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Quantum phase transition between integer quantum Hall states of bosons
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Bosonic integer quantum Hall (IQH) phases are a class of symmetry-protected topological (SPT) phases that,
similar to the fermionic IQH states, support a quantized Hall conductance. They, however, require interactions
for their realization. Here, we study quantum Hall plateau transitions between a trivial insulator and a bosonic
IQH phase, in a clean system. Generically, we find an intervening superfluid phase. The presence of additional
symmetries, however, can potentially lead to a direct transition between these phases. We employ a fermionic
parton description that captures both the insulating phases as well as the transition between them. The critical
theory is massless QED-3 with Nf = 2 fermion flavors. The fermions have a surprisingly simple interpretation:
they are vortices of the superfluid. Therefore, the universal conductivity at the transition, assuming it is continuous,
equals the universal resistivity of Dirac fermions in QED-3. We also briefly comment on sigma model descriptions
of the transition and the surface states of related three-dimensional SPT phases.
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I. INTRODUCTION

Quantum phase transitions1 beyond the standard Landau-
Ginzburg-Wilson paradigm provide an exciting opportunity
to study universal phenomena in strongly correlated systems.
When a transition occurs between phases that differ at the
level of topology, rather than symmetry, the critical properties
naturally lie beyond the standard paradigm. The best studied
example involves transitions between quantum Hall states,2–10

or quantum spin liquids.11 In principle, non-Landau transitions
are also possible even when the phases on the either side of the
transition are conventional symmetry-broken states, examples
of which were considered in frustrated magnets and lattice
boson systems,12–15 and were dubbed “deconfined quantum
critical points.” Here, the unusual physics arises since defects
in the order parameter field on either side of the phase transition
carry nontrivial quantum numbers. In this paper, we provide an
example of deconfined quantum criticality relevant for strongly
interacting bosonic systems.

Motivated by the recent discovery of (fermionic) Z2

topological insulators,16–18 it was recently realized that bosons
or spins can realize topological phases in various dimensions,
which however do not have topological order and hence no
exotic excitations in the bulk. An early example is the Haldane
chain19 and generalizations thereof in one dimension20–24

where symmetry protects special edge modes that define the
phase. Generalizations of such phases in various dimensions
have been an active area of theoretical research.25–31 Akin
to the fermionic topological insulators, these phases have the
interesting feature that in the presence of a certain symmetry
(for example, particle-number conservation), they support
protected edge states. However, unlike fractional quantum Hall
states, there are no exotic anyon excitations.32 If the symmetry
is broken, either explicitly or spontaneously, the system is
indistinguishable from a featureless Mott insulator. A crucial
difference between the bosonic SPT phases and the fermionic
topological insulators is that the latter can be realized in a
noninteracting system, while the former necessarily requires
interactions since a system of noninteracting bosons will just
Bose-condense.

One of the simplest examples of a bosonic symmetry-
protected topological (SPT) phase in two dimensions (2D)
is the bosonic integer quantum Hall (IQH) state,26,29,30 which
supports gapless edge states and a Hall effect quantized to
even integer multiples of the quantum of conductance,29,30

i.e., σ̃xy = 2n in dimensionless units. In Ref. 30, a particularly
simple model Hamiltonian was proposed to realize this phase,
comprising of a two-component fluid of bosons in the lowest
Landau level at νtot = 2, with contact interactions. It was
also proposed that cold atoms in artificial gauge fields could
eventually realize such Hamiltonians.30

In this paper, we study quantum phase transitions between
two different bosonic IQH states, which furnish an example
of a quantum critical point separating “symmetry-protected
topological” phases.25–31 We find that these transitions furnish
a class of non-Landau phase transitions. To achieve this goal,
we devise a fermionic parton construction for the bosonic SPT
phases that is ideally suited to describe the phases as well as
the transitions between them.

We find that, generically, the two SPT phases are sepa-
rated by an intermediate superfluid phase, and the insulator-
superfluid transition is the conventional one based on the
Landau order parameter distinction between these phases.
However, in the presence of lattice inversion and a discrete
internal symmetry (analogous to charge conjugation symme-
try), the two SPT phases can be potentially connected by a
second-order transition. The critical theory corresponds to two
flavors of Dirac fermions coupled to a noncompact U (1) gauge
field:

Lcritical =
∑

α=+/−
f α[γμ(−i∂μ − aμ)]fα + (∂μaν − ∂νaμ)2

2g2

− 1

2π
εμνλAμ∂νaλ − 1

4π
εμνλAμ∂νAλ, (1)

where A represents the external electromagnetic field and γμ

are a set of three 2 × 2 Dirac matrices. The first two terms
are referred to as the QED-3 action, with Nf = 2 flavors of
fermions. Satisfyingly, here the fermions and the gauge field
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have a simple physical interpretation: the third term implies
that the flux of the gauge field a is just the boson density.
The minimal coupling of fermions to a implies that they are
vortices.

The question of stability of QED-3 has been an active
topic of research.33 Fluctuations could lead to spontaneous
symmetry breaking and an energy gap to fermions, which is
termed chiral symmetry breaking. While large Nf is expected
to be stable, spontaneous symmetry breaking occurs below
a certain critical Nf , the precise value of which is debated.
For Nf = 2 (two-component Dirac fermions) of interest
here, the model of Ref. 34 finds chiral symmetry breaking
but with a small condensate, while in other approaches the
possibility of a chiral symmetric phase has been proposed.35

Here, in the interest of simplicity, we assume fluctuations
do not induce chiral symmetry breaking. If they indeed do,
the continuous transition we discuss will presumably be
replaced with an intervening superfluid that breaks lattice
symmetries. Nevertheless, the QED-3 description provides the
right variables to discuss all relevant phases within a unified
formulation. Moreover, if the correlation length is sufficiently
long, the QED-3 description will be quantitatively accurate at
intermediate length scales.

