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Metal-insulator transitions are studied within a three-component Falicov-Kimball model, which mimics a
mixture of one-component and two-component fermionic particles with local repulsive interactions in optical
lattices. Within the model, the two-component fermionic particles are able to hop in the lattice, while the
one-component fermionic particles are localized. The model is studied by using the dynamical mean-field theory
with exact diagonalization. Its homogeneous solutions establish Mott transitions for both commensurate and
incommensurate fillings between one-third and two-thirds. At commensurate one-third and two-thirds fillings, the
Mott transition occurs for any density of hopping particles, while at incommensurate fillings, the Mott transition
can occur only for density one-half of hopping particles. At half-filling, depending on the repulsive interactions,
the reentrant effect of the Mott insulator is observed. As increasing local interaction of hopping particles, the
first insulator-metal transition is continuous, whereas the second metal-insulator transition is discontinuous. The
second metal-insulator transition crosses a finite region where both metallic and insulating phase coexist. At
third-filling, the Mott transition is established only for strong repulsive interactions. A phase separation occurs
together with the phase transition.
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I. INTRODUCTION

Metal-insulator transition (MIT) is a long standing problem
in condensed matter physics and has attracted a lot of attention.
The Mott insulating state is established when conduction
electrons become localized due to the suspension of the
double occupation by electron correlations.1 Most studies
on the MIT focus on electron systems with local Coulomb
interaction between the two spin states of electrons. The
achievement of loading ultracold fermionic atoms in optical
lattices has been providing a novel stage for studying the Mott
transitions.2 Indeed, the Mott insulating state was realized
for 40K fermionic atoms with two hyperfine states and
repulsive interaction between them.3,4 This MIT is similar
to the one of electron systems. Moreover, ultracold fermionic
atom mixtures can be extended to have both large hyperfine
multiplet and different masses. A mixture of single-spin state
40K immersed in two-component fermionic atoms 6Li or a
mixture of two-component state 171Yb and six-component
state 173Yb were established.5,6 Such achievements lead to a
possibility of studying the Mott transitions in multicomponent
correlation systems. Theoretically, the Mott transitions in
three-component Hubbard models were studied.7,8 Within the
dynamical mean-field theory (DMFT), the Mott transition is
observed at commensurate fillings when the local Coulomb
interactions are isotropic.7 When the anisotropy of the local
Coulomb interactions is introduced, the Mott transition is also
observed at incommensurate half-filling.8 However, in these
studies, all component particles have the same masses. The
mixtures of ultracold atoms are often established with mass
imbalance. The mass imbalance could affect the MIT. Indeed,
the DMFT of the mass-imbalance mixtures shows that the
light particles may be more affected by correlations than the
heavy ones.9

In this paper, we study the Mott transitions in a three-
component Falicov-Kimball model (FKM). This model can
be viewed as a version of the three-component Hubbard
model7,8 with extreme mass imbalance. Within the model,

one-component fermionic particles are extremely heavy and
localized. They are immersed in an optical lattice, where
two-component fermionic particles with light mass can hop.
Local repulsive interactions between the component states of
particles are taken into account. The three-component FKM
can be realized by loading mixtures of two species of fermionic
atoms into an optical lattice. One species is single-spin state
heavy atoms and the other is two-component light atoms. Such
ultracold atomic mixtures can be realized by mixtures of 40K
with 6Li, or light 6Li or 40K with heavy fermionic isotopes of
Sr or Yb. When the mixtures are loaded into an optical lattice,
the heavy atoms usually have much lower tunneling rate than
the light atoms. With sufficient lattice depth, the hopping rate
of the heavy atoms can be ignored in comparison with the
one of the light atoms.10 Similar mixtures of two species of
one-component fermionic atoms were also proposed for the
realization of the spinless FKM.11 The three-component FKM
can be considered as a complement of the three-component
Hubbard model, when a strong mass imbalance is realized.
Traditionally, the FKM was introduced to describe the MIT
in rare-earth and transition metal compounds.12 The spinless
version of the FKM has a rich phase diagram, and in particular,
the homogeneous states establish a correlation-driven MIT. At
low temperature, charge-density-wave states are established.13

The FKM can be extended to have additional terms in order
to study different physical phenomena.14–16 Multicomponent
extensions of the FKM were also considered.17,18 However,
in the multicomponent versions of the FKM, the multiplicity
of electron spins is just a formal generation of the spinless
case, and the Coulomb interactions between the conduction
electrons are not taken into account. In this paper, the three-
component FKM keeps all local Coulomb interactions between
the component states. In contrast to the spinless case, there
is very little knowledge of the physical properties of the
multicomponent FKM.19

