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Anderson localization versus charge-density-wave formation in disordered electron systems
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We study the interplay of disorder and interaction effects including bosonic degrees of freedom in the
framework of a generic one-dimensional transport model: the Anderson-Edwards model. Using the density-
matrix-renormalization group technique, we extract the localization length and the renormalization of the
Tomonaga-Luttinger-liquid parameter from the charge-structure factor by a elaborate sample-average finite-size
scaling procedure. The properties of the Anderson localized state can be described in terms of scaling relations of
the metallic phase without disorder. We analyze how disorder competes with the charge-density-wave correlations
triggered by the bosons and give evidence that disorder will destroy the long-range charge-ordered state.
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I. INTRODUCTION

Disorder is an inherent part of any solid-state system.1 Low-
dimensional materials are exceedingly susceptible to disorder.
In one dimension (1D), theory predicts that all carriers are
strongly localized for arbitrary energies and arbitrarily weak
disorder. This holds for Anderson’s noninteracting tight-
binding Hamiltonian with a diagonal (i.e., on-site) random
potential.2,3 The coherent backscattering from the randomly
distributed impurities thereby transforms the metal into an
insulator.

In 1D, the mutual interaction of the particles is likewise
of significance; here even weak interactions can cause strong
correlations. The instantaneous Coulomb repulsion between
the electrons, for instance, tends to immobilize the charge
carriers as well. As a consequence, at half filling, a Mott insu-
lating (spin-density-wave) phase is energetically favored over
the metallic state.4 The retarded electron-phonon coupling, on
the other hand, may lead to structural distortions accompanied
by polaron formation,5 and is the driving force behind the
metal-to-Peierls transition, establishing a charge-density-wave
(CDW) order.6

An understanding of how disorder and interaction act
together is of vital importance not only to discuss the
metal-insulator itself but also to analyze the electronic
properties of many quasi-1D materials of current interest,
such as conjugated polymers, organic charge-transfer salts,
ferroelectric perovskites, halogen-bridged transition-metal
complexes, TMT[SF,TF] chains, Qn(TCNQ)2 compounds,
or, e.g., the quite recently studied vanadium dioxide
Peierls-Mott insulator.7–10 Carbon nanotubes11 and organic
semiconductors12 are other examples where disorder and
bosonic degrees of freedom are of importance. Regarding
interacting bosons, ultracold atoms trapped in optical lattices
offer the unique possibility to tune both the disorder and
interaction strength.13

Unfortunately, the subtle interplay of disorder and inter-
action effects is one of the most challenging problems in
solid-state theory and—despite 50 years of intense research—
is still an area of uncertainty; see Ref. 14 and references
therein. In the limit of vanishing charge-carrier density,
only the interaction with the lattice vibrations matters. Then
Anderson disorder may affect the polaron self-trapping in

a highly nontrivial way.15 This has been demonstrated for
the Anderson-Holstein model within the statistical dynamical
mean-field and momentum-average approximations.16,17 At fi-
nite carrier density, the Mott-Anderson transition for Coulomb
correlated electrons was investigated by self-consistent mean-
field theory in D = ∞ and D = 3,18–20 as well as by
variational Gutzwiller-ansatz-based approaches.21 Electron-
electron interactions may screen the disorder potential in
strongly correlated systems, thereby stabilizing metallicity.22

Exact results are rare, however. In 2D, Lanczos and quantum
Monte Carlo data suggest a disorder-induced stabilization of
the pseudogap, also away from half filling.23 The density-
matrix-renormalization group (DMRG)24 allows the numerical
exact calculation of ground-state properties of disordered,
interacting fermion systems in 1D, on fairly large systems.
Exploiting this technique, the properties of disordered Lut-
tinger liquids have been analyzed in the framework of the
spinless fermion Anderson-t-V model (AtV M)25 and the
spinful Anderson-Hubbard model.26

In this paper, we address how many-body Anderson local-
ization competes with CDW formation triggered by bosonic
degrees of freedom in the framework of the Anderson-Edwards
model (AEM).