It is interesting to contrast this with the quantum Hall
transition of free fermions. In the clean limit, the critical theory
is a free Dirac fermion. Here, the critical theory features a
pair of Dirac fermions, which, being vortices, are coupled
to a gauge field. Via vortex-particle duality, the universal
conductivity at the transition is shown to be simply the
resistivity of the fermions, i.e., σ̃xx = 1/σ̃f . The last term in
Eq. (1) implies σ̃xy = 1 at the transition. Disorder is expected
to change the nature of these transitions, as with free fermions,
and is a challenging open problem.

A different approach to this transition can be constructed
based on a Chalker-Coddington network model picture31,36

or on the sigma model description of SPT phases.26 These
lead to variants of an O(4) model with a topological θ = π

term, which is also related to theories of deconfined criticality,
discussed in the context of frustrated magnets.12,37,38 Similar
theories arise in describing surface states of three-dimensional
(3D) SPT phases, where time-reversal symmetry is present
in addition to charge conservation.31 We briefly discuss these
connections and possible caveats.

II. FERMIONIC PARTON DESCRIPTION
OF BOSONIC IQH PHASES

Our goal is to describe quantum phase transitions in bosonic
symmetry-protected topological phases. We focus on SPT
phases with two species of bosons, both at the filling of one
particle per site. The underlying symmetry that protects the
edge modes corresponds to total particle-number conservation
of bosons26,29,30 and thus, we call these systems bosonic
integer quantum Hall phases. We will ultimately allow the
bosons of different species to mix, so that the only remaining
symmetry is the total boson number. The classification for
this class of SPT phases is Z,26,29 that is, there are an infinite
number of SPT phases. Physically, the different phases in this
class are labeled by their Hall conductance, which is an even

integer:29,30

σxy = 2n
Q2

h
, (2)

where Q is the fundamental boson charge and h is Planck’s
constant. We describe conductivities in terms of the dimension-
less constants σ̃ where σ = σ̃ Q2

h
. Henceforth, set Q = h̄ = 1

and in these units σ = σ̃ /2π .
One possible approach to describe such a phase is to use

the nonlinear sigma model approach introduced in Ref. 26.
Within this approach, the trivial SPT phase is described by
an O(4) model without a theta term, while the nontrivial SPT
phase that has a Hall conductance of σxy = 2 is described by
an O(4) model with a theta term at θ = 2π . It is therefore not
unreasonable to conjecture that the transition between these
phases is controlled by a critical point with θ = π , which is
consistent with the observation in Ref. 39 that this would lead
to a nondegenerate ground state. Furthermore, in Sec. IV B
of Ref. 31, a network model construction of the transition
between these two phases was analyzed. An O(4) model at
θ = π was obtained, which was then reduced to a model with
just the physical U (1) symmetry of charge conservation. Here,
we will offer a complementary approach, utilizing fermionic
partons, which is also of interest in its own right. Eventually, we
will try to build a correspondence to these sigma models with
topological terms, as well as theories of deconfined criticality
in frustrated magnets.

In Ref. 29, an alternative description of SPT phases in terms
of multicomponent Chern-Simons theory was developed.
Here, one considers multiple components of bosons indexed
by I = 1,2, . . . ,N . The currents of these different species are
represented by a gauge field j

μ

I = εμνλ∂νa
I
λ/2π . Then, SPT

phases with a conserved charge are described by the action

L = KIJ

4π
εμνλaI

μ∂νa
J
λ − qI

2π
εμνλaI

μ∂νAλ, (3)

where the K matrix is a symmetric, unimodular (i.e., detK =
1) matrix with integer entries and even integer diagonal
entries. The coupling to an external electromagnetic field is
accomplished via the charge vector qI . The quantized Hall
conductance is given by

σ̃xy = qT K−1q.

The integer quantum Hall states of bosons, labeled by n,
are described by the simple forms

Kn =
[

0 1

1 2(1 − n)

]
, q =

[
1

1

]
(4)

and have σ̃xy = 2n. The simplest nontrivial phase with n = 1
has

K1 =
[

0 1

1 0

]
, q =

[
1

1

]
(5)

described by the topological theory

2πL = εμνλa1μ∂νa2λ − εμνλ(a1μ + a2μ)∂νAλ. (6)

In the rest of the paper, we will denote εμνλaIμ∂νaJλ by
εaI ∂aJ . Note that εaJ ∂aI = εaI ∂aJ .
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A. Wave function and parton construction

The multicomponent Chern-Simons description of the SPT
phases motivates a parton construction for these phases, similar
to that for conventional fractional quantum Hall phases. Let us
first describe this approach using lowest-Landau-level wave
functions. It is well known that the wave function corre-
sponding to a two-component quantum Hall state ψ(z↑

i ,z
↓
i ),

where the coordinates of the first (second) species is z
↑(↓)
i , and

i − 1 . . . M label the number of particles in each species, is

ψ(z↑
i ,z

↓
i ) =

∏
i<j

(z↑
i − z

↑
j )K11 (z↓

i − z
↓
j )K22

∏
i,j

(z↑
i − z

↓
j )K12 , (7)

where we have ignored the exponential factors. Note, the
simplest nontrivial IQH phase of bosons is then given by the
wave function

ψ1(z↑
i ,z

↓
i ) = J (z↑

i ,z
↓
i )

∏
i,j

(z↑
i − z

↓
j ), (8)

whereJ (z↑
i ,z

↓
i ) is a real number that describes a Jastrow factor

which ensures a homogeneous phase. Now, we describe a
parton construction that yields the same state.