The three-component FKM can also be considered as a
combination of the Hubbard model of the two-component
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hopping particles and the spinless FKM of the one-component
localized particles. At half-filling, the Hubbard model exhibits
an MIT, which is driven by the Coulomb interaction.20 The
insulating state is naturally the Mott insulator,1 where the
double occupation is suspended by the Coulomb interaction.
The MIT is discontinuous.21,22 At half-filling, the spinless
FKM also displays an MIT, although this MIT is continuous.18

When the Coulomb interaction is large enough, it also prevents
the hopping and localized particles to occupy at the same
site. As a result, the insulating state is established. One may
expect that the three-component FKM could exhibit a rich
phase diagram of the MIT. Indeed, in the present paper, we
find both continuous and discontinuous MIT. The MIT can
occur not only at half-filling, but also at other fillings between
one-third and two-thirds.

In the present paper, we study the three-component FKM by
using the DMFT with exact diagonalization (ED). The DMFT
has been widely and successfully used to study the strongly
correlated electron systems.23,24 It has been also extensively
applied to study the FKM.18,25 The previous studies of MIT in
the three-component Hubbard model were also based on the
DMFT.7,8 The advantage of the DMFT is that it is exact in
infinite dimensions and fully captures local time fluctuations.
However, the DMFT loses nonlocal correlations of finite
dimension systems. Within the DMFT, we find that like
the three-component Hubbard model,8 the three-component
FKM exhibits the Mott transition at both commensurate and
incommensurate fillings. However, in contrast to the three-
component Hubbard model, the MIT can occur at any filling
between one-third and two-thirds. We also find an inverse
MIT, i.e., the transition from insulator to metal when particle
correlations increase. The inverse MIT can occur only in the
region of large repulsive interactions between localized and
hopping particles. At half-filling, a reentrant effect of the Mott
insulator is observed. With increasing Coulomb interactions,
the system first stays in the insulator region, then it becomes
metallic, and finally goes back to the insulating phase. The first
transition is continuous, while the second one is discontinuous.
At the second MIT, we observe a finite region where both
metallic and insulating phases coexist, like the MIT in the
single-band Hubbard model.21,24 However, in contrast to the
single-band Hubbard model, the MIT in the three-component
FKM is due to a superposition of two Kondo resonances that
are shifted from the Fermi level. At one-third and two-thirds
fillings, the Mott transition is established only for strong
repulsive interactions and a phase separation occurs together
with the phase transition.

The present paper is organized as follows. In Sec. II, we
present the three-component FKM and its DMFT. The general
filling conditions for the MIT are presented Sec. III. In this
section, we also study the MIT at half- and third-fillings in
details. Finally, the conclusion is presented in Sec. IV.

II. THREE-COMPONENT FALICOV-KIMBALL MODEL
AND ITS DYNAMICAL MEAN-FIELD THEORY

We consider a three-component FKM that describes a
mixture of one-component heavy fermionic particles and
two-component light fermionic particles loaded in an optical

lattice. The heavy particles are localized, whereas the light
particles can hop in the lattice. Its Hamiltonian reads

H = −t
∑

〈i,j〉,σ
c
†
iσ cjσ + Ucc

∑
i

c
†
i↑ci↑c

†
i↓ci↓

+Ef

∑
i

f
†
i fi + Ucf

∑
iσ

f
†
i fic

†
iσ ciσ , (1)

where c
†
iσ (ciσ ) is the creation (annihilation) operator for a

fermionic particle with hyperfine multiplet (or spin) σ at
site i. σ takes two values ±1. t is the hopping parameter
of the two-component fermionic particles, and we take into
account only the hopping between nearest-neighbor sites. Ucc

is the local Coulomb interaction between the two-component
states of those particles. f

†
i (fi) is the creation (annihilation)

operator for a one-component (or spinless) fermionic particle
at site i. Ucf is the local Coulomb interaction between the
two-component particles and one-component particles. The
one-component particle does not move, and its energy level
is Ef . Ef can also be considered as the chemical potential
of the localized particles and controls the filling of the
localized particles nf = ∑

i〈f †
i fi〉/N , where N is the number

of lattice sites. A common chemical potential μ is introduced
to control the total particle filling n = ∑

σ ncσ + nf , where
ncσ = ∑

i〈c†iσ ciσ 〉/N . The three-component FKM has two
well-known limiting cases. When Ucf = 0 the two-component
and one-component particles are completely decoupled. The
Hamiltonian of the two-component particles is just the single-
band Hubbard model.20 Within the DMFT, the Mott insulating
phase is established at half-filling and sufficient large local
Coulomb interactions. The MIT is of first order.21,24 When
Ucc = 0, the model in Eq. (1) is equivalent to the spinless
FKM.12 Within the DMFT its homogeneous phase also
displays a MIT.18 However, the metallic phase breaks the Fermi
liquid theory due to the pinning of the chemical potential at the
localized particle level.26 The MIT is continuous. The model
in Eq. (1) can also viewed as a simplified version of the three-
component Hubbard model7,8 with strong mass imbalance,
where the particles of one specified component are heavy
and localized. The three-component FKM can be realized by
loading mixtures of one-component heavy fermionic particles
and two-component light fermionic particles into an optical
lattice. In a deep enough lattice, the hopping rate of the heavy
particles is much lower than the one of the light particles, and
it can be ignored. In the model in Eq. (1), we also neglect the
trapping potentials. They must be included when realistic MIT
is observed and compared with the theoretical calculations.

