m+l
2 φ+) cos(m−l

2 φ−) are invariant.
In light of this, we note that even in the n-layer FQH states,

one can introduce superconductivity in addition to twisted
tunnelings in order to create zero modes. We expect then that
one can always map such situations onto a 2n-layer system
without superconductivity but with twisted tunnelings.

V. Z2 GENONS IN TWO-COMPONENT NON-ABELIAN
STATES AND UNIVERSAL QUANTUM COMPUTING

A large part of the analysis in the last section can be
generalized to non-Abelian states. In this section we briefly
comment on the somewhat more exotic possibility of twist
defects in non-Abelian states. Let G denote any non-Abelian
topological state, and let us consider two independent copies
of such a state, which we label G × G. For example, we may
take G to be an Ising topologically ordered state. The G × G

state has a Z2 symmetry in its topological quantum numbers
associated with exchanging the two copies. n pairs of genons
on a sphere will therefore lead to a single copy of G, on a
genus g = n − 1 surface. The ground-state degeneracy Sg is
then given by the general formula

Sg = D2(g−1)
Nqp∑
i=1

d
−2(g−1)
i , (71)

where di is the quantum dimension of the ith quasiparticle,

Nqp is the number of quasiparticles in G, and D =
√∑Nqp

i=1 d2
i

is the total quantum dimension of G. In the limit of large g,
we see that Sg ∼ D2n, which shows that the genons have a
quantum dimension

dZ2 = D. (72)

In the case of genons in the Ising × Ising theory, we see
that dZ2 = 2, and can effectively yield a single Ising theory
on a high-genus surface. The braiding of the twist defects
corresponds to Dehn twists of the Ising theory on the high-
genus surface. While the Ising theory by itself is known to
be nonuniversal for TQC, it is known that it can be made
universal if it were possible to add handles in the space and
carry out Dehn twists.38,39 The Z2 genons provide a physical
realization of such a possibility and therefore can be used to
render universal for TQC a state that without the twist defects
is nonuniversal for TQC.

Here we briefly describe how to use the genons to imple-
ment the necessary computational gates in the Ising × Ising
state, adapting the basic ideas of Refs. 38 and 39. For more

comprehensive reviews of the Ising topological state, we refer
the readers to books and review articles.2,63 The Ising × Ising
state contains nine distinct quasiparticles, of the form a × b,
where a,b = 1,ψ,σ are the three quasiparticles of the Ising
state, which have spins h1 = 0, hψ = 1/2, and hσ = 1/16. In
the presence of genons, the noncontractible loops surrounding
the genons can be mapped to noncontractible loops of a
single Ising theory on a high-genus surface; therefore, each
noncontractible loop surrounding the genons can be labeled
by one of three topological charges: 1, ψ , or σ .

A universal set of gates for quantum computing is obtained
in terms of the single-qubit “π/8” phase gate,38,39

G1 =
(

1 0
0 e2πi/8

)
, (73)

and two-qubit gates,

G2 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ , G3 = 1√

2

⎛
⎜⎝

1 0 0 −i

0 1 −i 0
0 −i 1 0
−i 0 0 1

⎞
⎟⎠.

(74)

G2 is, after a basis transformation, the controlled-NOT (CNOT)
gate.39 Each pair of σ quasiparticles in the Ising state can fuse
to either 1 or ψ , and thus these two possible states form the two
states of a qubit. Therefore, n qubits require 2n σ particles.
While G3 can be implemented by braiding the quasiparticles in
the Ising theory, G1 and G2 cannot be implemented by braiding
quasiparticles alone. However, they can be implemented by
creating genons and braiding them around the quasiparticles.

In order to implement G1, we consider two quasiparticles of
type σ × 1, which we label 1 and 2. The pair (1,2) fuses to the
channel x × 1, where x can be 1 or ψ . The two channels form
the two states of a qubit that can be measured by interferometry
around a loop surrounding the two quasiparticles, which we
denote as C0.

We implement the following processes (see Fig. 10).
(1) Create two pairs of genons out of the vacuum inside the

loop C0, which we label g1, . . . ,g4. Let Cgi,gi+1 label the loop
surrounding gi and gi+1. After creating the genons, ensure that
the topological charges around the loops Cg1,g2 and Cg3,g4 are
trivial, which can be done by performing a measurement.

(2) Braid quasiparticle 2 around Cg2,g3 .
(3) Check with an interferometry measurement that the

charge around C ′
0 is 1. If not, then reannihilate the genons

and restart from step (1) until we find the unit charge
around C ′

0.
(4) Perform a double-exchange of g2 and g3.
(5) Undo step (2) by taking quasiparticle 2 around Cg2g3

in the opposite direction as compared with step (2), and then
annihilate the genons.

This procedure implements G1. In step (1), we ensure that
the loops Cg1,g2 and Cg3,g4 carry trivial charges so that the
charge of C0 is unchanged before and after the genon-pair
creation. By the high-genus surface mapping, the region inside
the loop C0 can be understood as a single layer of the Ising
theory on a torus with a puncture, denoted by C0, and two
quasiparticles on it (see Fig. 11). We denote the topological
charge through a loop C, in this mapping to a single Ising
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′

′

′

FIG. 10. (Color online) Illustration of operations (1), (2), (3), (4), and (4′), described in the main text for performing the CNOT and π/8
phase gates. The black dots are (σ,1) topological quasiparticles. The red circles indicate that the topological charge of the two twist defects
enclosed in each circle is trivial. The black loops with arrows stand for quasiparticle paths. The shaded region enclosed by a blue circle C ′

0

stands for a measurement which projects the state in loop C ′
0 to the trivial sector (1,1).

theory on a torus, as W (C). Therefore, W (C) will in general
be some superposition of 1, ψ , and σ . The charge of the
puncture is W (C0) = x, the state of qubit. Let us consider the
topological charge through C ′

0 and Cg2g3 , which we denote
as W (C ′

0) ⊗ W (Cg2g3 ). After step (1), this is x ⊗ 1
2 (1 + ψ +√

2σ ). This follows from the fact that W (Cg1g2 ) = 1, combined
with the properties of the modular S matrix:

S = 1

2

⎛
⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎠ , (75)

which determines W (Cg2g3 ) in terms of W (Cg1g2 ). After step
(2), W (Cg1g2 ) changes to σ , while W (C ′

0) ⊗ W (Cg2g3 ) → x ⊗
1
2 (1 − ψ) + 1√

2
(ψx) ⊗ σ . This is simply because the fusion

channel of two σ particles is flipped when one of them is
braided around a third σ particle, which in this case is the σ

state of W (Cg2g3 ). Therefore, step (3), which projects onto the
sector where W (C ′

0) = 1, projects W (Cg2g3 ) to be 1√
2
(1 − ψ) if

x = 1, or σ if x = ψ . Another way to see the above result is as
follows. Since step (3) projects onto the sector where W (C ′

0) =
1, we can fill in the interior of C ′

0 with vacuum, leaving us with
a torus with a single puncture, denoted by the loop C0, which
encodes the state of the qubit. If the initial state of the 1,2 pair

C0
x

C′0

g1
C g2

g2
C g3

1 2

FIG. 11. Mapping Fig. 10 to single Ising theory on a torus. The
loops C0, C ′

0, Cg1g2 , and Cg2g3 are depicted.

is x = 1, then the fact that all punctures of the torus are filled
in with vacuum, and W (Cg1g2 ) = σ , together with S, implies
that W (Cg2g3 ) is (1 − ψ) /

√
2. In contrast, if the initial state

is x = ψ , we are left with a torus with a single puncture with
charge W (C0) = ψ and with W (Cg1g2 ) = σ . Using the fact that
the S-matrix in the presence of such a puncture is S

ψ

σi = δiσ
38,39

for i = 1, σ , or ψ , then it follows that W (Cg2,g3 ) = σ . In step
(4), the double exchange, g2 and g3, which implements the
double Dehn twist in the geometrical picture, has an eigenvalue
of 1 for the state W (Cg2g3 ) = (1 − ψ) /

√
2, because e2(2πih1) =

e2(2πihψ ) = 1, and (e2πi/16)2 = e2πi/8 for the state W (Cg2g3 ) =
σ . In step (5), undoing step (2) restores the original state of
the 1,2 pair and unentangles it with the state of the genons,
so that annihilating the genons afterwards does not affect the
qubit state.