So let us consider two species of bosons b↑ and b↓, each
at filling ν = 1 in the lowest Landau level. One way to
describe the nontrivial IQH phase is to use the following parton
construction:

b↑ = ψ↑ ψ0, b↓ = ψ↓ ψ0,

where the partons ψ↑ ψ↓, ψ0 are fermionic, and are placed in
filled Landau levels. We assign a charge of +2 to ψ0 and −1
to ψ1, ψ2. The partons ψ0 sees a magnetic field of the same
sign but twice the strength; the other two partons ψ↑, ψ↓ see a
reversed field. There are twice as many ψ0 particles, as those
of ψ1 (or ψ2). Thus, they individually fill Landau levels. Then,
the projection implied by the construction above requires one
to identify the coordinates of the ψ0 particles with those of
both ψ↑ and ψ↓, which in turn are identical to the coordinates
of the two species of bosons. Putting this together, we get

ψparton =
∏
i<j

|z↑
i − z

↑
j |2|z↓

i − z
↓
j |2

∏
i,j

(z↑
i − z

↓
j ), (9)

which is of the same form as Eq. (8). Thus, we are able to
describe the topological IQH phase.30,40 In order to describe
the trivial phase within the same formalism, and hence a
transition, we make two extensions. First, we introduce a
slightly more complicated parton construction and second
we assume the presence of a lattice. The second assumption
allows us to consider bands with Chern number which can
change as we tune parameters. This will allow us to discuss
transitions between SPT phases. We note that the above parton
construction also arises in the context of certain non-Abelian
quantum Hall states.41

B. Parton description and field theory

So let us consider two species of bosons b↑ and b↓, each
at filling ν = 1 on a lattice. One way to describe the trivial as
well as the IQH phase within the same formalism is to use the
following parton construction:

b↑ = ψ↑ ψ0, b↓ = ψ↓ ψ0 f1 f2,

TABLE I. The gauge charges and the Chern number assignments
for various partons in the three distinct phases studied in this paper.

Chern no. in Chern no. in Chern no. in
a1 a2 a3 Ac trivial phase IQH phase superfluid

ψ↑ 1 0 0 1 1 1 1
ψ↓ 1 1 0 1 1 1 1
ψ0 −1 0 0 0 −1 −1 −1
f1 0 −1 1 0 −1 −1 −1
f2 0 0 −1 0 −1 1 0

where the partons ψ↑ ψ↓, ψ0,f1,f2 are all fermions. As
with any parton construction, the above redefinition of the
microscopic fields b↑,b↓ is redundant, which leads to internal
gauge-field degrees of freedom that couple to the partons. In
particular, the above construction leads to three Abelian gauge
fields a1,a2,a3 being coupled to the partons and we assign
the gauge charges shown in the first three columns of Table I
to the partons. The bosons b↑,b↓ are both charged under the
(nondynamical) electromagnetic field Ac with unit charge, and
we account this by assigning a gauge charge of unity each to
the partons ψ↑ and ψ↓. If one prefers, one may alternatively
assign the partons the same electromagnetic charge as in the
case of lowest-Landau-level construction mentioned above.
All the gauge-invariant quantities of course remain unchanged
under any such reassignment.

We now demonstrate that the assignment of gauge charges
and Chern numbers in Table I yields the desired phases. We
also include superfluid phase in the table since it will be needed
in the discussion that follows.

C. Integer quantum Hall phase of bosons

Let us first consider a phase where ψ↑,ψ↓,f2 are in a band
with Chern number 1, while ψ0,f1 are in a Chern number −1
band (see Table I). Defining the parton currents j I = 1

2π
∇ ×

αI where I labels the parton (i.e., I = ↑,↓, etc.), the low-
energy theory is given by

L = − ε

4π
(α↑ ∂α↑ + α↓ ∂α↓ − α0 ∂α0 − α1 ∂α1 + α2 ∂α2)

+Lconstraint,

where

Lconstraint = ε

2π
[a1 ∂(α↑ + α↓ − α0) + a2 ∂(α↓ − α1)

+ a3 ∂(α1 − α2) + Ac ∂(α↑ + α↓)]. (10)

Solving the constraint equations by integrating out the internal
gauge fields ai , one obtains

L = ε

4π
(α↑ ∂α↓ + α↓ ∂α↑) + ε

2π
Ac ∂(α↑ + α↓). (11)

In the K-matrix formulation of SPT phases, this phase
corresponds to K = [ 0 1

1 0 ] with a charge vector qT = [1 1]
and hence σ̃xy = 2. In passing, we note that putting both f1

and f2 in Chern number 1 band, while keeping the Chern
numbers of other partons the same as here, one obtains an
IQH state with σ̃xy = 4.
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D. Trivial insulator

Next, consider a different phase where f2 is in a Chern
number −1 band while all the other partons have the same
Chern number as before (Table I). The Lagrangian is given by

L = − ε

4π
(α↑ ∂α↑ + α↓ ∂α↓ − α0 ∂α0 − α1 ∂α1 − α2 ∂α2)

+Lconstraint,

where Lconstraint is the same as before (since the gauge charge
assignment for the partons remains unchanged).

Proceeding as before, we integrate out the internal gauge
fields ai and obtain the following Lagrangian:

L = ε

4π

(
2α↓ ∂α↓ + 2α↑ ∂α↓ + 1

2π
Ac ∂(α↑ + α↓)

)
, (12)

which is the K = [ 0 1
1 2 ] theory, with the same charge vector

as before, qT = [1 1]. The charge Hall conductance is given
by σ c

xy = [1 1]K−1[1 1]T = 0, as expected. We also note that
there is no Meissner term generated for Ac, verifying that this
phase is indeed an insulator (and not a superfluid).

E. Superfluid phase

The superfluid phase is obtained when f2 is in Chern
number zero band while everything else remains unchanged.
In this case, the low-energy theory after integrating out partons
is given by

LSF = ε

4π
[(a1 + Ac) ∂(a1 + Ac)

+ (a1 + a2 + Ac) ∂(a1 + a2 + Ac)

− a1 ∂a1 − (a2 − a3) ∂(a2 − a3)].