We study the three-component FKM by using the DMFT.
Within the DMFT, the self-energy is a local function of
frequency. The Green function of the two-component particles
reads

G(k,iωn) = 1

iωn + μ − εk − �(iωn)
, (2)

where ωn is the Matsubara frequency, εk is the dispersion of the
two-component particles, and �(iωn) is the self-energy. Here,
we are interested in the homogeneous phase for all particle
components, hence the σ index as well as the site index of the
self-energy are omitted. The self-energy is determined from
the dynamics of a single two-component particle embedded in
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an effective self-consistent medium. The action of the effective
system reads

Simp = −
∫ β

0

∫ β

0
dτdτ ′ ∑

σ

c†σ (τ )G−1(τ − τ ′)cσ (τ ′)

+Ucc

∫ β

0
dτ (c†↑c↑c

†
↓c↓)(τ )

+ (Ef − μ)
∫ β

0
dτf †(τ )f (τ )

+Ucf

∫ β

0
dτ

∑
σ

(c†σ cσ f †f )(τ ), (3)

where G(τ ) is a Green function which represents the effective
medium. It relates to the self-energy and the local Green
function by the Dyson equation

G−1(iωn) = G−1(iωn) + �(iωn). (4)

Here, the local Green function is

G(iωn) =
∫

dερ0(ε)
1

iωn + μ − �(iωn) − ε
, (5)

where ρ0(ε) = ∑
k δ(ε − εk) is the bare density of states

(DOS). Without loss of generality, we use the semicircular
DOS

ρ0(ε) = 2

πD2

√
D2 − ε2, (6)

where D is the half bandwidth. We will use D as the unit of
energy. With the semicircular DOS, from Eqs. (4) and (5), we
obtain24

G−1(iωn) = iωn + μ − D2

4
G(iωn). (7)

One can notice that the occupation number of localized
particles in the effective action in Eq. (3) is conserved. It can
take only two values: 0 and 1. Therefore the partition function
of the effective action can be evaluated independently in the
sectors of f †f = 0,1. We obtain

Zimp = Trf

∫ ∏
σ

Dc†σDcσ e−Simp

=
∫ ∏

σ

Dc†σDcσ e−S0[c†σ ,cσ ]

+ e−β(Ef −μ)
∫ ∏

σ

Dc†σDcσ e−S1[c†σ ,cσ ]

= Z0 + e−β(Ef −μ)Z1, (8)

where

Zm =
∫ ∏

σ

Dc†σDcσ e−Sm[c†σ ,cσ ], (9)

Sm[c†σ ,cσ ] = −
∫ β

0

∫ β

0
dτdτ ′ ∑

σ

c†σ (τ )[G−1(τ − τ ′)

−mUcf δ(τ − τ ′)]cσ (τ ′)

+Ucc

∫ β

0
dτ (c†↑c↑c

†
↓c↓)(τ ), (10)

with m = 0,1. In contrast to the spinless case of the
FKM,18,25 the partition function in Eq. (9) cannot be evaluated
analytically. It has the same form of the partition function of
a single site of the Hubbard model embedded in an effective
mean-field medium.24 Suppose we can solve the effective
action in Eq. (10) and obtain the Green function

Gm(iωn) = − δ lnZm

δλ(iωn)

= 1

iωn + μ − λ(iωn) − mUcf − �m(iωn)
, (11)

where λ(iωn) = iωn + μ − G−1(iωn), and �m(iωn) is
the corresponding self-energy due to the local Coulomb
interaction Ucc. Once the self-energy �m(iωn) is known, the
Green function of the effective action in Eq. (3) can also be
determined. We obtain

Gimp(iωn) = −δ lnZimp

δλ(iωn)

= w0

iωn + μ − λ(iωn) − �0(iωn)

+ w1

iωn + μ − λ(iωn) − Ucf − �1(iωn)
, (12)

where

wm = e−mβ(Ef −μ)Zm

Zimp
. (13)