II. MODEL

The Edwards model27 represents a very general two-
channel fermion-boson Hamiltonian, describing quantum
transport in a background medium. Its fermion-boson inter-
action part

Hf b = −tb
∑
〈i,j〉

f
†
j fi(b

†
i + bj ) (1)

mimics the correlations/fluctuations inherent to a spinful
fermion many-particle system by a boson-affected transfer of
spinless charge carriers. In Eq. (1), a fermion f

(†)
i creates (or

absorbs) a local boson b
(†)
i every time it hops to a nearest-

neighbor (NN) site j . Thereby it creates a local excitation in
the background with energy ω0: Hb = ω0

∑
i b

†
i bi . Because

of quantum fluctuations, the background distortions should
be able to relax with a certain rate λ. The entire Edwards
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FIG. 1. (Color online) DMRG metal-insulator phase boundary
for the 1D half-filled Edwards model without disorder (solid line).
CDW order is suppressed if the background fluctuations dominate
[ω0 < 1] or if the system’s ability for relaxation is high [λ > λc(ω0)].
The blue crosses denote the parameter sets considered in this paper
for the disordered Edwards model.

Hamiltonian then reads

HE = Hf b − λ
∑

i

(b†i + bi) + Hb. (2)

A unitary transformation bi �→ bi + λ/ω0 eliminates the bo-
son relaxation term in favor of a second fermion hopping
channel:

HE = Hf b − tf
∑
〈i,j〉

f
†
j fi + Hb. (3)

We like to emphasize that (i) this free-fermion transfer,
however, takes place on a strongly reduced energy scale,
tf = 2λtb/ω0, and (ii) coherent propagation of a fermion
is possible even in the limit λ = tf = 0 by means of a
six-step vacuum-restoring hopping process,28 acting as a direct
next-NN transfer “f †

i+2fi .” The Edwards model reveals a
surprisingly rich physics. Depending on the relative strengths
tf /tb of the two transport mechanisms and the rate of
bosonic fluctuations tb/ω0, it reproduces Holstein and t-J
model-like lattice- and spin-polaron transport, respectively, in
the single-particle sector.28,29 For the half-filled band case,
a metal-insulator quantum phase transition from a repul-
sive Tomonaga-Luttinger-liquid (TLL) to a CDW has been
reported;30,31 see Fig. 1. Note that the CDW is a few-boson
state that typifies rather a correlated (Mott-Hubbard-type)
insulator than a Peierls state with many bosons (phonons)
involved.30,31 Since in the limit ω0 � 1 � λ (here, and in what
follows, tb is taken as the unit of energy) background fluctua-
tions are energetically costly, charge transport is hindered and
an effective Hamiltonian with NN fermion repulsion results.
To leading order, in a reduced (zero-boson) Hilbert space, we
get

HtV = −tf
∑
〈i,j〉

f
†
j fi + V

∑
i

n
f

i n
f

i+1, (4)

with V = t2
b /ω0. This so-called t-V model can be mapped onto

the exactly solvable XXZ model, which exhibits a TLL-CDW
quantum phase transition at V/tf = 2, i.e., at λ−1

c = 4. This
value is smaller than those obtained for the Edwards model in
the limit ω−1

0 � 1, where λ−1
c 	 6.3 (see Fig. 1 and Ref. 31),

because already three-site and effective next-NN hopping
terms were neglected in the derivation of the tV model.

We now employ the DMRG technique,24 which can be
easily generalized to treat systems including bosons,32 in order
to obtain unbiased results for the full AEM,

HAE = �
∑

i

εin
f

i + HE, (5)

and the related AtV M, HAtV = �
∑

i εin
f

i + HtV , where
disorder of strength � is induced by independently distributed
random on-site potentials εi , drawn from the box distribution
P (εi) = θ (1/2 − |εi |). Within the pseudosite approach, a
boson is mapped to nb pseudosites.32,33 In the numerical study
of the AEM, we take into account up to nb = 4 pseudosites
and determine nb by the requirement that local boson density
of the last pseudosite is less than 10−7 for all i. Furthermore,
we keep up to m = 1200 density-matrix eigenstates in the
renormalization steps to ensure that the discarded weight is
smaller than 10−8. The calculations are performed for finite
systems with lengths L = 16 to 128 and open boundary
conditions (OBC). For the simpler effective AtV M, we reach
L = 192 with OBC. Here the use of m = 1000 density-matrix
eigenstates makes the discarded weight negligible. To gain
representative results for our disordered systems, we proceed
as follows. We first compute the physical quantity of interest at
fixed L for numerous samples {εi}, then set up an appropriate
statistical average, and finally perform a careful finite-size
scaling.