Integrating out a3 and a2 successively leads to

LSF = ε

4π
(−2a1 ∂Ac + Ac ∂Ac), (13)

which is clearly a superfluid phase since the integration of
a1 generates a Meissner term for Ac. An alternative way to
reach the same conclusion is to note that the Chern number
zero for the parton f2 enforces the constraint α2 = 0 (recall
the definition j I = 1

2π
∇ × αI for the parton current). This is

because parton f2 is fully localized in the real space. Following
the other constraint equations [see Eq. (10)], this implies that
α1 = α↓ = 0 as well. This leaves us with

LSF = ε

2π
Ac ∂α↑, (14)

which again leads to a Meissner term for Ac.

III. PHASE TRANSITIONS AND CRITICAL THEORIES

As one notices from Table I, a direct phase transition
between the SPT phases requires a change in the Chern
number for the parton f2 from −1 to 1. Generically, this will
require additional lattice symmetries which we specify in the
following. In their absence, the Chern number of f2 changes
from −1 to 0 as one approaches from the trivial Mott phase and
1 to 0 as one approaches from the nontrivial Mott phase. The
intermediate phase with Chern number of 0 for the f2 parton
corresponds to a superfluid and thus we obtain the generic

σ

σ

FIG. 1. (Color online) The generic phase diagram for the problem
with no additional symmetry beyond charge conservation. The
two superfluid-insulator phase transitions involve change of Chern
number 1 for the parton f2 (see the main text). These correspond to
the 2 + 1D Bose-Einstein condensation transitions.

phase diagram shown in Fig. 1. Following, we first consider
the interesting possibility that certain additional symmetries
allow for a change in Chern number by two for the f2 parton
leading to a non-Landau transition between the SPT phases
(Fig. 2). As we will see, the additional symmetries required
are lattice inversion and charge conjugation symmetry.

A. Direct phase transition between bosonic IQH phases

In order to achieve a direct transition between the trivial
insulator and the bosonic IQH state with σ̃xy = 2, we need
the Chern number of the fermion f2 to change from C =
−1 to +1. This is achieved if there are a pair of massless
Dirac points present at the transition which both acquire a

σ

σ

FIG. 2. (Color online) The generic phase diagram in the presence
of additional symmetries, inversion, and charge conjugation. Direct
transitions between any two of the three phases, IQH insulator, trivial
insulator, and superfluid, are all potentially allowed. Here, C denotes
Chern number of the parton f2. Changing C = 0 → C = 1 (C =
0 → C = −1) corresponds to the transition between the superfluid
and bosonic IQH insulator (superfluid and trivial insulator) that lies in
the 3D XY universality class. However, when C = −1 → C = +1
describes the critical point between the trivial and IQH insulator,
described by QED-3 with Nf = 2 species of gapless fermions. This
transition is the main subject of this paper.
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quantum Hall mass term of the same sign. Generically, the
band gap in an insulator closes at a single point in the Brillouin
zone. However, in the presence of inversion symmetry, one can
arrange for a pair of Dirac nodes at opposite momenta in the
Brillouin zone to be related by symmetry and accomplish this
transition (a similar device was used in Ref. 10 in a different
context). In the following, we denote the low-lying fields for
the parton f2 near the transition by f2+ and f2− where +/−
labels node index.

Before proceeding, it is helpful to reexpress the low-energy
theory for the two phases in terms of the internal gauge fields
ai (since the Chern number changing field f2 is charged under
a3). This can be achieved by integrating out the gauge fields
αI in Eqs. (10) and (12). Performing this exercise results in
the following Lagrangian for the two phases:42

Ltrivial = 1

4π
ε[a1 ∂a1 + 2a1 ∂a2 + 4a1 ∂Ac

+ 2a2 ∂a3 + 2a2 ∂Ac + 2Ac ∂Ac − 2a3 ∂a3] (15)

and

Ltopological = Ltrivial + 2

4π
εa3 ∂a3,

observing thatLtrivial andLtopological differ from each other only
in the term 2

4π
a3 da3. One can now write the critical theory

Lcritical =
∑

α=+/−
f 2,α[γμ(−i∂μ − a3μ)]f2,α

+ 1

4π
εa3 ∂a3 + Ltrivial. (16)

Integrating out f2 with one sign of the mass induces the
term − 1

4π
εa3 da3, leading to a trivial phase, while the same

term with opposite sign is generated in the topological phase.
Integrating out the gauge fields a1 and a2 in favor of a3, one
obtains

Lcritical =
∑

α=+/−
f α[γμ(−i∂μ − a3μ)]fα

+ (∂μa3ν − ∂νa3μ)2

2g2
− 1

2π
εAc∂a3 − 1

4π
εAc∂Ac,

(17)

where we have suppressed the index 2 for the f fermions. This
is our main result. Note, there is complete cancellation of the
Chern-Simons coefficient for the a3 field and the lowest-order
term for a3 is a Maxwell term. Crucially, Eq. (18) leads to the
following expression for the charge current:

Jc = δL
δAc

= − 1

2π
ε(∂a3 + ∂Ac), (18)

which implies that the physical boson current can be identified
with − εμνλ∂νa3λ

2π
. Since the total boson number is conserved,

therefore, the flux of the gauge field a3 is conserved at the phase
transition. Hence, monopoles are absent, and it corresponds
to a noncompact gauge field. Thus, Eq. (18), in the absence
of external probe field Ac, is the Lagrangian for noncompact
QED-3 coupled to two flavors of fermions.