One can notice that w0 + w1 = 1, and w1 is just the filling of
localized particles. Basically, the Green function of the effec-
tive action in Eq. (12) has the same structure of the one of the
spinless case,18,25 except of the additional self-energy �m(iωn)
due to the local Coulomb interaction between the hopping par-
ticles. The self-consistent condition of the DMFT requires that
the Green function obtained from the effective action in Eq. (3)
must coincide with the local Green function in Eq. (5), i.e.,

Gimp(iωn) = G(iωn). (14)

Now we obtain the complete self-consistent system of
equations for the Green function. It can be solved numerically
by iterations.24 The most time consuming part is the solving
of the action Sm in Eq. (10). We apply ED to solve it.24,27 The
action in Eq. (10) describes the dynamics of an impurity with
the repulsive interaction coupling with a conduction bath. It
is essentially equivalent to the Anderson impurity model

Hm = (μ − mUcf )
∑

σ

c†σ cσ + Uccc
†
↑c↑c

†
↓c↓

+
∑
p,σ

Vpa†
pσ cσ + H.c. +

∑
p,σ

Epa†
pσ apσ , (15)

where a
†
pσ (apσ ) is the creation (annihilation) operator, which

represents the conduction bath with the energy level Ep. Vp

is the coupling of the conduction bath with the impurity. The
connection between the Anderson impurity model in Eq. (15)
and the action in Eq. (10) is the following identity relation of
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the bath parameters:24,27

∑
p

V 2
p

iωn − Ep

= λ(iωn). (16)

To carry out the ED, the conduction bath is limited to finite
ns orbits (p = 1,2,...,ns). Then the bath Green function
G−1(iωn) is approximated by

G−1
ns

(iωn) = iωn + μ − mUcf − λns
(iωn), (17)

where λns
(iωn) = ∑ns

p=1 V 2
p /(iωn − Ep). The bath parameters

are determined from minimization of the distance d between
G−1(iωn) and G−1

ns
(iωn):

d = 1

M + 1

M∑
n=0

ω−k
n

∣∣G−1(iωn) − G−1
ns

(iωn)
∣∣2

, (18)

where M is a large upper cutoff of the Matsubara
frequencies.24,27 The parameter k is introduced to enhance the
importance of low Matsubara frequencies in the minimization
procedure. In particular, we take k = 1 in the numerical
calculations. We use the LISA package to find the bath
parameters as well as to perform the ED.24 When the bath
parameters are determined, we calculate the Green function
of the Anderson impurity model in Eq. (15) by ED.24,27 In
particular, the numerical results presented in the following
sections are obtained by ED with the bath size ns = 4.
For the single-band Hubbard model, the bath size ns = 4
already gives good quantitative results at low temperature
in comparison with the Monte Carlo simulations.24 We have
also checked some numerical results by comparing them
with the ones calculated with the bath size ns = 5. A careful
analysis of the ED DMFT shows that two bath levels per
impurity orbit usually give adequate results.28 When the ED is
performed, we compute the Green function and its self-energy
at temperature T = 0.01. We consider the grand canonical
ensemble and take the filling of localized particles nf as an
input parameter, instead of the energy level Ef . As we have
noticed w1 = nf that simplifies the numerical calculations.

III. METAL-INSULATOR TRANSITIONS

A. General filling case

As we have mentioned in the previous section, the three-
component FKM has two well-known limiting cases. When
Ucf = 0, the Hamiltonian of the hopping particles is just the
single-band Hubbard model. At half-filling an MIT occurs at
low temperature and this transition is of first order. There
is a finite range of the Coulomb interaction Uc1 < Ucc <

Uc2, where both metallic and insulating phases coexist.21,24

When Ucc = 0, the three-component FKM is equivalent to
the spinless one. For the homogeneous phase, an MIT also
occurs at half-filling. In contrast to the single-band Hubbard
model, this transition is continuous at the transition point
Uc

cf = D.18 The situation may completely change when both
Ucc and Ucf terms take effect. First, we summarize the particle
filling conditions at which an MIT can occur. In Fig. 1, we
plot the particle filling diagram for MIT. The lines in this
figure show the filling values of n and nf at which the

FIG. 1. Diagram of particle fillings for the MIT. The solid lines
show the filling values of (n,nf ) at which the MIT can occur, and
the dotted line shows the filling values of (n,nf ) for the occurrence
of the inverse MIT. The black point indicates the filling value (n =
3/2,nf = 1/2) for the reentrant effect of the MIT.