In order to implement G2, consider two pairs of quasiparti-
cles, all of type σ × 1, which we label 1,2,3,4. Then, perform
the same steps (1), (2), (3), and (5) as above, replacing (4) with
(4′):

(4′) Braid the pair (3,4) around the loop Cg2,g3 .
Based on the previous discussion, the step (4′) gives a +1,

unless (3,4) is in the state ψ × 1 and W (Cg2,g3 ) = σ [i.e., if
W (C0) = ψ], in which case step (4′) gives −1.

VI. Z3 TWIST DEFECTS AND BRAIDING IN
THREE-COMPONENT ABELIAN FQH STATES

To understand more generic behavior of twist defects, here
we extend the analysis of quantum dimensions and braiding of
twist defects to Z3 twist defects in three-component Abelian
states, which are described by U(1) × U(1) × U(1) CS theory:

L = KIJ

4π
aI ∂aJ , (76)
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FIG. 12. (Color online) Orienting all of the defects along a line
and cutting yields three counterpropagating edge modes. Since the
defects are Z3, there are now three different regions, Ai , Bi , and Ci ,
where we introduce different twisted tunneling terms.

for a rank-3 K matrix. Here the Z3 nature of the twist defects
we consider is associated with the Z3 cyclic permutation
symmetry among the three components. Such Z3 defects can
be realized by the lattice dislocations in the Chern number 3
topological nematic states.9 In principle, it can also be realized
in triple-layer quantum Hall states, which have also been
realized experimentally.64,65 Imposing a Z3 layer symmetry
implies that the K matrix depends on two integers:

K =
⎛
⎝m l l

l m l

l l m

⎞
⎠ . (77)

As we will see, this case requires a more general analysis
with features that do not show up in the case of the simpler Z2

twist defects. Since the bulk geometric picture and mapping
to higher-genus surface is harder to visualize than the Z2 case,
we first carry out our analysis based on the 1 + 1D edge CFT
picture and then present the bulk geometric picture.

A. 1 + 1D edge CFT picture of the Z3 defects

In this case, the Z3 twist defects come in groups of three.
As before, we align them on a torus and cut the system along
the line to obtain counterpropagating edge states. Similar to
the Z2 case, the actions of the edge theory on the two sides
of the cut are given by Eqs. (21) and (27), respectively. As
shown before, we can obtain the commutator (24) and (28)
by quantizing the theory. However, instead of using Eq. (31),
here we choose a different scheme to take care of the correct
statistics between electrons on different layers. We write the
electron operators as

�eLI = ηLI e
iKIJ φLI ,

(78)
�eRI = ηRI e

−iKIJ φRI ,

where ηLI and ηRI are Klein factors that satisfy

η2
LI = η2

RI = 1, η
†
LI = ηLI , η

†
RI = ηRI ,

[ηLI ,ηLJ ] = [ηRI ,ηRJ ] = [ηLI ,ηRJ ] = 0, for m − l even,

{ηLI ,ηLJ } = {ηRI ,ηRJ } = {ηLI ,ηRJ } = 0, for m − l odd.

(79)

When we glue the edges back together, we now have three
different regions where we introduce different tunneling
operators (see Fig. 12):

δHtun = g
∑

I

⎧⎪⎨
⎪⎩
KI cos(KIJ φJ ) if x ∈ Ai,

K′
I cos(KIJ φ′

J ) if x ∈ Bi,

K′′
I cos(KIJ φ′′

J ) if x ∈ Ci,

(80)

where now

φ′
I = φLI + φR(I+1)%3, φ′′

I = φLI + φR(I+2)%3,

KI = im−lηLI ηRI , K′
I = im−lηLI ηR(I+1)%3, (81)

K′′
I = im−lηLI ηR(I+2)%3.

The factor im−l helps keep the Hermiticity of the operators
KI , K′

I , and K′′
I . In the absence of the twist defects, we

only consider a single A region, and the minima of the
cosine potential give |Det K| = |(m + 2l)(m − l)2| different
states. These states can be labeled by integer vectors �p =
(p+,p1,−2,1,p1,0,−1), such that

eiφ+ | �p〉 = e
2πip+
m+2l | �p〉,

eiφ(1,−2,1) | �p〉 = e
i2πp(1,−2,1)

m−l | �p〉, (82)

eiφ(1,0,−1) | �p〉 = e
i2πp(1,0,−1)

m−l | �p〉,
where we have defined φ(a,b,c) = aφ1 + bφ2 + cφ3 and φ+ =
φ(1,1,1).

Now consider the system with n > 0 triplets of twist
defects. While formally the tunneling Hamiltonian in the
different regions differ only by a cyclic permutation of the
layers, there is an important difference between the regions.
Since all physical operators can only be built out of electron
operators, there is a gauge symmetry in the values of φLI and
φRI . The transformation

φLI → φLI + 2πK−1
IJ nJ ,

(83)
φRI → φRI − 2πK−1

IJ nJ ,

with n1, n2, n3 ∈ Z, preserves all physical operators and are
thus considered gauge symmetries of the theory. All physical
operators must be gauge invariant. In the A regions, the quasi-
particle tunneling operators eiφI (xAi

) are all gauge invariant. In
contrast, in the B and C regions, eiφ′

I and eiφ′′
I are unphys-

ical. However, the operators eiφ′
+(xBi

) = eiφ+(xBi
), eiφ′′

+(xCi
) =

eiφ+(xCi
), eiφ′

(1,0,−1)(xBi
)+φ′′

(−1,1,0)(xCi
), and eφ′

(−1,1,0)(xBi
)+φ′′

(0,−1,1)(xCi
) are

also physical, gauge-invariant operators. The cosine potentials
pin the eigenvalues of these operators. Due to the commutation
relations,

[φI (x),φ′
J (y)] = iπ

(
K−1

I,(J+1)%3 − K−1
I,J

)
sgn(x − y),

[φI (x),φ′′
J (y)] = iπ

(
K−1

I,(J+2)%3 − K−1
I,J

)
sgn(x − y), (84)

[φ′
I (x),φ′′

J (y)] = iπ
(
K−1

I,(J+1)%3 − K−1
I,J

)
sgn(x − y),

we see that the largest set of independent commut-
ing physical operators is eiφI (xAi

), eiφ+(xBi
), eiφ+(xCi

), and
eiφ′

(1,0,−1)(xBi
)+iφ′′

(−1,1,0)(xCi
).

Minimizing the cosine potential in the A regions, we get
|(m + 2l)(m − l)2| states for each A region, as in the case with
no twist defects. In the B and C regions, the operator eiφ+ is
pinned to one of (m + 2l) values in each region. Finally, for
each triplet of defects, the operator eiφ′

(1,0,−1)(xBi
)+φ′′

(−1,1,0)(xCi
) is

pinned to one of |m − l| values. In Appendix A, we provide
a more detailed treatment which explicitly includes the Klein
factors.

The above counting gives a total of |(m + 2l)3n(m − l)3n|
states. However, there are additional constraints:9 The electric
charge is a local observable, and therefore states with different
charges at the defects are not topologically degenerate. This
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FIG. 13. (Color online) Physical meaning of the zero-mode
operators αi , βi , and γi for the Z3 twist defect case. In subsequent
figures, we use the bottom figure, which is more precisely described
by the top figure.

gives 3n − 1 constraints on each of the eigenvalues of
eiφ+ in the different regions. The total number of states is
therefore |(m + 2l)(m − l)3n|. Each Z3 twist defect therefore
has quantum dimension

dZ3 = |m − l|. (85)

Writing the ground-state degeneracy as |Det K||m − l|3n−2,
the factor |Det K| can be understood from the fact that
we started on a torus, while the factor |m − l|3n−2 can
be understood as due to the appearance of a nontrivial
quasiparticle loop algebra, which forms 3n − 2 copies of a
magnetic algebra. The degeneracy |m − l|3n−2 is equivalent to
what would be obtained in a U(1)m−l CS theory on a genus
g = 3n − 2 surface (the explicit mapping to the high-genus
surface is explained in Sec. VI B). Below, we calculate the

braiding of these Z3 genons, which can also be related to
Dehn twists of U(1)m−l CS theory.