Fermionic vortices. Furthermore, we observe that the f

fermions are minimally coupled to the gauge field a3 in

Eq. (18). Following the standard boson-vortex duality,43 this
implies that the fermions are vortices of the bosonic degrees of
freedom. The vortex current jv can be identified with f γμf .
This provides an intuitive picture of the transition. Note that
the photon of the gauge field is simply the Goldstone mode of
the superfluid. Gapping this photon corresponds to realizing
an insulating phase where the U (1) symmetry is restored. In
D = 2 + 1, there are two ways to provide a gap to the photon,
via the Higgs mechanism or by inducing a Chern-Simons
term for the gauge field. Confinement is not an option since
monopoles are forbidden. The Higgs mechanism is the usual
way to realize an insulator and assumes bosonic statistics
for vortices that condense at the transition.44 However, if
the vortices are fermionic, then one can naturally realize a
Chern-Simons term by inducing a Chern number in the ground
state of these vortices. Indeed, this corresponds to putting f2

fermions in a band with nonzero Chern number. Furthermore,
it is essential that the last term in Eq. (18), which corresponds to
the Chern-Simons term for the Ac probe field, is present. This
term ensures that the Hall conductance is quantized to even
integers. We will later discuss the surface of a 3D topological
insulator with additional time-reversal symmetry where such
a term is forbidden, and the half-quantized Hall effect that
results as a consequence.

Additional symmetries. The average flux density a of
the gauge field a3 is not necessarily zero and depends on
the background charge density ρc. Therefore, in general a
chemical potential μ that couples to ε∂a3 is present in
Eq. (18)). However, in the presence of an additionalZ2 “charge
conjugation” symmetry, one may set the chemical potential μ

to zero. Specifically, consider enforcing the symmetry θ →
−θ and n → −n where [n,θ ] = i are the conjugate number
and phases for the bosons. Physically, these symmetries arise
in spin systems with rotation symmetry about (say) the z

axis. Then, the number density is Sz ∼ n, while the phase
Sx + iSy = eiθ . In this setup, θ → −θ corresponds to rotation
by π along the x axis and n → −n since Sz → −Sz. With
this symmetry, a3μ → −a3μ, which pins chemical potential
μ to zero. This symmetry also rules out a term proportional
to f γμf in the action. Physically, f γ0f = f †f corresponds

to vortex density jv = �∇×�∇θ
2π

for the bosons, which clearly
changes sign under θ → −θ . Similarly, the vortex current
f γif also changes sign under the same symmetry to preserve
the continuity equation for vortices. Thus, this symmetry
acts like charge conjugation on the vortices f2. Therefore,
the total symmetry of our system is U (1)(boson number) �

Z2(charge conjugation) × lattice inversion. [The internal symmetry
of U (1) � Z2 is26 Z × Z2, which implies additional topologi-
cal phases. However, for our purposes the states corresponding
to bosonic IQH states remain distinct as before.]

For Dirac nodes at incommensurate wave vectors, the
lattice inversion symmetry leads to a pair of Dirac points at
different wave vectors, which effectively enlarges the discrete
translational symmetry to a continuous U (1) symmetry, if the
relative wave vector is incommensurate with the underlying
lattice. As written in Eq. (18), the critical action has SU (2) ×
U (1) continuous symmetry. Thus, it needs to be supplemented
with terms such as �L ∝ (f σzf )2 that break the flavor SU (2)
symmetry down to U (1).
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B. Universal properties of the transition

The critical theory between the trivial and nontrivial integer
quantum Hall states of bosons has the form of 2 + 1D quantum
electrodynamics [Eq. (18)]. This immediately implies that the
critical theory is a conformal field theory and has a dynamical
critical exponent z = 1. This theory is amenable to a large-Nf

expansion where Nf is the number of fermion flavors.
Transport properties. At the critical point between the IQH

insulators, the charge gap closes and leads to a metal with finite
σxx and σxy . These can be readily studied in the limit of T = 0.1

Let us assume that the fermions have a universal conductance
σf = 1

2π
σ̃f in the QED-3 theory at Nf = 2. Now, since these

fermions are vortices, we will show that the universal charge
conductance of the bosonic IQH transition is σ̃xx = 1

σ̃f
. Also,

σ̃xy = 1.
To see this, we will introduce an external electromagnetic

potential that induces an electric field ε∂Ac = (0,−Ey,Ex),
and calculate the resulting charge current in Eq. (18), the
relevant components being

Jx = 1

2π
ey + 1

2π
Ey, Jy = − 1

2π
ex − 1

2π
Ex, (19)

where ε∂〈a3〉 = (b,−ey, ex) are the internal gauge-field
strengths induced by the applied field. This is evaluated by
noting that the external field couples to the internal gauge field
like a current J = −ε∂A/2π in the third term of Eq. (18).
Thus, Jx = Ey/2π and Jy = −Ex/2π . These currents can be
related to the induced internal gauge fields via the resistivity
of the fermions in QED-3, ea = ρfJa . Thus,

ex = − ρf

2π
Ey, ey = ρf

2π
Ex. (20)

Substituting this into Eq. (19), and using the definition ρf =
2π/σ̃f , we finally arrive at the following physical conductivity
tensor:

σ̃ = 2πσ =
[

1/σ̃f 1

−1 1/σ̃f

]
, (21)

thus the universal conductance at the transition is equal to the
universal resistance of fermions in QED-3.

Large-N limit. For illustration, let us explicitly compute
these in the limit of large number of flavors Nf for the partons
f2. An appropriate large-N generalization of the critical QED-
3 theory is

LN =
Nf∑
α=1

f α[γμ(−i∂μ − aμ)]fα + Nf (∂μaν − ∂νaμ)2

2g2
.

The conductivity of fermions is readily determined in the large-
Nf limit where gauge fluctuations can be ignored, yielding
σ̃f = Nf σ0 where σ0 = π

8 .5 The physical conductivity then is
σ̃xx = 1

Nf σ0
which can be estimated at Nf = 2. It is amusing

to compare this with the clean fermionic IQH transition where
the universal conductivity at the transition is σ̃ fIQH

xx = σ0 and
σ̃ fIQH

xy = 1/2.5

Critical exponents. To begin with, consider the correlations
of the boson creation operator b at the transition. Recall that the
boson density b†b is given by the flux operator ∇×a3

2π
[Eq. (18)].