III. FINITE-SIZE SCALING

An important question is, of course, which physical quantity
to use in the finite-size scaling of the Anderson transition. For
this purpose, the localization length ξ seems to be promising
because it is sensitive to the nature, localized or extended, of
the electron’s eigenstate.34,35 So far, ξ has been determined
from the phase sensitivity of the ground-state energy.17,25

Quite recently, Berkovits demonstrates that the entanglement
entropy can also be used to extract the localization length.36

However, in both methods, the system size L should be always
larger than ξ .

Advantageously, the localization length can be extracted
by a finite-size scaling analysis of the charge-density-structure
factor even for L � ξ , which works equally well for in-
teracting systems,26 and therefore allows us to discuss the
interplay between Anderson localization and CDW formation
in a consistent manner. The charge structure is defined as

C̃(q) = 1

L

L∑
i,r=1

[〈
n

f

i n
f

i+r

〉 − 〈
n

f

i

〉〈
n

f

i+r

〉]
eiqr . (6)

Assuming an exponential decay of the equal-time density-
density correlations in the Anderson insulating phase,37 the
structure factor scales with

C̃(q) = − K∗
ρ

2π2

e
− π2L

6ξ − 1

e
π2
6ξ − 1

q2, (7)

where q = 2π/L � 1.26 Equation (7) contains two unknown
parameters: the localization length ξ and the disorder-modified
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TLL interaction coefficient K∗
ρ . Hence, if the charge-structure

factor is determined numerically, then ξ and K∗
ρ can be

easily derived by fitting the numerical data with Eq. (7). For
vanishing disorder, � → 0, ξ diverges and K∗

ρ becomes the
ordinary TLL parameter Kρ . We are aware that a disordered
1D system is no longer a TLL and, consequently, the TLL
parameter is ill defined in the strict sense. Nevertheless, if the
localization length significantly exceeds the lattice constant,
then the short-range correlation functions should still show
a power-law decay. Therefore, we might gain some valuable
information about the local motion of fermions from K∗

ρ .

IV. DMRG RESULTS

Figure 2 demonstrates that the finite-size scaling of the
averaged charge-structure factor C̃av(q) by means of (7) works
best and equally well for the 1D AEM and AtV M (this applies
to all parameter values discussed below). To accommodate the
missing correlations owing to the OBC, we have plotted C̃av(q)
as a function of 1/(L − δ) instead of 1/L (this way of plotting
the data is nonessential but gives a quantitative refinement of
the fit). The parameter δ is adjusted to reproduce K∗

ρ = Kρ

and ξ = ∞ at � = 0. We note the general tendency that the
charge correlations arising at finite L will be suppressed as �

becomes larger.
In a next step, we extract the localization length ξ and the

modified TLL parameter for the disordered Edwards and t-V
models. Figure 3 shows the dependence of ξ and K∗

ρ on the
disorder strength �. First of all, we find a power-law decay of
ξ with 1/� in the whole (λ, ω0; V ) parameter regime:

ξ/ξ0 = �−γ (8)