To compute the braiding, as before, we can construct zero
modes localized to each domain wall, which correspond to
quasiparticle tunneling around the defects:

αi =

⎧⎪⎨
⎪⎩

η1Rη2Reiφ1(xAi
)e−iφ′

1(xBi
), i mod 3 = 1,

η1Rη2Reiφ′
3(xBi

)e−iφ′′
3 (xCi

), i mod 3 = 2,

η1Rη2Reiφ′′
2 (xCi

)e−iφ2(xAi+1 ), i mod 3 = 0.

(86)

Similarly, we define βi ,

βi =

⎧⎪⎨
⎪⎩

η2Rη3Reiφ2(xAi
)e−iφ′

2(xBi
), i mod 3 = 1,

η2Rη3Reiφ′
1(xBi

)e−iφ′′
1 (xCi

), i mod 3 = 2,

η2Rη3Reiφ′′
3 (xCi

)e−iφ3(xAi+1 ), i mod 3 = 0,

(87)

and similarly for γi . Figure 13 displays the quasiparticle
tunneling process described by these operators. For example,
αi describes the process in which a layer 2 quasiparticle tunnels
around a twist defect and goes to layer 1. The Klein factors are
added so that these operators are zero modes:

[δHtun,αi] = [δHtun,βi] = [δHtun,γi] = 0. (88)

Since φ+ ≡ φ1 + φ2 + φ3 is fixed everywhere, there is a local
constraint between the three zero modes similar to that in the
Z2 case [cf. Eq. (38)]:

αkβkγk = e
2πi
m−l e−iQk , (89)

where Qk = 1
2π

(φ+(xk) − φ+(xk−1)) is the charge on the kth
defect, where here xk refers to the region between the (k − 1)th
and the kth defect. In what follows, for simplicity we set Qk =
0, as this does not affect the topological properties of the
defects.

Using the definition of the zero modes, we obtain the
following algebra:

αnαn+k = αn+kαne
i2π
m−l , βnβn+k = βn+kβne

i2π
m−l , γnγn+k = γn+kγne

i2π
m−l ,

αnβn+k = (−1)m−lβn+kαne
−iπ
m−l , βnγn+k = (−1)m−lγn+kβne

−iπ
m−l , γnαn+k = (−1)m−lγn+kαne

−iπ
m−l ,

(90)
αnγn+k = (−1)m−lγn+kαne

−iπ
m−l , βnαn+k = (−1)m−lβn+kαne

−iπ
m−l , γnβn+k = (−1)m−lβn+kγne

−iπ
m−l ,

αnβn = (−1)m−lβnαne
i π

m−l , βnγn = (−1)m−lγnβne
i π

m−l , γnαn = (−1)m−lαnγne
i π

m−l ,

where k > 0. The first line shows the algebra between the same
zero-mode operators located on different defects. The algebra
of different operators on different sites is shown on the second
and the third lines, while in the last line, we write down the
algebra between different operators on the same defect. The
zero modes can be used to construct the quasiparticle Wilson
loop operators:

W (a3k+1) = α3k+1β3k+2γ3k+3,

W (b3k+1) = γ3k+3α3k+4β3k+5,

W (a3k+2) = β3k+1γ3k+2α3k+3,
(91)

W (b3k+2) = α3+3β3k+4γ3k+5,

W (a3k+3) = −e
iπ

m−l α
†
3k+2α3k+3,

W (b3k+3) = −e
iπ

m−l β
†
3k+2β3k+3,

where we have chosen the overall phases so that (see
Appendix B)

W (ai)
m−l = W (bi)

m−l = 1. (92)

Figure 14 displays the loops ai and bi along which the
quasiparticle tunnels by the action of the Wilson loop operators
W (ai) or W (bi). These operators satisfy

W (a3k+i)W (b3k+j ) = W (b3k+j )W (a3k+i)e
δij 2πi/(m−l), (93)

which leads to |m − l|3n states forming the irreducible
representation of this algebra. Adding an extra factor of
|m + 2l| for the possible values of ei(φ1+φ2+φ3), we get a total
of |(m + 2l)(m − l)3n| topologically degenerate states. This
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FIG. 14. (Color online) Physical meaning of the quasiparticle
Wilson loop operators.

confirms again that the quantum dimension of each Z3 defect
is dZ3 = |m − l|.

In order to calculate the braiding matrices, we need to
understand how the zero-mode operators transform under a
braiding process. From Fig. 15, we see that under a clockwise
braiding of 2 and 3, B23α2B

†
23 = eiφα3 and B23α3B

†
23 =

eiθγ
†
3 γ2α3, where B23 is the braid matrix. The Z3 layer

cyclic symmetry implies that B23β2B
†
23 = eiφβ3, B23β3B

†
23 =

eiθα
†
3α2β3, B23γ2B

†
23 = eiφγ3, and γ3B

†
23 = eiθβ

†
3β2γ3. We can

fix eiφ = e−iθ by using the fact that the braiding operation
should commute with the loop operator W (a1) and W (a2)
that encircle these two defects. Using Eq. (89), we then have
ei3φ = 1. Thus, we find

B23α2B
†
23 = e

i2πk
3 α3, B23α3B

†
23 = e

−i2πk
3 γ

†
3 γ2α3,

B23β2B
†
23 = e

i2πk
3 β3, B23β3B

†
23 = e

−i2πk
3 α

†
3α2β3, (94)

B23γ2B
†
23 = e

i2πk
3 γ3, B23γ3B

†
23 = e

−i2πk
3 β

†
3β2γ3,

where the integer k = 0,1,2 is a phase ambiguity that is not
yet fixed. Further, considering Eq. (92), we obtain k = 0 when
m − l is not a multiple of 3. For m − l being a multiple of 3,
we still have three different choices of k, which is similar to
the Z2 case.

Now we choose a basis for the |m − l|3n different states,
|{ni}〉, for ni = 1, . . . ,|m − l| so that

W (ai)|{nj }〉 = e2πini/(m−l)|{nj }〉,
(95)

W (bi)|{nj }〉 = |{(nj + δij )%|m − l|}〉.
Note that we can ignore the extra degeneracy of |m + 2l|
associated with the possible eigenvalues of eiφ+ , as they are
independent of the braiding. In this basis, we find that the braid
matrix is

〈{n′
i}|B23|{ni}〉 = δn′

1n1δn′
2n2√|m − l|e

i
4πk(n′

3−n3)

3 e
i

π(n′2
3 −2n3n′

3−(m−l)n′
3)

(m−l) .

(96)

The braid matrix B23 can be viewed as an element of the
mapping class group in the U(1)m−l CS theory on a high-genus
surface. Observe that B23 only has a non-trivial action on an
|m − l|-dimensional subspace of the ground states, associated
with the states that form the |m − l|-dimensional irreducible
representation of W (a3) and W (b3). Now consider the Dehn
twists Ua and Ub, around the a and b cycles of the torus for
U(1)m−l CS theory [see Eqs. (13), (14), and (17)]. When m − l

is odd, the action of B23 in this relevant subspace is

B23 = eiθ (UaUb)†, (97)

where the phase eiθ depends on details of the path. When m − l

is even,

B23 = eiθW (b3)(m−l)/2(UaUb)†(W †(b3))(m−l)/2. (98)

Therefore, within this subspace, B23 coincides with a sequence
of Dehn twists in U(1)m−l CS. When B23 is not projected onto
this subspace, it can be viewed as a sequence of Dehn twists
in U(1)m−l CS theory on a high-genus surface. We also see
this result via the geometric construction of the subsequent
section.