MIT can occur. Outside these lines no MIT is observed.
There is also a possibility of the transition from insulator
to metal when the driven interaction increases. We refer the
transition as an inverse MIT. In Fig. 1, the particle filling
condition for the inverse MIT is presented by the dotted line.
The particle filling diagram is different when Ucf > D and
Ucf < D as shown in Fig. 1. In the homogeneous phase,
n = 2ncσ + nf . The MIT can occur when 1 < n < 2. In this
case, always ncσ = 1/2 independently whether Ucf > D or
Ucf < D. Therefore the MIT is driven only by Ucc like in
the single-band Hubbard model. The MIT can occur only
at ncσ = 1/2 where every lattice site is occupied by one
light particle and their strong local Coulomb interaction does
not allow the double occupation of the light particles. The
MIT may be interpreted as a species selective MIT, where
the two-component light particles are localized due to their
Coulomb interaction. The number of heavy particles as well as
their Coulomb interaction with the light particles are irrelevant
to this MIT. One may also expect that this MIT is of first order.
In Fig. 1 one can also see that the MIT can also occur at n = 1 or
n = 2 for Ucf > D. In this case, the fillings of two-component
and one-component particles can be arbitrary, but their total
filling is always one-third or two-thirds. The total filling is
commensurate with the number of particle components. At
n = 1, every lattice site is occupied by one particle of any
component. The Coulomb interactions (both Ucc and Ucf )
suppress any double occupation of particles. At n = 2, the
same scenario happens, but with holes instead of particles in
the case n = 1. We refer this MIT as a commensurate MIT. The
same MIT occurs in the three-component Hubbard model.7,8

In the commensurate MIT, the light and heavy particles play
equal roles. The Coulomb interactions prevent any double
occupation of particles. In addition to the species selective
and commensurate MIT, we also observe the inverse MIT.
The inverse MIT can occur when ncσ + nf = 1 and Ucf > D.
These conditions are similar to the ones in the spinless FKM.18

In this case, every lattice site is occupied by one light or one
heavy particle. The Coulomb interaction between the light
and heavy particles does not allow them to occupy the same
lattice site. Since when Ucc = 0 the system is in the insulating

045125-4



MOTT TRANSITIONS IN THREE-COMPONENT FALICOV- . . . PHYSICAL REVIEW B 87, 045125 (2013)

FIG. 2. (Color online) The hopping particle filling ncσ as a
function of the chemical potential μ at nf = 1/2 for different values
of Ucc and fixed Ucf = 2. The horizontal dotted lines show ncσ = 1/4,
ncσ = 1/2, and ncσ = 3/4 (T = 0.01, D = 1).

phase, one may expect that with increasing Ucc the system will
transform to the metallic phase. When both the MIT and the
inverse MIT occur, a reentrant effect of MIT could occur. It
happens at half-filling n = 3/2 and nf = 1/2.

Next, we present the numerical results to verify the diagram
plotted in Fig. 1. For this purpose, we study the dependence of
the filling of light particles ncσ on the chemical potential μ at
a given value of nf . In the insulating phase when the chemical
potential lies in the band gap, the filling ncσ does not change.
The graphics of the filling ncσ as a function of the chemical
potential must show a plateau when the chemical potential
lies in the band gap. In Fig. 2, we present the numerical
results of ncσ , which are obtained by solving the self-consistent
equations of the DMFT plus ED, as a function of the chemical
potential at nf = 1/2 and Ucf = 2. Since Ucf > D, it is
clear that for small values of Ucc the system is insulating
at ncσ = 1/2. In this insulating phase each lattice site is
occupied by one light or one heavy particle, and the Coulomb
interaction between them prevent their double occupation. In
Fig. 2, it is shown by the plateau of the line with Ucc = 0.5.
With increasing Ucc the system changes to a metallic phase,
where the graphics of ncσ does not exhibit any plateau. It
is the inverse MIT, which occurs when ncσ + nf = 1. With
further increasing Ucc, the graphics of ncσ begins to develop
two plateaus at ncσ = 1/4 and 3/4, which correspond to the
total filling n = 1 and 2. These plateaus signal the insulating
phase at one-third and two-thirds of the total filling. The
corresponding MIT is commensurate. For sufficient large Ucc,
an additional plateau appears at ncσ = 1/2 that indicates the
insulating phase at ncσ = 1/2. Therefore, at ncσ = 1/2, there
is a reentrance of the insulating phase. However, in contrast
to the insulating phase at small values Ucc, in this insulating
phase, each lattice site is occupied by one light particle and
the Coulomb interaction of the light particles prevents the
double occupation of the light particles, because the same
MIT also occurs at small Ucf . This species selective MIT does
not depend on Ucf as well as the number of heavy particles.

In Fig. 3, we plot the filling ncσ at Ucf = 0.8 and nf =
1/2. In this case Ucf < D, thus the system is metallic when

FIG. 3. (Color online) The hopping particle filling ncσ as a
function of the chemical potential μ at nf = 1/2 for different
values of Ucc and fixed Ucf = 0.8. The horizontal dotted line shows
ncσ = 1/2 (T = 0.01, D = 1).