[note that � is given in units of tb (tf ) in Fig. 3 for the AEM
(AtV M)]. The estimated values of the (bare) decay length
ξ0 and the exponent γ are given in the caption of Fig. 3 for
characteristic model parameters. As expected, the localization
length decreases with increasing disorder strength. Stronger
electronic correlations, i.e, smaller λ or larger ω0 (larger V )
in the AEM (AtV M), also tend to reduce ξ . In any case,
ξ turns out to be finite as soon as � > 0, indicating that
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FIG. 2. (Color online) Charge-structure factor of the AEM with
λ = 0.1 and ω0 = 2 (left panel) and the AtV M with V/tf = 1.5 (right
panel) sampled over 300 and 500 disorder realizations, respectively.
Dashed lines give the finite-size scaling of C̃av(q) according to (7).
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FIG. 3. (Color online) Left panels: Log-log plot of the localiza-
tion length vs disorder strength for the AEM at (a) fixed λ = 0.1,
(c) fixed ω0 = 2.5, and (e) for the AtV M. Dashed lines are fits to
Eq. (8) with (a) ξ0 = 620, 98, 50 and γ = 1.75, 1.65, 1.22 for λ = 1,
0.2, 0.1; (c) ξ0 = 500, 65, 40 and γ = 1.81, 1.35, 1.1 for ω0 = 1, 2,
3; and (e) ξ0 = 440, 350, 230, 190, 150 and γ = 1.95, 1.5, 1.3, 1.1,
0.95 for V/tf = 0, 0.5, 1. 1.5, 2 (from top to bottom), respectively.
Right panels: Corresponding results for the modified TLL parameter
K∗

ρ in the (b), (d) AEM and (f) AtV M.

the repulsive TLL, if realized for � = 0, makes way for an
Anderson insulator. Thereby the localization length becomes
comparable to the lattice spacing at � = 2 in the AEM with
λ = 0.1, ω0 = 2.5, while it is still about 102 for the AtV M
with V/tf = 2.

The right-hand panels display striking differences in the �

dependence of K∗
ρ for the models under consideration. These

can be attributed to the fact that the Edwards model contains
two energy scales λ and ω0, while the physics of the t-V model
is merely governed by the ratio V/tf = tb/2λ, i.e,. ω0 drops
out. Far away from the CDW instability, however, both models
describe a weakly correlated TLL with Kρ � 1, and K∗

ρ slowly
decays as the disorder � increases (see the red open triangles
in Fig. 3; to make the comparison with the t-V model data
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easy, we have shown K∗
ρ versus �/tf in the insets). If we move

towards the CDW instability by decreasing λ at fixed ω0 > ω0,c

or increase ω0 at λ < λc (cf. Fig. 1), then a nonmonotonous
behavior develops. At small �, K∗

ρ is significantly enhanced as
the disorder increases. Obviously, weak disorder destabilizes
the 2kF -CDW correlations locally, since disorder-induced
second- (and higher-) order boson-assisted (inelastic) hopping
processes are possible in the AEM, even for ω0 � 1. This in
sharp contrast to the AtV M, where only elastic scattering takes
place and the intersite Coulomb repulsion is hardly affected
by �. As a result, in the disordered t-V model, the CDW
correlations will be stronger and more robust. Hence, for the
AtV M, K∗

ρ appears to be nearly independent from � for
0.5 � V/tf � 2. This also notably differs from the behavior
found for the disordered Hubbard model,26 where the umklapp
scattering is effectively enhanced by the formation of Mott
plateaus appearing due to disorder.38 If � exceeds a certain
value in the AEM, then K∗

ρ starts to decrease and, finally,
the whole scaling procedure breaks down when ξ � 1 (see the
point at � = 2 in the upper right panel with K∗

ρ well below 0.5).
In this regime, the wave functions of the particles are strongly
localized and the TLL behavior is as much suppressed as the
CDW correlations. Let us point out that the enhancement of
K∗

ρ triggered by the bosonic degrees of freedom might serve
as an explanation for the observed increasing charge velocity
near a negatively charged defect in the single-wall carbon
nanotubes,11 since the TLL parameter Kρ is proportional to
the charge velocity.