Similar to the Z2 case, we can also realize the braiding
through a purely 1D protocol, without continuously moving
the defects in both dimensions. First, we define the following
Hamiltonian:

Habc = −|t |(e −i2πθabc
m−l αaβbγc + e

−i2πθabc
m−l βaγbαc

− e
−i2πθabc

m−l e
iπ

m−l α†
aαb + H.c.

)
, (99)

which couples the zero modes located at the a, b, and c

defects. Here, we assume that a < b < c. In fact, all terms
in this Hamiltonian commute with each other. The states in
the subspace formed by the a, b, and c defects are labeled by
the discrete eigenvalues of the three operators αaβbγc, βaγbαc,

FIG. 15. (Color online) Effect of a clockwise braid on the zero modes on the second and third dislocation. (a) α2 → α3; (b) α3 gets
transformed into the combination of γ

†
3 γ2 and α3. Therefore, α3 → γ

†
3 γ2α3. Similar to the Z2 case, the ordering ambiguity or additional phase

factor can be fixed with additional constraints.
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FIG. 16. (Color online) Illustration of the 1D protocol for carrying out an effective braiding process of the Z3 twist defects. The purple,
orange and, gray circles mark up the zero modes located on the corresponding defects.

and α
†
aαb. So the ground state should take the eigenvalues

that minimize each term (plus its Hermitian conjugate) in the
Hamiltonian. For a generic θabc, the degeneracy of Hilbert
space associated with defect a, b, and c is usually completely
lifted. Although a finite set of values of θabc that will lead to
accidental degeneracy in this Hilbert space exists, this set of
values is carefully excluded in the following discussion.

Now, we can consider the following processes:

H (τ ) =
{

H3→5 = (1 − τ )H456 + τH346, τ ∈ [0,1] ,

H2→6 = (2 − τ )H346 + (τ − 1)H234, τ ∈ [1,2].

(100)

As is shown in Fig. 16, in the first half of the process τ ∈ [0,1],
the Hamiltonian H3→5 takes the zero modes on defect 3 to
defect 5. In the second half τ ∈ [1,2], the Hamiltonian H2→6

takes the zero modes on defect 2 to 6. We set θ456 = θ234 so
that up to a translation, this is a closed path in the Hamiltonian
projected to the low-energy subspace. This process effectively
exchanges the zero modes at defects 2 and 3.

In order to understand the effect of these processes on the
ground-state subspace, we first observe that operators

O1 = α3β4γ5α6, O′
1 = γ3α4β5γ6,

(101)
O2 = α2β3γ4α6, O′

2 = γ2α3β4γ6,

commute with the two processes, respectively:

[H3→5,O1] = [H3→5,O′
1] = 0,

(102)
[H2→6,O2] = [H2→6,O′

2] = 0.

Using this, we can obtain the effect of these processes on
the zero modes. We let Pa→b(τ ) be the projector onto the
ground-state sector of Ha→b. First, we define integers k1 and
k2 such that

θ456 ∈ (k1 − 1/2,k1 + 1/2),
(103)

θ346 ∈ (k2 − 1/2,k2 + 1/2),

where θ456,θ346 �= Z + 1/2 is assumed to avoid accidental
degeneracy in the Hilbert space associated with these defects.

Then, following the same logic as the 1D protocol for the Z2

twist defect, we can use the projection P3→5(τ )O1P3→5(τ )
and P3→5(τ )O′

1P3→5(τ ) to study the evolution of zero modes
in the first half of the process (τ from 0 to 1) and consider
P3→5(τ )O2P3→5(τ ) and P3→5(τ )O′

2P3→5(τ ) for the second
half (τ from 1 to 2). We find that

P3→5(0)O1P3→5(0) = e
i2πk1
m−l α3,

P3→5(0)O′
1P3→5(0) = e

i2πk1
m−l γ3,

(104)
P3→5(1)O1P3→5(1) = e

i2πk2
m−l γ

†
6 γ5α6,

P3→5(1)O′
1P3→5(1) = e

−i4πk2
m−l β

†
6β5γ6,

where we have used the relations (α3β4γ6)m−l =
(β3γ4α6)m−l = 1 and αiβiγi = e

2πi
m−l (assuming the charge on

each dislocation is 0). Also, we have

P2→6(1)O2P2→6(1) = e
i2πk2
m−l α2,

P2→6(1)O′
2P2→6(1) = e

i2πk2
m−l γ2,

(105)
P2→6(2)O2P2→6(2) = e

i2πk1
m−l α6,

P2→6(2)O′
2P2→6(2) = e

−i4πk1
m−l γ6.

Notice that, in the second half of the process, α6 and γ6

commute with the Hamiltonian and thus remain unchanged.
Similar to the Z2 case, after the process is over, we can relabel
defect 5 as defect 2 and defect 6 as defect 3. Therefore,
with the relations αiβiγi = e

2πi
m−l , we can write down these

transformations of the zero modes in terms of the braid matrix:

B23α2B
†
23 = e

i2π(k1−k2)
m−l α3,

B23α3B
†
23 = e

i2π(k2−k1)
m−l γ

†
3 γ2α3,

B23β2B
†
23 = e

i2π(k1+2k2)
m−l β3,

(106)
B23β3B

†
23 = e

i2π(2k1+k2)
m−l α

†
3α2β3,

B23γ2B
†
23 = e

−i2π(2k1+k2)
m−l γ3,

B23γ3B
†
23 = e

−i2π(k1+2k2)
m−l β

†
3β2γ3.
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FIG. 17. (Color online) Illustration of the equivalence between a sphere with three Z3 twist defects and a torus. Panels (a) and (b) shows
the sphere with twist defects cut along the branch-cut line connecting defects 1,2,3. The red, blue, and green lines denote the edge states of the
three layers along the cut. After the cutting, the system in (b) is equivalent to three decoupled systems of the three layers shown in (c). Then the
three layers are glued along the branch-cut line after a twist. Along line 1-2 the three layers are glued in the pattern of red to blue (rb), blue to
green (bg), and green to red (gr), in which the first and second colors are the layer index of the lower and upper edges, respectively. The result
of this gluing is shown in (d), which is equivalent to (e). Then the green and blue layers are glued along the 2-3 line, shown in panels (f) and
(g). Finally, the rest of the edge states in (g) are glued following the rule of red to green, green to blue, which leads to the torus shown in (h)
and (i).

This result is slightly different from Eq. (94). The reason
is that when we restrict the discussion to the same charge
sector, in which the relations αiβiγi = e

2πi
m−l hold for any i [see

Eq. (89)], the Hamiltonian (100) of this 1D protocol breaks
the Z3 cyclic layer symmetry for generic k1 and k2. If m − l

is not a multiple of 3, only when k1 = k2 = 0 is the Z3 layer
symmetry restored. If m − l is a multiple of 3, the condition
of the symmetry is k1 = 0 and k2 = 0, ± (m − l)/3. Once the
symmetry is restored, this result agrees with Eq. (94). On the
other hand, if we choose to loosen the charge constraints but
insist on the Z3 layer symmetry of Eq. (100) [by adding other
terms related to the original terms by cyclic permutation into
the definition of Eq. (99)], then the charge on each dislocation
changes generically during the “braiding” process dictated by
the 1D protocol Hamiltonian (100).