Ucc = 0. Weak correlations of light particles cannot drive the
system out the metallic state. However, with further increasing
Ucc, the particle correlations drive the system into insulating
state. It is shown in Fig. 3, by the appearance of plateau in
the graphics of ncσ . The MIT occurs at ncσ = 1/2, and it is
the species selective MIT. For Ucf < D, we do not observe
any MIT at one-third or two-thirds of the total filling. The
correlations between the light and heavy particles is not strong
enough to prevent them to occupy the same site. Consequently,
the commensurate MIT cannot be established.

We have checked these by analyzing results for both the
cases Ucf > D and Ucf < D at general filling nf = p/q,
where p,q are integer (p < q). In summary, the three-
component FKM exhibits different MIT depending on the
particle fillings and the Coulomb interactions. The MIT can
be species selective, commensurate or inverse transitions.
The species selective MIT occurs at ncσ = 1/2, while the
commensurate MIT occurs only at one-third or two-thirds
of total filling. The inverse MIT can occur at ncσ + nf = 1
and Ucf > D. These MIT could be observed by loading
mixtures of light and heavy fermionic atoms into an optical
lattice with sufficient lattice depth. By measuring the double
occupations among the light particles, between the light and
heavy particles, one could detect these MIT.

The half and one-third fillings are two special cases of the
MIT. In the next two sections, we will study all cases in detail.
We will analyze the MIT through the self-energy and the DOS
of the light particles. The experimental observations of spectra
of the light particles in optical lattices are challenging.

B. Half-filling case

In this section, we study the MIT at half-filling in detail.
One can see in Fig. 1 that at half-filling (n = 3/2), the
MIT can occur only for ncσ = nf = 1/2. It turns out that
μ = (Ucc + Ucf )/2 with the particle-hole symmetry. In Fig. 4,
we present the numerical results of the self-energy Im�(iωn)
of the light particles for different values of Ucc and a fixed
Ucf . The behavior of Im�(iωn) at low frequencies indicates the
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FIG. 4. (Color online) The imaginary part of the light particle
self-energy at half-filling for different values of Ucc and fixed Ucf =
1.6. (T = 0.01, D = 1).

conduction properties of the system. When Im�(iωn) diverges
as ωn → 0, the system is insulating, while when Im�(iωn) →
0 as ωn → 0, the system is metallic. If limωn→0 Im�(iωn) is
finite, the system is still metallic, but it does not obey the Fermi
liquid properties. Since in Fig. 4, Ucf > D, one may expect
that the system is insulating for small values of Ucc. Indeed,
in Fig. 4, we can see that Im�(iωn) diverges as ωn → 0 for
Ucc = 0.5, which indicates the insulating state of the system.
With increasing Ucc, Im�(iωn) stops to diverge as ωn → 0. It
shows that the system becomes metallic. However, Im�(iωn)
may tend to a finite value when ωn → 0. In Fig. 4, this behavior
is shown by the self-energy with Ucc = 1 and 2. In this regime,
the finite value of Im�(iωn) when ωn → 0 becomes smaller
with increasing Ucc. With further increasing Ucc, Im�(iωn)
has a tendency of decreasing its value at ωn → 0 to zero. This
behavior reminisces the Fermi liquid properties. It is shown in
Fig. 4 by the self-energy with Ucc = 3. With further increasing
Ucc, Im�(iωn) diverges as ωn → 0, and the system falls
into the insulating phase regime again. However, between the
metallic and insulating phases, we detect a finite region, where
both the metallic and insulating solutions coexist. This feature
is similar to the MIT in the single-band Hubbard model.21,24

In Fig. 4, we present both metallic and insulating self-energies
in this region (Ucc = 3.3). In the coexistent region, distinct
metallic and insulating phases do not exist. It is similar to
the critical point of classical gases, above which no phase
boundaries between vapor and liquid phases exist. From the
behaviors of the self-energy, we observe the reentrance of the
insulating phase in the region of Ucf > D. With increasing Ucc

from zero value, the system first stays in the insulating phase,
then the Coulomb interactions drive it into the metallic phase,
and finally, the system goes back to the insulating phase. The
later MIT is first order, and it crosses a finite region where both
the metallic and insulating phases coexist.