Therefore, the boson creation operator b† is identified with

the single monopole creation operator for the gauge field a3.
Following Borokhov et al.,45 the scaling dimension of the
monopole operator in QED-3 for Nf flavors of fermions is
given by �monopole = 0.265Nf at the leading order in Nf . This
implies that in a 1/Nf expansion, at Nf = 2 (assuming the
continuous transition persists down to Nf = 2), the correlation
function of the bosons is given by

〈b†(r)b(r ′)〉 ∼ 1

|r − r ′|1+η
, (22)

where η ≈ 0.06.
The energy operator |b↑|2 + |b↓|2 in the boson language

translates to the mass term f f for the fermionic partons. The
scaling dimension of this operator �ψψ is directly related to the
correlation length critical exponent ν via ν−1 = 3 − �ψψ and
is given by46 ν−1 = 1 − 128

3π2Nf
. At Nf = ∞, one finds ν = 1.

However, the leading 1/Nf correction leads to a negative value
for ν which implies that higher-order corrections are important
for �ψψ .

Possible connections to bosonic deconfined criticality.
With these symmetries, the above action can be bosonized38

to yield an O(4) model with topological θ term at θ = π with
U (1) × U (1) anisotropy for two complex bosons z↑,z↓ (see
Appendix A):

L = 1

g
(|(−i∂μ − Acμ)z↑|2 + |(−i∂μ − Acμ)z↓|2) + iπH.

(23)

The two bosons z↑,z↓ together form a four-component real
vector V = [Re(z↑) Im(z↑) Re(z↓) Im(z↓)]. H is the theta
term for the vector V which counts the integer associated
with the winding number of vector V in space-time. Again,
the above action needs to be supplemented with terms such as
�L ∝ (|z↑|2 − |z↓|2)2, which produce the U (1) × U (1) con-
tinuous symmetry of our system. Note, however, that the fields
entering this O(4) model description transform differently
than those that appear in the network model derivation31 of
this transition. For example, the z↑,↓ fields transform under
translations, in contrast to the network model fields.

This model is further dual to the easy-plane NCCP1

model:38

L = 1

g′ |(−i∂μ − αμ)z′|2 + (∇ × α)2

2e2
, (24)

where z′ = [z′
1 z′

2] is a two-component complex boson with
|z′

1|2 = |z′
2|2 = 1

2 , while α is a noncompact U (1) gauge field.
We review the duality between NCCP1 and QED-3 with two
flavors of fermions in Appendix A. The NCCP1 theory with
SU (2) × U (1) symmetry arises in the context of deconfined
quantum critical point between Neel and valence bond solid
(VBS) phases and there is good numerical evidence that the
square lattice J − Q model realizes NCCP1 critical theory
at the phase transition between Neel and VBS.12,14,15,47 The
evidence for a continuous phase transition with easy plane
anisotropy is less clear.48,49 In passing, we also note that
the duality between QED-3 and O(4) model at θ = π bears
some resemblance to the recently proposed dualities be-
tween bosonic and fermionic Chern-Simons matter theories,50
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TABLE II. Action of physical symmetries on the bosons b↑,b↓, fermionic partons f+,f−, and the complex bosons z↑,z↓.

Symmetry b↑(r) b↓(r) f+(r) f−(r) z↑(r) z↓(r)
Number conservation U (1) eiφb↑(r) eiφb↓(r) eiφf+(r) eiφf−(r) eiφz↑(r) eiφz↓(r)
Translational: r → r′ = r + a, U (1) b↑(r′) b↓(r′) eiθf+(r′) e−iθ f−(r′) eiθ z↑(r′) e−iθ z↓(r′)
Inversion: r → r′ = −r, Z2 b↑(r′) b↓(r′) γ0f−(r′) γ0f+(r′) z↓(r′) z↑(r′)
Charge conjugation Z2 b

†
↑(r) b

†
↓(r) f

†
−(r) f

†
+(r) z∗

↓(r) z∗
↑(r)

although we are unable to find an exact correspondence. It will
be interesting to explore any possible connection.

It is important to understand how the physical symmetries
of our system are implemented in the various formulations
described above. The action of symmetries on the original
bosons and the fermionic partons is summarized in Table II.
The gauge fields a3 transform as vectors under inversion,
and change sign under charge conjugation. We conclude this
section with a word of caution in relating the fermionic QED-3
at Nf = 2 to these bosonic critical points.51 Even in the
absence of chiral symmetry breaking, it is presently unclear
if these bosonic theories can describe critical “fermions.”
Instead, they may only capture transitions between phases
where the symmetry protecting the Dirac points is broken.
Nevertheless, this potential web of dualities between different
models of deconfined criticality is worth noting.

C. Phase transition between IQH phases and superfluid

As mentioned earlier, if the underlying symmetry of the
system is just boson-number conservation, then generically
there exists an intervening superfluid phase between the two
SPT phases (Fig. 1). In the absence of particle-hole symmetry,
this transition is ordinary Bose-Einstein condensation transi-
tion, with mean-field exponents and dynamic critical exponent
z = 2.1 As pointed out earlier, even in the presence of charge
conjugation and inversion symmetry, generically there will
be regions of phase diagram where the SPT phases undergo
transition to a superfluid. Owing to the particle-hole symmetry,
this phase transition lies in the 3D XY universality class. It is
known that 3D XY transition has an alternative description
in terms of Dirac fermions coupled to a Chern-Simons gauge
field4 and as we show now that our parton formulation indeed
recovers this alternative description, providing a nontrivial
check on our construction.