We now focus on the localization behavior at large distances
[O(ξ � 1)], and therefore make an attempt to analyze the
decay length ξ0 and the exponent γ , for both the AEM and
AtV M, in terms of the interaction exponent Kρ and the charge
susceptibility χc of standard TLL theory.37 We expect that ξ0

is strongly influenced by the strength of the charge fluctuations
quantified by χc, which is given—for the t-V model—as

χc = 2Kρ

πvc

= 4

π

√
1 − (

V
2tf

)2

[
π

arccos
( − V

2tf

) − 1

]
, (9)

with charge velocity vc. Figure 4 shows that ξ0 nicely scales
with V/tf , i.e., ξ0 ∝ χc, in fact (see upper panel). The same
holds—perhaps surprisingly—for the AEM when ξ0/t

γ

f is
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FIG. 4. (Color online) Left panels: Decay length ξ0 as a function
of the (effective) Coulomb repulsion V(eff) for the AtV M and AEM.
Right panel: Corresponding γ exponent vs Kρ , in comparison to the
scaling relation (10) (dashed line). For further explanation, see text.

plotted versus an effective intersite repulsion estimated from
Veff/tf = −2 cos(π/2Kρ) (see lower panel). Moreover, for
the disordered t-V model, the exponent γ is connected to
Kρ of the (spinless fermion) TLL system without disorder via
the renormalization equation: d(�2)/dl = (3 − 2Kρ)�2 (with
scale quantity l). This causes the scaling relation37,39,40

γ = 2/(3 − 2Kρ). (10)

The right panel of Fig. 4 displays that γ basically depends on
Kρ , as predicted by Eq. (10). This means that the long-range
localization properties of the AEM can be understood in the
framework of AtV M with an effective intersite interaction in-
duced by the bosonic degrees of freedom. Since the (effective)
Coulomb repulsion tends to result in a lesser Kρ , γ decreases
with increasing V(eff) (cf. Fig. 4). In this way, the 2kF -CDW
fluctuations triggered by V tend to weaken Anderson localiza-
tion. While γ = 2 in the free-fermion limit (V, 1/λ → 0), it
scales to unity approaching the CDW transition point located,
e.g., at λc 	 0.07 for ω0 = 2.5, respectively, at ω0,c 	 3.1 for
λ = 0.1.

The question of how disorder affects the insulating CDW
state could not be addressed by the above TLL-based scaling.
In particular, we cannot assess by our numerical approach
whether the CDW phase survives weak disorder (as experi-
mentally observed for disordered Peierls-Mott insulators).10

If the Imry-Ma argument for disordered (low-D) interacting
systems41 holds, then CDW long-range order should be
destroyed by any finite �. Figure 5, showing the spatial
variation of the local fermion/boson densities for a specific
but typical disorder realization (note that any real experiment
is performed on a particular sample), illustrates the situation
deep inside the (former) CDW phase (λ−1 = 100, ω−1

0 = 0.4;
cf. Fig. 1). One realizes that long-range charge order ceases
to exist but short-range CDW correlations locally persist
whenever neighboring on-site potentials do not differ much
(see, e.g., the region i = 45, . . . ,55 in the lower panel of
Fig. 5).
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FIG. 5. (Color online) Local densities of fermions 〈f †
i fi〉 (blue

circles) and bosons 〈b†
i bi〉 (red open squares) in the central part of

an open AEM chain without (� = 0) and with (� = 2) disorder.
Results are given for a single realization {εi} (black triangles). Model
parameters are λ = 0.01, ω0 = 2.5, and L = 128 (OBC).
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V. CONCLUSIONS

To summarize, using an unbiased numerical DMRG ap-
proach, we investigated the interplay of disorder and inter-
action effects including bosonic degrees of freedom in the
framework of the 1D spinless fermion Anderson-Edwards
model. Although the TLL phase disappears owing to the
disorder, the localization properties of the Anderson insulator
state can be understood in terms of scaling relations containing
the charge susceptibility and the Luttinger liquid parameter
of the metallic phase without disorder only, as in the case
of the spinless fermion Anderson-t-V model. However, the

Anderson-Edwards model reveals a more complex inter-
relation between disorder and CDW correlations because
additional scattering channels, involving bosonic excitation
and annihilation processes, appear. This offers a promising
route for adapting the description of low-dimensional transport
in many disordered materials. Disorder also affects the CDW
state in that true long-range order vanishes although local
CDW correlations survive.
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