The above analyzed phase transitions can also be seen from
the behavior of the DOS of the light particles. In Fig. 5, we
plot the DOS ρ(ω) = −ImG(ω + iη)/π for different values of
Ucc and fixed Ucf . In ED we can compute the Green function
for both Matsubara and real frequencies. In the numerical
calculations, we take η = 0.01 for broadening the width of

FIG. 5. The DOS of the light particles at half-filling for different
values of Ucc and Ucf = 1.6. (Top) DOS at the full energy scale.
(Bottom) DOS is focused at low energies. (T = 0.01, D = 1).

the δ functions. When the DOS shows a gap at the position
of the chemical potential (ω = 0), the system is insulating.
If the DOS is finite at ω = 0 the system is metallic. Figure 5
shows an MIT between 0.5 < Ucc < 1 at Ucf = 1.6. For small
values of Ucc, the DOS exhibits a gap at the Fermi energy. With
increasing Ucc the gap becomes smaller, and it disappears at
the transition point Uc. When Ucc > Uc, the DOS exhibits
a pseudogap at ω = 0. The pseudogap is developed from
the gap of the insulating phase. In Fig. 5, this behavior is
shown by the DOS with Ucc = 1. The phase with pseudogap
corresponds to the case of finite value of the imaginary part
of the self-energy at zero energy. With further increasing Ucc,
the DOS exhibits a group of narrow peaks around ω = 0. In
Fig. 5, it is shown by the DOS with Ucc = 3. In the single-band
Hubbard model, the group of narrow peaks at ω = 0 represents
the Kondo resonance.24,27 However, due to the finite size effect
and the discreteness of the ED, the Kondo resonance does
not appear at the full scale. Nevertheless, the appearance of
the group of narrow peaks at ω = 0 can be interpreted as a
signal of the Kondo resonance. However, in contrast to the
single-band Hubbard model, the local Green function here is a
superposition of two local subband Green functions Gm(ω) as
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one can see from Eq. (12). Each local subband Green function
is described by an Anderson impurity with the Coulomb
interaction Ucc embedded in a conduction bath. The energy
level of the Anderson impurity is μ − mUcf = (Ucc ± Ucf )/2.
The Anderson impurity is symmetric when its energy level is
placed at Ucc/2.29,30 Since Ucf > 0, the Anderson impurity
is asymmetric. Therefore the Kondo resonance that appears
in the local subband DOS, must be shifted from the Fermi
level.29,30 Only for the symmetric Anderson impurity, the
Kondo resonance peaks at the Fermi level. Consequently, the
group of narrow peaks at ω = 0 represents the superposition
of the two shifted Kondo peaks. It can be considered as an
asymmetric Kondo splitting. Experimental observations of the
asymmetric Kondo splitting in the spectra of the light particles
are challenging. With tunable value of Ucf , experiments could
observe the asymmetric Kondo splitting in the spectra of light
particles and the splitting width increases with increasing
Ucf . At Uc2, the group of narrow peaks disappears, and the
system becomes insulating. However, as in the single-band
Hubbard model, the insulating solution exists until Uc1 < Uc2.
In the region Uc1 < Ucc < Uc2, both metallic and insulating
solutions coexist. Thus the second MIT is of first order. This
MIT solely deals with the light particles, because it exists even
when Ucf is small. The transition is the species selective MIT.
In the insulating phase, each lattice site is occupied by one
light particle, and the Coulomb interaction prevents the double
occupation of the light particles. Experiments could detect
the existence of the coexistent region by measuring the
double occupation of the light particles. Across the region,
the double occupation must exhibit a jump in its value. The
MIT mechanisms of the two MITs are different. In the first,
inverse MIT, the pseudogap of the metallic phase is developed
from the gap of the insulating phase, whereas in the second,
species selective MIT, the phase transition occurs due to the
collapse of the asymmetric Kondo splitting.

We have also analyzed the MIT through the self-energy and
the DOS for the case Ucf < D. In this case, the MIT is species
selective and has the same features as the one in the case
Ucf > D, which we have discussed above. We summarize the
phase transitions in the phase diagram plotted in Fig. 6. In the

FIG. 6. Phase diagram at half-filling ncσ = nf = 1/2. In the grey
area, both metallic and insulating phases coexist.

region Ucf > D, there are two MITs. One is inverse MIT and
the other is species selective MIT. At the first transition (Uc),
particle correlations drive the system from an insulating to a
metallic phase, while at the second one, particle correlations
drive the system from a metallic to an insulating phase. A finite
region of coexistence of the metallic and insulating phases
exists between the species selective MIT. The critical value Uc

of the inverse MIT increases with Ucf . It vanishes at Ucf =
D. Hence, in the region Ucf < D, the reentrant effect of the
insulating phase is absent. The phase diagram is consistent with
the analysis of the phase transitions observed from dependence
of ncσ on the chemical potential, which have been presented
in the previous section.