B. Bulk geometric picture

When l = 0 in the K matrix in Eq. (77), the three layers are
decoupled and it is possible to understand the Z3 twist defects
by directly mapping the trilayer system with twist defects
to a high-genus surface, similar to the bilayer Z2 case. The
mapping is probably too complicated for practical purposes,
and we only discuss it in the simplest case of a sphere with
three Z3 defects, as an illustration of the general situation (as
in the Z2 case, we expect the mapping to also be possible when
l �= 0, though this is even more complicated). Illustration of
the mapping is given in Fig. 17. We consider a cut-and-glue
procedure to describe the defects. Cutting the sphere along a

line connecting the defects 1,2,3 leads to chiral edge states of
the three layers around the cut, as is shown in Fig. 17(a), where
the three layers are labeled by red, blue, and green lines. As is
illustrated in Fig. 17(b), the system with the cut is equivalent
to three decoupled layers, each of which is topologically a
disk. Then the twist defects are created by gluing different
layers shifted by a Z3 operation. Along the branch cut between
defects 1 and 2 the left movers on the lower edge in the red
(r), blue (b), and green (g) layers are glued with the right
movers on the upper edge in the b,g,r layers, respectively.
Along the branch cut between 2 and 3, the layers are glued
in the opposite fashion so that r,b,g left movers are glued
to g,r,b right movers, respectively. This gluing can be done
in three steps. First, the layers are glued along the branch
cut between 1 and 2, which glues the three disks into one
disk, as is shown in Figs. 17(d) and 17(e). Second, along the
branch cut between 2 and 3 the green left mover was glued
to the blue right mover, which leads to a sphere with two
punctures shown in Fig. 17(g). Third, the remaining red and
blue left-moving edge states are glued to green and red right
movers, respectively, which glues the punctured sphere to a
torus.

We can also see from the geometric picture that the Wilson
loop operators indeed correspond to nontrivial loops on the
torus. For example, the loop corresponding to the operator
γ
†
2 γ3 is shown in Fig. 18(a). In the mapping this loop is mapped

to a nontrivial loop on the torus, as is illustrated in Figs. 18(b)
and 18(c). The braiding of the defect 2 and 3 will deform this
loop to another nontrivial loop on the torus. Thus, we know
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FIG. 18. (Color online) A loop around two Z3 twist defects 2 and
3 (the dotted lines) on the sphere (a) is topologically equivalent to a
nontrivial loop on the torus shown in (c). This is the same loop that
appears in Fig. 15(b). The color of the dotted line indicates the layer
indices. This equivalence is obtained by following the steps shown
in Fig. 17. Panel (b) shows an intermediate steps of the topological
deformation which corresponds to Fig. 17(d). Other intermediate
steps are omitted.

that the braiding of the defects corresponds to a nontrivial
element of the mapping class group.

VII. DECONFINING THE GENONS: ORBIFOLD STATES

So far, we have considered twist defects (genons), labeled
by a symmetry group element g ∈ G, where G is a symmetry of
the topological quantum numbers of a topological phase. These
genons are extrinsic defects of the system, and separating
them costs energy that grows with the distance between them,
similar to vortices in a superfluid. It is possible to deconfine
these defects to turn them into intrinsic quasiparticles of a
neighboring topological phase. One way to do this is by finding
a way to gauge the symmetry G. Such a gauging process
corresponds to orbifolding in the edge CFT.66 In this section
we discuss the relation between the braiding statistics of the
genons in the confined (ungauged) and deconfined (gauged)
states. The difference between confined and deconfined genons
shown below will also further clarify the intrinsic difference
between projective and linear representations of the braid
group.

In the case of Z2 twist defects studied in Sec. III, one
can gauge the Z2 symmetry associated with exchanging the
two U(1) gauge fields. Physically, we expect that this can
be done either by proliferating double-twist defects67 or by
condensing anyons.68 This leads to the U(1) × U(1) � Z2 CS
theory studied in Ref. 32, which describes a set of orbifold FQH
states42 and “twisted” Zn topological states.41 There, the Z2

twist defects simply become finite-energy Z2 vortices, which
carry quantum dimension

√|m − l|. These states contain an
Abelian quasiparticle that carries the Z2 gauge charge; when
it condenses, the system undergoes a Z2 Higgs transition in
the 3D Ising universality class, and we obtain the Abelian
U(1) × U(1) theories.

There is a close relation between the braiding of the Z2

vortices in the orbifold states and the braiding of the extrinsic
defects in the Abelian states. To understand this, let us briefly
review the properties of the orbifold states. We recall that in
the U(1) × U(1) CS theory, for n pairs of Z2 twist defects on
a sphere, the ground-state degeneracy is |m − l|n−1. When the
Z2 symmetry is gauged, αn of these states are Z2 invariant,
while βn are Z2 noninvariant, where αn + βn = |m − l|n−1,

and it was found32 that

αn =
{

(|m − l|n−1 + 2n−1)/2 for |m − l| even,
(|m − l|n−1 + 1)/2 for |m − l| odd,

(107)

βn =
{

(|m − l|n−1 − 2n−1)/2 for |m − l| even,
(|m − l|n−1 − 1)/2 for |m − l| odd.

(108)

Therefore, in the orbifold/twisted states, where we gauge
the Z2, the number of ground states in the presence of n pairs
of Z2 vortices is αn. This result allows us to deduce the fusion
rules32,42

(γ × γ̄ )n = αnI + βnφ + · · · , (109)

where φ is the Abelian quasiparticle that carries the Z2 gauge
charge, γ represents the Z2 vortex, and γ̄ is its conjugate.
Therefore, the braid matrix for the Z2 vortices in this case
will have dimension αn instead of |m − l|n−1. Thus, for
|m − l| > 2, the braid matrices for genons in the confined and
deconfined states are not the same, and even have a different
dimension.

As we found in Sec. III, the braiding of the genons
corresponds to Dehn twists of the U(1)m−l CS theory. Under
the action of the Dehn twists, Z2 invariant states are mapped
to Z2 invariant states, and similarly for the Z2 noninvariant
states. Therefore, the |m − l|n−1 dimensional braid matrix of
the genons, when restricted to the Z2 invariant subspace, will
be equivalent to the αn-dimensional braid matrix of the Z2

vortices.
In the single-component case, described by U(1)N CS

theory, we considered Z2 twist defects associated with a →
−a, which give defects with quantum dimension

√
2N . We

can consider gauging the Z2 symmetry in this theory, to obtain
a CS theory with disconnected gauge group U(1) � Z2 = O(2)
(Refs. 32 and 69). The edge CFT of such a CS theory is the
U(1)N/Z2 orbifold theory.66,69 When N is even, the Z2 vortices
in this theory have quantum dimension

√
N/2, while when N

is odd, they have quantum dimension
√

N . This provides an
example where gauging the symmetry associated with the twist
defect appears to also change its quantum dimension.

Let us briefly explain the reason for this change in quantum
dimension. When the genons are confined and have quantum
dimension

√
2N , part of this quantum dimension in this

context is actually protected by a particle number symmetry.
When N is odd (i.e., for fermionic states), the

√
2 factor is

protected by the fermion parity symmetry. When N is even,
then we can think of the quantum dimension as

√
2N =

2
√

N/2; the factor of 2 in this quantum dimension can be
shown to be protected by a boson parity number symmetry.
Notice that in the edge theory (see Sec. IV), only boson pairing
terms are added, so boson parity is still a symmetry of the
problem. When these symmetries are completely broken (by,
e.g., coupling the system to an external particle reservoir), then
we see that the fermionic case gives a quantum dimension

√
N ,

while the bosonic case gives a quantum dimension
√

N/2,
which coincides with the result obtained by considering the
O(2) CS theory, discussed above, where the genons are
deconfined.

In the Z3 case, gauging the Z3 symmetry leads to [U(1) ×
U(1) × U(1)] � Z3 CS theory. We expect the relation between
the Z3 vortices in that theory and the Z3 twist defects in the
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U(1) × U(1) × U(1) theory to be similar to the case of the
two-component Abelian states.

VIII. DISCUSSION

In this paper, we have studied the possibility of extrinsic
twist defects, associated with a symmetry of the topological
quantum numbers of a topologically ordered state. We have
explicitly studied several different examples, including various
kinds of Z2 and Z3 twist defects in Abelian and non-Abelian
topological states. In all of the cases we have studied, we found
that the projective braiding statistics of the twist defects are
related to adiabatic modular transformations of a topological
state on a high-genus surface, and we have developed several
different ways of explicitly computing the braiding of the twist
defects. The close and precise relation of the twist defects to
topological states on a high-genus surface leads us to refer to
them as genons.