Let us first consider the transition from the superfluid to the
trivial SPT phase. From Table I, the phase transition occurs as
the Chern number of f2 changes from 0 to −1. The critical
theory is given by

Lcritical

= f 2[γμ(−i∂μ − a3μ)]f2

+ 1

4π

(
−3εa3 da3

2
+ εa1 ∂a1 + 2εa1 da2 + 2εa2 da3

)
.

(25)

Integrating out a2,a3 leads to

Lcritical = f 2[γμ(−i∂μ − a3μ)]f2 − 1

4π

(
εa3 da3

2

)
, (26)

which is exactly the fermionic dual of 3D XY transition as
first described by Chen et al.4

A similar analysis for the transition between the superfluid
and the nontrivial SPT phase yields the same theory as above
but with a reversed sign for the Chern-Simons term [last term in
Eq. (26)], which is expected to have the same critical properties
since they do not depend on the sign of the Chern-Simons
coefficient.

D. Relation to surface states of 3D bosonic SPT phases

Recently, a physical model of the unusual surface states
of bosonic topological phases26 in 3 + 1 dimensions was
discussed.31 In particular, consider the symmetry U (1) × ZT

2
where in addition to the U (1) symmetry that leads to charge
conservation, ZT

2 time-reversal symmetry is imposed. In
Ref. 31, it was argued that with these symmetries there is a
3D topological phase with the following surface properties.
If superfluid order is induced on the surface of this topo-
logical phase, vortices in this superfluid are fermionic. The
consequences of a finite vortex density were also discussed.
However, with an additional Z2 charge conjugation symmetry,
vortices will be effectively at zero density and typically
gapped. Now the vortex insulator is described by Eq. (18),
although a mass term that mixes fermions at opposite nodes
is allowed. However, the last term in Eq. (18), εAc∂Ac/4π ,
which breaks time-reversal symmetry, is forbidden. That term
was crucial in ensuring an even Hall conductance in the
insulating phase, when the f fermion band acquires a Chern
number. Now, on the surface of the 3D bosonic topological
phase, let us break time reversal and allow for a Chern
number change of the f fermion. Now, in the absence of
the εAc∂Ac/4π term, an odd-integer Hall conductance can
be realized, which is only allowed because this bosonic
system is the boundary of a three-dimensional topological
phase. Thus, it appears that while fermionic vortices can
arise in a 2D superfluid which breaks time-reversal symmetry,
they are forbidden in a time-reversal-symmetric superfluid in
D = 2 + 1 dimensions. However, they can arise on the surface
of a 3D topological insulator of bosons, even with time-reversal
symmetry. This is similar to the relation between fermionic
integer quantum Hall transitions and the surface states of
three-dimensional topological insulators. The critical theory
in this case consists of free Dirac fermion and for gauge
invariance, it needs to be supplemented by a Chern-Simons
term εAc∂Ac/8π that breaks time reversal. The boundary of
the three-dimensional topological insulators is also described
by a free fermion, although the Chern-Simons term is absent
and the theory is time-reversal invariant.

IV. CONCLUSIONS

In this paper, we studied quantum phase transitions involv-
ing bosonic topological insulators. To describe these phases,
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we devised a fermionic parton construction that is distinct
from the earlier approaches including the nonlinear sigma
model approach26 or the flux attachment picture.28 The parton
approach allows us to describe the phase transition in terms of
Chern number changing transitions for partons. The resulting
critical point is described in terms of fermionic vortices that
are coupled to internal gauge fields.

Are bosonic SPT phases as “hard” to realize as states
with topological order and fractionalization? A more precise
question is to study the evolution of the system from a
trivial to a topological phase, and ask if exotic excitations
emerge on the way. Indeed, for the bosonic QH states, if
symmetry is preserved, we expect a fermionic version of
deconfined criticality of frustrated magnets,12 if there is a
continuous transition. If, however, the symmetry is broken,
via an intermediate superfluid phase, then all transitions are
conventional.

It is interesting to contrast the SPT phase transition
presented in this paper with the transitions involving fermionic
integer quantum Hall states. In a clean system, two integer
quantum Hall states will generically be separated by an
intervening metal, similar to the superfluid phase that separates
the two SPT phases in our case. Since any amount of disorder
localizes the metal in two dimensions, this leads to the
disappearance of the intermediate metal and leads to a direct
transition between the integer Hall states.5 In contrast, in our
problem, the superfluid phase is stable to weak disorder and
therefore our generic phase diagram is expected to remain
stable for small disorder. From this point of view, it will be
interesting to consider the effect of strong disorder ion bosonic
IQH phase transitions. An alternative approach to fermionic
plateau transitions, which does lead to a direct transition
without an intervening metal in the clean limit, is to turn on
a periodic potential.3,4,6,9 Formally, our approach to bosonic
plateau transitions is similar to this latter approach. One can
ask if there is an analog of the disordered fermionic quantum
critical point that describes the plateau transition, here in the
bosonic case. This is an interesting but rather challenging
problem, which is left for future work.

The fermionic parton construction for the SPT phases
described in this paper can be used to construct mean-field
theories, as well as variational wave functions for specific
bosonic Hamiltonians to search for the presence of SPT phases.
The parton construction for SPT phases is rather different from
the usual slave-particle techniques since it does not lead to
any fractionalized excitations in the gapped phase. It will be
worthwhile to generalize it to other SPT phases in both two
and three dimensions.