C. Third-filling case

In this section, we study the MIT at third-filling ncσ = nf =
1/3. The MIT is quite different in comparison with the half-
filling case. It works with both the light and heavy particles.
In numerical calculations, the chemical potential is adjusted
in order to maintain ncσ = 1/3. The two-thirds filling case
ncσ = nf = 2/3 is the particle-hole symmetry of this one-third
filling case. We plot the phase diagram for the third-filling case
in Fig. 7. The value Uc at the MIT point quickly increases as
Ucf approaches to the value D, while it slowly decreases as
Ucf increases. The insulating phase is established only for
sufficient large Coulomb interactions (both Ucc and Ucf ). In
the insulating phase, each lattice site is occupied by one particle
of the light or heavy particle components, and the Coulomb
interactions prevent any double occupation. The MIT can also
be analyzed through the self-energy and the DOS of the light
particles, as in the case of half-filling. The behaviors of the
self-energy in the metallic and insulating phases exhibit similar
features as in the half-filling case. However, the features of the
DOS are different. In Fig. 8, we plot the DOS for different
values of Ucc and fixed Ucf . One can see from Eq. (12) that
the local Green function is a superposition of two subband
Green functions with nonequal weights. The Kondo peak,
which appears in the local subband DOS, is away from the
Fermi energy and is reduced.29,30 Therefore the peak that
appears at the Fermi level in the metallic phase is merely

FIG. 7. Phase diagram for third-filling ncσ = nf = 1/3. (T =
0.01, D = 1).
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FIG. 8. The DOS of the light particles at third-filling for different
values of Ucc and fixed Ucf = 2. (T = 0.01, D = 1).

the superposition of two local subband DOS, and maybe it is
irrelevant to the Kondo resonance. Thus the MIT can occur at
the third-filling in contrast to the single-band Hubbard model,
where no MIT is observed at third-filling. In contrast to the
half-filling case, we do not observe any region of coexistence
of metallic and insulating phase. However, close to the MIT,
we observe a phase separation that happens at fillings very
close to the third-filling. In Fig. 9, we plot the hopping particle
filling ncσ as a function of the chemical potential μ for various

FIG. 9. (Color online) The hopping particle filling ncσ as a
function of the chemical potential μ for various values of Ucc close
to the transition value Uc and fixed Ucf = 2. The horizontal dotted
line shows ncσ = 1/3. (T = 0.01, D = 1).

values of Ucc close to the phase transition point Uc. One can
see in Fig. 9, when Ucc < Uc, the graphics of ncσ does not
show any plateau at ncσ = 1/3, which indicates the metallic
phase. However, for Ucc close to Uc in the insulator side, the
graphics of ncσ show not only the plateau, which indicates the
insulating state, but also a gap at fillings close to ncσ = 1/3.
Within the gap, the filling ncσ is uncertainty. This feature
indicates a phase separation at those fillings. The MIT at
third-filling is commensurate. It does not distinguish the light
particles from the heavy ones. Any double occupation must be
vanished at the transition point. The MIT is also observed at
third-filling in the three-component Hubbard model.7,8 One
can notice that the commensurate MIT always occurs at
the commensurate fillings independently whether the mass
imbalance or the interaction anisotropy exist or not. Working
at the commensurate fillings, experiments could detect this
MIT.

IV. CONCLUSION

We have studied the MIT in the three-component FKM
by using the DMFT with ED. We find the conditions for the
particle fillings at which the MIT can occur. In particular,
the MIT can occur at total filling 1 � n � 2. When the total
filling 1 < n < 2, the MIT is species selective, and it can
occur only at half-filling of the light particles (ncσ = 1/2).
At the total filling of one-third or two-thirds, the MIT can
occur only at sufficient strong Coulomb interactions. This MIT
works with both light and heavy particles. We also observe
the inverse MIT, i.e., the phase transition from insulator to
metal when the Coulomb interactions increase. The inverse
MIT can occur only for sufficient strong correlations between
light and heavy particles, and the particle filling condition
ncσ + nf = 1. We have also studied in detail the MIT at
half- and third-filling. At half-filling, the reentrant effect of
insulating phase is observed. As the Coulomb interactions
increase, the system first stays in the insulating phase, then it
becomes metallic, and finally, it goes back to the insulating
phase. The first MIT is continuous, while the second one
is discontinuous. As in the single-band Hubbard model, we
also observe a finite region at the second MIT, where both
metallic and insulating phases coexist. However, in contrast to
the single-band Hubbard model, the MIT occurs together with
asymmetric Kondo splitting in the spectra of the light particles.
At the third-filling, the MIT can occur only for sufficient strong
Coulomb interactions. We find the phase separation close to
MIT point from the insulator side. We have also constructed the
phase diagram at half- and third-filling. However, in this paper,
we still restrict ourselves to consider only the homogeneous
phases. At low temperature, one may expect the stability of
charge- (or/and spin-) density-wave states. We leave these
phases for further studies.
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