From a mathematical point of view, the mapping we found
from braiding operations of Z2 twist defects to Dehn twists
defines a group homomorphism between the braid group
B2n and the mapping class group of genus n − 1 surfaces.
(More generally, for each m � 2, a different homomorphism
is defined from the braid group to the mapping class group by
the braiding of Zm twist defects.) The relation between braid
groups and mapping class groups has been studied extensively
in the mathematics literature (see, e.g., Refs. 70 and 71), but
as far as we can understand, the homomorphism we discuss
seems to be different from the existing ones in the literature.

Most importantly, the braiding statistics of the genons
are projective, meaning that they are only well defined up
to an overall phase. The reason for this is that the genons
are not intrinsic dynamical quasiparticles of the system. This
fact allows the possibility of fundamentally novel behavior,
because the projective non-Abelian braiding statistics are not
subject to the same stringent constraints as true non-Abelian
quasiparticles. In this paper, we have found several examples
of this. The simplest case of Z2 twist defects in Abelian states
have quantum dimension

√
n for integer n. For n = 2, these

defects are Majorana fermions and their braiding is the same as
the braiding of Ising anyons, up to an overall phase. However,
as we discussed in Sec. VII, the braiding of the confined defects
for n > 2 is inequivalent to the braiding that is obtained when
the genons are deconfined, because the dimensions of the braid
matrices are different in the two cases. In some cases, we even
found that after the symmetry is gauged in the theory so that
the genons become deconfined, it appears that their quantum
dimension can also change.

While the non-Abelian genons in Abelian states have been
argued to be insufficient for universal TQC,28 we have found
that Z2 genons introduced into non-Abelian states can be used
for universal TQC, even when the host non-Abelian state is
nonuniversal for TQC.

In this work, the twist defects are point defects in the
sense that far away from the defects, no local operation can
distinguish the presence of the defect, because the defects
are associated with symmetries of the topological order. It is
possible to consider a more general class of defects, which are
different kinds of domain walls between different topological
states. Then, junctions between different kinds of domain walls

may induce some nontrivial topological degeneracy and cannot
be viewed as point defects at all. We leave the detailed study
of such more general possibilities for future work.
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APPENDIX A: GROUND-STATE DEGENERACY
WITH Z3 TWIST DEFECTS VIA MINIMA OF

TUNNELING OPERATORS

Similar to the Z2 case, we obtain the ground-state degen-
eracy of the system by considering the degenerate minima of
the tunneling operators in Eq. (80). Since the Klein factors are
defined differently with m − l even and odd, we separate the
discussion into two pieces. We assume g < 0 throughout the
discussion.

1. m − l even

In the absence of twist defects, the whole 1 + 1D edge is
effectively in the region A. The operators K1, K2, and K3,
which have eigenvalues ±1, commute with each other. We
project the Hilbert space onto the sector where K1, K2, and
K3 take specific values, since states with different values of
K1,2,3 are not topologically degenerate. For our convenience,
we choose the sector where K1,2,3 = 1. Then the conditions of
minimizing δHtun in Eq. (80) are

mφ1 + lφ2 + lφ3 = 2πnA
1 ,

lφ1 + mφ2 + lφ3 = 2πnA
2 , (A1)

lφ1 + lφ2 + mφ3 = 2πnA
3 ,

where na,b,c ∈ Z. These equations can be put into a diagonal
form:

(m + 2l)φ+ = 2π
(
nA

1 + nA
2 + nA

3

) ≡ 2πp+,

(m − l)φ(1,−2,1) = 2π
(
nA

1 − 2nA
2 + nA

3

) ≡ 2πp(1,−2,1), (A2)

(m − l)φ(1,0,−1) = 2π
(
nA

1 − nA
3

) ≡ 2πp(1,0,−1).

Different values that φI ’s are pinned to represent different
degenerate ground states. Since φI ’s are subject to the peri-
odicity φI ∼ φI + 2π , we should actually use eiφ+ , eiφ(1,−2,1) ,
and eiφ(1,0,−1) to label the ground states, as shown in Sec. VI A.
From Eq. (A2), we obtain Eq. (82):

eiφ+ | �p〉 = e
2πip+
m+2l | �p〉,

eiφ(1,−2,1) | �p〉 = e
i2πp(1,−2,1)

m−l | �p〉,
eiφ(1,0,−1) | �p〉 = e

i2πp(1,0,−1)
m−l | �p〉.

We find that eiφ+ can take m + 2l different values, while each
of eiφ(1,−2,1) and eiφ(1,0,−1) has m − l different choices. Thus, in
the absence of twist defects, the ground-state degeneracy of
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the system on a torus is |(m + 2l)(m − l)2|, as expected from
the U(1) × U(1) × U(1) CS theory.

Now we consider the case with n triplets of twist defects.
First of all, by the same reasoning above, we can project
the Hilbert space onto the sector where KI , K′

I , and K′′
I

take specific values, since they commute with each other.
We choose the sector where KI = K′

I = K′′
I = 1. The ground

states are labeled by the maximally commuting set of gauge
invariant operators:

{eiφ+(xAi
),eiφ(1,−2,1)(xAi

),eiφ(1,0,−1)(xAi
),eiφ+(xBi

),

eiφ+(xCi
),eiφ′

(1,0,−1)(xBi
)+iφ′′

(−1,1,0)(xCi
)}. (A3)

For all operators in region A, the analysis above follows
straightforwardly leading to the conclusion that each of
eiφ+(xAi

) can be pinned to one of m + 2l different values, while
each of eiφ(1,0,−1)(xAi

) and eiφ(1,−2,1)(xAi
) can be pinned to one of

|m − l| values. To determine the possible values of eiφ+(xBi
),

eiφ+(xCi
), and eiφ′

(1,0,−1)(xBi
)+iφ′′

(−1,1,0)(xCi
), we need to write down

the conditions minimizing δHtun in Eq. (80) in regions B

and C:

mφ′
1 + lφ′

2 + lφ′
3 = 2πnB

1 ,

lφ′
1 + mφ′

2 + lφ′
3 = 2πnB

2 ,

lφ′
1 + lφ′

2 + mφ′
3 = 2πnB

3 ,
(A4)

mφ′′
1 + lφ′′

2 + lφ′′
3 = 2πnC

1 ,

lφ′′
1 + mφ′′

2 + lφ′′
3 = 2πnC

2 ,

lφ′′
1 + lφ′′

2 + mφ′′
3 = 2πnC

3 ,

which can be rewritten in the diagonal form (including the
position index):

(m + 2l)φ+(xBi
) = 2π

(
n

Bi

1 + n
Bi

2 + n
Bi

3

)
,

(m − l)φ′
(1,−2,1)(xBi

) = 2π
(
n

Bi

1 − 2n
Bi

2 + n
Bi

3

)
,

(m − l)φ′
(1,0,−1)(xBi

) = 2π
(
n

Bi

1 − n
Bi

3

)
,

(A5)
(m + 2l)φ+(xCi

) = 2π
(
n

Ci

1 + n
Ci

2 + n
Ci

3

)
,

(m − l)φ′
(1,−2,1)(xCi

) = 2π
(
n

Ci

1 − 2n
Ci

2 + n
Ci

3

)
,

(m − l)φ′
(1,0,−1)(xCi

) = 2π
(
n

Ci

1 − n
Ci

3

)
.

Here, n
Bi

1,2,3,n
Ci

1,2,3 ∈ Z. Thus, we find each of eiφ+(xBi
) and

eiφ+(xCi
) can be pinned to one of m + 2l different values, while

eiφ′
(1,0,−1)(xBi

)+iφ′′
(−1,1,0)(xCi

) is pinned to one of |m − l| values.
This counting gives a total of |(m + 2l)(m − l)|3n states.
Considering the charge constraint on each defect, which man-
ifests itself in the difference between φ+ in different regions
(see Sec. VI A), the topological ground-state degeneracy is
|(m + 2l)(m − l)3n|.