Note added. On completing this work, we learned
that Y. M. Lu and D. H. Lee have arrived at similar
conclusions.54
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APPENDIX A: REVIEW OF THE DUALITY BETWEEN
QED-3 AND O(4) MODEL AT θ = π

Let us start with the QED-3 action [Eq. (18)] and bosonize
it by first coupling f 2 �σf2 to a three-component vector �N and
then integrating out the fermions (�σ acts on the nodal index
+/−). This leads to

S =
∫

d3x
1

g
(∂ �N )2 + iJ T

μ a3μ − 1

2π
εa3∂Ac − iπH [ �N ],

(A1)

where H [ �N ] is the Hopf term at θ = π . The above action can
be further simplified by going to the CP1 representation for the
vector �N = z† �σz. This introduces a U (1) gauge redundancy
which is taken into account by a U (1) gauge field a that
couples minimally to the bosons z = [z↑ z↓]T . In the CP1

representation,

iJ T
μ a3μ = 1

2π
εa3 ∂a. (A2)

Therefore, the action becomes

S =
∫

d3x
1

g
|(−i∂μ − aμ)z|2 + 1

2π
εa3 ∂(a − Ac)

+ Hopf term.

Integrating out the a3 field generates Meissner term for the
combination a − Ac and we can thus set a = Ac. The Hopf
term is equal to the Pontryagin index for the four-component
vector V = [Re(z↑) Im(z↑) Re(z↓) Im(z↓)]T for the mapping
from the space-time to V [π3(S3) = Z]. Due to this, the action
becomes O(4) model at θ = π (Refs. 38 and 52):

L = 1

g
(|(−i∂μ − Acμ)z↑|2 + |(−i∂μ − Acμ)z↓|2) + iπH,

(A3)

where H denotes the space-time winding number of the vector
V . Since the original model has only U (1) × U (1) symmetry,
the action needs to be supplemented by terms that break the
O(4) symmetry down to U (1) × U (1).

APPENDIX B: LATTICE MODEL OF PARTON BAND
STRUCTURE WITH INVERSION SYMMETRY,

AND RESULTING PHASE DIAGRAM

The phase transition between the two SPT phases described
above by the K matrices K = [ 0 1

1 0 ] and K = [ 0 1
1 2 ] occurs

when the parton f2 becomes gapless and changes its Chern
number from 1 to −1. One way to conceive such a phase
transition is to consider the bosons b↑,b↓ on a lattice with
inversion symmetry. Consider, for example, the following two-
band Hamiltonian for the parton f2:

H = τx sin(kx)[α2 − cos(kx)] + τy sin(ky)

+ τz{[1 + α1 − cos(kx) − cos(ky)]}. (B1)

The Pauli matrices τ act on the band index. We note that H

is inversion symmetric: H (�k) = τzH (−�k)τz. The above band
structure results in the phase diagram are shown in Fig. 3.
Due to the inversion symmetry, along the line α1 = α2, there
are two Dirac nodes at ± �k0 where �k0 = [cos−1(α1),0] which
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σ

α

α

σ

FIG. 3. (Color online) The generic phase diagram for the problem
with the following dispersion for the parton f2 as a function of
two parameters a1, a2: H = τx sin(kx)(a2 − cos(kx)) + τy sin(ky) +
τz[(1 + a1 − cos(kx) − cos(ky))]. Here, C denotes Chern number
of the parton f2. Along the line a1 = 1 and for a2 < 1, (a2 > 1)
C = 0 changes to C = 1 (C = −1) and describes the quantum phase
transition between the superfluid and bosonic IQH insulator (trivial
insulator) that lies in 3D XY universality class. Finally, and perhaps
most interestingly, along the line a1 = a2, for a1 < 1, C = −1 →
C = +1 and describes the deconfined critical point between the
trivial and IQH insulator, that is equivalently described by QED-3
with Nf = 2 species of gapless fermions.

results in the change of the Chern number from −1 to +1, and
thereby, phase transition between the trivial Mott insulator and
the IQH insulator. To obtain the low-energy theory along the
line α1 = α2 ≡ α (α < 1), we write �k = ±�k0 + δ�k and expand
the Hamiltonian H around the two Dirac nodes ±�k0. Denoting
the parton fields near these two nodes as ψ+ and ψ−, one
finds

H =
∑

�k
ψ

†
+[τx(1 − α2)δkx + τyδky + τz

√
1 − α2δkx]ψ+

+ψ
†
−[τx(1 − α2)δkx + τyδky − τz

√
1 − α2δkx]ψ−.

To simplify the above expression, we perform a unitary
transformation ψ+ = ei θ

2 τy ei π
4 τx f+ and ψ− = e−i θ

2 τy ei π
4 τx f−,

with tan(θ ) = 1√
1−α2 , so that

H =
∑

�k
f †(τxαδkx + τzδky)f, (B2)

where f = [f+ f−]T and α =
√

(1 − α2) + (1 − α2)2. The
Euclidean action corresponding to the above Hamiltonian is

S =
∑

m=+,−

∫
d2x dτ f m(−iγ0∂τ − iγxα∂x − iγy∂y)fm,

(B3)

where γ0 = τy,γx = −τz,γy = τx are the three-dimensional
Dirac gamma matrices and f = f †(iγ0).

Recall that f carries gauge charge of the internal gauge
field a3. Coupling to a3 results in QED-3 for two flavors of
fermions with anisotropic velocity (due to the factor of α in
the action):

S =
∑

α=+,−

∫
d2x dτ f αγμ(−i∂μ − a3,μ)fα

+ (∂μa3ν − ∂νa3μ)2

2g2
, (B4)

where g is the gauge coupling between the f fermions and
the gauge field a3. The velocity anisotropy α is irrelevant in
the large-N expansion for sufficiently large number of flavors
Nf of fermions46,53 and, therefore, we do not consider it. The
above action, when supplemented with terms that couple the
internal gauge field a3 to the probe field Ac, is the putative
low-energy theory for the transition between two SPT phases
[Eq. (18)].

In passing, we note that near the multicritical point α1 =
α2 = 1, where the three phases meet, the dispersion for the
fermion f is highly anisotropic and nonrelativistic: H (�k) ≈
τx(δkx)3 + τyδky + τz[(δkx)2 + (δky)2] and therefore, if the
multicritical point is second order, it is unlikely that it is
described by QED-3, at least within this model.
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