2. m − l odd

In the absence of the twist defects, the analysis of ground-
state degeneracy is similar to the case above. Since the
operators K1,2,3 commute with each other, we can restrict
the system to be in the sector where K1,2,3 = 1. Thus, the
condition for minimizing δHtun is the same as Eq. (A1). In the
same fashion, we use the operators eiφ+ , eiφ(1,−2,1) , and eiφ(1,0,−1)

to distinguish the degenerate ground states. The ground-state

degeneracy on torus without twist defects is, therefore, given
by the same formula |(m + 2l)(m − l)2|.

Now we consider the case with n triplets of twist defects.
The treatment will be slightly more subtle than the m − l even
case. We still make the projection K1,2,3 = 1 and identify the
maximally commuting set of operators as Eq. (A3). Thus, all
the analysis within region A stays the same. Each of eiφ+(xAi

)

can be pinned to one of m + 2l different values, while each of
eiφ(1,0,−1)(xAi

) and eiφ(1,−2,1)(xAi
) is pinned to one of |m − l| values.

However, in regions B and C, K′
1,2,3 and K′′

1,2,3 cannot be fixed
because they anticommute with K1,2,3. With different K′

I and
K′′

I values, the cosine potentials in Eq. (80) will pin the φ fields
to different phases which can be written in a compact form:

mφ′
1

(
xBi

) + lφ′
2

(
xBi

) + lφ′
3

(
xBi

) = 2πn
Bi

1 + 1 − K′
1

2
π,

lφ′
1

(
xBi

) + mφ′
2

(
xBi

) + lφ′
3

(
xBi

) = 2πn
Bi

2 + 1 − K′
2

2
π,

lφ′
1

(
xBi

) + lφ′
2

(
xBi

) + mφ′
3

(
xBi

) = 2πn
Bi

1 + 1 − K′
3

2
π,

mφ′′
1

(
xCi

) + lφ′′
2

(
xCi

) + lφ′′
3

(
xCi

) = 2πn
Ci

1 + 1 − K′′
1

2
π,

lφ′′
1

(
xCi

) + mφ′′
2

(
xCi

) + lφ′′
3

(
xCi

) = 2πn
Ci

2 + 1 − K′′
2

2
π,

lφ′′
1

(
xCi

) + lφ′′
2

(
xCi

) + mφ′′
3

(
xCi

) = 2πn
Ci

3 + 1 − K′′
3

2
π.

(A6)

The sum of the first three equations in Eq. (A6) yields

(m + 2l)φ+
(
xBi

)
= 2π

(
n

Bi

1 + n
Bi

2 + n
Bi

3

) + 3 − K′
1 − K′

2 − K′
3

2
π. (A7)

Since, by definition, K′
1K′

2K′
3 = K1K2K3, 3−K′

1−K′
2−K′

3
2 π must

be a multiple of 2π in the sector K1,2,3 = 1. Hence, we can
package the right-hand side of this equation above into a single
integer p

Bi+ times 2π . Also, we can conclude that each of
eiφ+(xBi

) is pinned to one of m + 2l different values. The same
argument applies for eiφ+(xCi

). From Eq. (A6), we can also have

(m − l)
(
φ′

(1,0,−1)

(
xBi

) + φ′′
(−1,1,0)

(
xCi

))
= 2π

(
n

Bi

1 − n
Bi

3 − n
Ci

1 + n
Ci

2

)
+ 4 − K′

1 + K′
3 + K′′

1 − K′′
2

2
π. (A8)

Due to the fact that K′
1K′′

2 = −K1K2 and K′
3K′′

1 = −K1K3,
we have K′

1 + K′′
2 = 0 and K′

3 + K′′
1 = 0 in the sector where

K1,2,3 = 1. So we can rewrite the equation as

(m − l)
(
φ′

(1,0,−1)

(
xBi

) + φ′′
(−1,1,0)

(
xCi

))
= 2π

(
n

Bi

1 − n
Bi

3 − n
Ci

1 + n
Ci

2 + 1
)
. (A9)

Therefore, eiφ′
(1,0,−1)(xBi

)+iφ′′
(−1,1,0)(xCi

) is pinned to one of |m − l|
different values, just like that in the case with m − l even.
Then, this counting will give us in total of |(m + 2l)(m − l)|3n

states. Considering the charge constraints on each defect, we
conclude the topological ground-state degeneracy is |(m +
2l)(m − l)3n|.
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APPENDIX B: IDENTITIES OF WILSON
LOOP OPERATORS

The definition of the Wilson loop operators are given in
Eq. (91). Now we prove Eq. (92). To simplify notation, we
consider the case with k = 0 in Eq. (91). The Wilson loop
operators are written as

W (a1) = α1β2γ3, W (b1) = γ3α4β5,w

W (a2) = β1γ2α3, W (b2) = α3β4γ5, (B1)

W (a3) = −e
iπ

m−l α
†
2α3, W (b3) = −e

iπ
m−l β

†
2β3.

Expressed in terms of boson fields, we rewrite W (a1)
as

W (a1) = eiφ1(xA1 )e−iφ1(xA2 ). (B2)

With the assumption that the charge on each dislocation is 0,
φ+ is pinned to the one single value globally. From Eq. (A1),
we can obtain

(m − l)φ1
(
xA1

) − (m − l)φ1
(
xA2

) = 2π
(
n

A1
1 − n

A2
1

)
. (B3)

Thus,

W (a1)m−l = ei(m−l)φ1(xA1 )e−i(m−l)φ1(xA2 ) = 1. (B4)

The proof for W (b1)m−l = W (a2)m−l = W (b2)m−l = 1 is par-
allel. Now, we focus the discussion on W (a3). First, we
write

α
†
2α3 = eiφ′′

3 (xC1 )e−iφ′
3(xB1 )eiφ′′

2 (xC1 )e−iφ2(xA2 )

= e−i π
m−l e−iφ′

3(xB1 )eiφ′′
2 (xC1 )+iφ′′

3 (xC1 )e−iφ2(xA2 )

= e−i π
m−l e−iφ′

3(xB1 )e−iφ′′
1 (xC1 )e−iφ2(xA2 )eiφ+ . (B5)

Notice that the four operators in this expression commute with
each other. Thus,

(α†
2α3)m−l = (−1)e−i(m−l)φ′

3(xB1 )e−i(m−l)φ′′
1 (xC1 )

× e−i(m−l)φ2(xA2 )ei(m−l)φ+ . (B6)

Rewriting the second formula in Eq. (A1) as (m − l)φ2 +
lφ+ = 2πnA

2 , we have

e−i(m−l)φ2(xA2 ) = eilφ+ . (B7)

For the operator e−i(m−l)φ′
3(xB1 )e−i(m−l)φ′′

1 (xC1 ), the even/oddness
of m − l matters. For m − l even, we obtain from Eq. (A4) that
(m − l)(φ′

3(xB1 ) + φ′′
1 (xC1 )) + 2lφ+ = 2πZ, where Z means

an integer, which leads to

e−i(m−l)φ′
3(xB1 )e−i(m−l)φ′′

1 (xC1 ) = ei2lφ+ . (B8)

For m − l odd,

(m − l)
(
φ′

3

(
xB1

) + φ′′
1

(
xC1

))+ 2lφ+ = 2πZ + π − K′
3 +K′′

1

2
.

(B9)

Since K′
3K′′

1 = −K3K1 = −1, we have K′
3 + K′′

1 = 0. So, in
this case,

e−i(m−l)φ′
3(xB1 )e−i(m−l)φ′′

1 (xC1 ) = −ei2lφ+ . (B10)

Thus, for general m − l,

e−i(m−l)φ′
3(xB1 )e−i(m−l)φ′′

1 (xC1 ) = (−1)m−lei2lφ+ . (B11)

Now, we have

(α†
2α3)m−l = (−1)m−l+1ei(m+2l)φ+ = (−1)m−l−1. (B12)

Considering the phase factor in the definition of W (a3), we
have proven that W (a3)m−l = 1. Also, by cyclic symmetry of
the layer index, we also have W (b3)m−l = 1. Besides the the
Wilson loop operators defined in Eq. (91), we derive similar
identities for the Wilson loop operators α3β4γ6 and β3γ4α6

which is useful in the 1D protocol. Written in terms of the
boson fields,

α3β4γ6 = eiφ′′
2 (xC1 )e−iφ′

2(xB2 )eiφ′′
1 (xC2 )e−iφ1(xA3 )

= ei π
m−l e−iφ′

2(xB2 )eiφ′′
2 (xC1 )+iφ′′

1 (xC2 )e−iφ1(xA3 ). (B13)

Thus, by taking the m − lth power of this expression and
rearranging the operators while taking all possible commutator
in account, we have

(α3β4γ6)m−l = (−1)m−le−i(m−l)φ′
2(xB2 )ei(m−l)(φ′′

2 (xC1 )+φ′′
1 (xC2 ))

× e−i(m−l)φ1(xA3 ),

= (−1)m−le−i(m−l)φ′
2(xB2 )ei(m−l)(φ′′

2 (xC2 )+φ′′
1 (xC2 ))

× e−i(m−l)φ1(xA3 )ei(m−l)(φ′′
2 (xC1 )−φ′′

2 (xC2 )),

= (−1)m−le−i(m−l)φ′
2(xB2 )e−i(m−l)φ′′

3 (xC2 )

× e−i(m−l)φ1(xA3 )ei(m−l)(φ′′
2 (xC1 )−φ′′

2 (xC2 ))ei(m−l)φ+ .

(B14)

In this derivation, we have used the fact that
ei(m−l)(φ′′

2 (xC1 )−φ′′
2 (xC2 )) commute with e−i(m−l)φ′

2(xB2 ),
e−i(m−l)φ1(xA3 ), and ei(m−l)φ+ . From Eq. (A1) or Eq. (A6),
we have ei(m−l)(φ′′

2 (xC1 )−φ′′
2 (xC2 )) = 1. Following a parallel

discussion of W (a3), we obtain e−i(m−l)φ′
2(xB2 )e−i(m−l)φ′′

3 (xC2 ) =
(−1)m−lei2lφ+ and e−i(m−l)φ1(xA3 ) = eilφ+ . Therefore, we
conclude

(α3β4γ6)m−l = ei(m+2l)φ+ = 1. (B15)

By cyclic symmetry of layers, we also obtain (β3γ4α6)m−l = 1.

1X.-G. Wen, Quantum Field Theory of Many-Body Systems (Oxford
University Press, Oxford, 2004).

2C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma,
Rev. Mod. Phys. 80, 1083 (2008).

3X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
4M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
5N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
6J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).

7H. Bombin, Phys. Rev. Lett. 105, 030403 (2010).
8A. Kitaev and L. Kong, Commun. Math. Phys. 313, 351
(2012).

9M. Barkeshli and X.-L. Qi, Phys. Rev. X 2, 031013 (2012).
10Y.-Z. You and X.-G. Wen, Phys. Rev. B 86, 161107(R) (2012).
11Y.-Z. You, C.-M. Jian, and X.-G. Wen, Phys. Rev. B 87, 045106

(2013).
12J. C. Y. Teo and C. L. Kane, Phys. Rev. Lett. 104, 046401 (2010).

045130-22

http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1103/PhysRevLett.105.030403
http://dx.doi.org/10.1007/s00220-012-1500-5
http://dx.doi.org/10.1007/s00220-012-1500-5
http://dx.doi.org/10.1103/PhysRevX.2.031013
http://dx.doi.org/10.1103/PhysRevB.86.161107
http://dx.doi.org/10.1103/PhysRevB.87.045106
http://dx.doi.org/10.1103/PhysRevB.87.045106
http://dx.doi.org/10.1103/PhysRevLett.104.046401


TWIST DEFECTS AND PROJECTIVE NON-ABELIAN . . . PHYSICAL REVIEW B 87, 045130 (2013)

13M. Freedman, M. B. Hastings, C. Nayak, X.-L. Qi, K. Walker, and
Z. Wang, Phys. Rev. B 83, 115132 (2011).

14J. McGreevy and B. Swingle, Phys. Rev. D 84, 065019 (2011).
15Projective representations of the permutation group were proposed

for arbitrary dimensions in Ref. 16, and later shown to be
inconsistent with locality in Ref. 17. A different possibility, called
projective ribbon permutation statistics, was found to occur 3 + 1
dimensions.12,13 In this paper, we instead concentrate on projective
representations of the braid group, which has received little attention
in the physics literature.

16F. Wilczek, arXiv:hep-th/9806228.
17N. Read, J. Math. Phys. 44, 558 (2003).
18G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
19C. Nayak and F. Wilczek, Nucl. Phys. B 479, 529 (1996).
20P. Bonderson, V. Gurarie, and C. Nayak, Phys. Rev. B 83, 075303

(2011).
21J. Preskill, http://www.theory.caltech.edu/∼preskill/ph219/

topological.ps (2004).
22K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett. 106,

236803 (2011).
23T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett.

106, 236804 (2011).
24E. Tang, J.-W. Mei, and X.-G. Wen, Phys. Rev. Lett. 106, 236802

(2011).
25D. N. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Nat. Commun. 2,

389 (2011).
26N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014

(2011).
27C. H. Lee, R. Thomale, and X.-L. Qi, arXiv:1207.5587.
28N. H. Lindner, E. Berg, G. Refael, and A. Stern, Phys. Rev. X 2,

041002 (2012).
29D. J. Clarke, J. Alicea, and K. Shtengel, arXiv:1204.5479.
30M. Cheng, Phys. Rev. B 86, 195126 (2012).
31A. Vaezi, arXiv:1204.6245.
32M. Barkeshli and X.-G. Wen, Phys. Rev. B 81, 045323 (2010).
33L. Fu and C. L. Kane, Phys. Rev. B 79, 161408 (2009).
34We would like to clarify that this name has a different meaning

from the concept of geon in the general relativity literature, which
refers to a certain type of gravitational electromagnetic soliton
solution.35 However, we also note that the topological geon studied
in the quantum gravity literature36 has some similarity to our genon,
since both are related to manifold topology and the mapping class
group.

35J. A. Wheeler, Phys. Rev. 97, 511 (1955).
36R. D. Sorkin and S. Surya, AIP Conf. Proc. 400, 505 (1997).
37A. Kitaev, Ann. Phys. 321, 2 (2006).
38S. Bravyi and A. Y. Kitaev (unpublished).
39M. Freedman, C. Nayak, and K. Walker, Phys. Rev. B 73, 245307

(2006).
40For Z2 twist defects, we expect this can occur physically by

proliferating double-defects.

41M. Barkeshli and X.-G. Wen, Phys. Rev. B 86, 085114 (2012).
42M. Barkeshli and X.-G. Wen, Phys. Rev. B 84, 115121 (2011).
43Strictly speaking, a UMTC describes a topologically ordered state

of bosons. The mathematical framework for topologically ordered
states of fermions is slightly different, as the spins θi are only
defined modulo π .

44J. Fuchs, C. Schweigert, and A. Valentino, arXiv:1203.4568.
45S. Beigi, P. W. Shor, and D. Whalen, Commun. Math. Phys. 306,

663 (2011).
46A. Kapustin, arXiv:1004.2307.
47A. Kapustin and N. Saulina, Nucl. Phys. B 845, 393 (2011).
48M. Barkeshli and X.-L. Qi (to be published).
49X.-L. Qi, Phys. Rev. Lett. 107, 126803 (2011).
50Y.-L. Wu, B. A. Bernevig, and N. Regnault, Phys. Rev. B 85, 075116

(2012).
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