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We present a detailed analysis of topological properties of the valence-bond solid (VBS) states doped with
fermionic holes. As concrete examples, we consider the supersymmetric extension of the SU(2) and the SO(5)
VBS states, dubbed UOSp(1|2) and UOSp(1|4) supersymmetric VBS states, respectively. Specifically, we inves-
tigate the string-order parameters and the entanglement spectra of these states to find that, even when the parent
states (bosonic VBS states) do not support the string order, they recover it when holes are doped and the fermionic
sector appears in the entanglement spectrum. These peculiar properties are discussed in light of the symmetry-
protected topological order. To this end, we characterize a few typical classes of symmetry-protected topological
orders in terms of supermatrix product states (SMPS). From this, we see that the topological order in the bulk
manifests itself in the transformation properties of the SMPS in question and thereby affects the structure of the
entanglement spectrum. Then, we explicitly relate the existence of the string order and the structure of the entan-
glement spectrum to explain the recovery and the stabilization of the string order in the supersymmetric systems.
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I. INTRODUCTION

The valence-bond solid (VBS) states had been originally
introduced by Affleck, Kennedy, Lieb, and Tasaki1 to build
explicit model ground states which realize the properties
of the generic integer-spin antiferromagnetic spin chains
conjectured by Haldane.2 Quite unexpectedly, on top of
the properties already anticipated from other analyses (e.g.,
quantum-disordered ground state with short-range spin cor-
relations, gapped triplet spin excitations, etc.), these states
exhibit many striking features such as the emergent boundary
excitations (edge states)3 and the existence of hidden string
order.4,5 In the case of spin-1 systems, it has been argued6

that the hidden topological (string) order is a consequence
of the Z2×Z2 symmetry breaking occurring in the system
after applying the nonlocal unitary transformation. The idea
of nonlocal hidden order and edge states has been to some
extent generalized7–10 to other values of integer spin S although
the hidden Z2×Z2 symmetry is never broken8 in the case of
even S. Through these studies, it has been recognized that
there are some differences8,9 in the ground-state properties
according to the parity of S. Nevertheless, by analogy with
the quantum Hall systems,11 the ground state of generic
integer-spin antiferromagnetic chains, including the original
VBS state and its higher-spin generalizations,12 characterized
by certain kinds of nonlocal correlations and emergent edge
states, has been called “topological” in a rough sense.

Recent development in quantum-information-theoretic ap-
proaches to quantum many-body problems enables us to
extract information on the bulk topological order from the en-
tanglement properties of the ground-state wave function.13–15

The topological states in one-dimensional (1D) spin systems
have been reconsidered16,17 from the modern point of view
and the precise meaning of the topological Haldane phase has
been clarified. In these studies, the string-order parameters
and the edge states, which in general are not robust against
small perturbations, are replaced by more robust objects (i.e.,
the structure of the entanglement spectrum or the structure of
tensor network). In particular, it has been shown in Ref. 17

that the existence of (at least one of) the discrete symmetries
(time reversal, link inversion, and Z2 × Z2 symmetry) divides
all states of matter in 1D into two categories: topologically
nontrivial ones and the rest. Generic odd-integer-S spin chains
belong to the former, while even-S chains to the latter. The
hallmark of the topological phase protected by the above
discrete symmetries is that all entanglement levels are evenfold
degenerate. In this formulation, the difference between odd S

and even S is naturally understood in terms of the entanglement
structure. It should also be mentioned that the topological
phases of one-dimensional gapped spin systems have been
classified by group cohomology,18,19 and the detailed analyses
based on the Lie-group symmetries are reported in Ref. 20.

In this paper, we present an exhaustive discussion about
the effects of coexisting bosonic and fermionic degrees of
freedom on (symmetry-protected) topological phases in 1D.
Clearly, this kind of question is motivated in part by hole
doping in the Haldane-gap systems.21–23 In order to incor-
porate the coexisting bosons and fermions, for mathematical
convenience, we use supersymmetry (SUSY), which relates
bosons carrying integer spins and fermions with half-odd-
integer spins. Several “topological phases” with SUSY have
been found so far in, e.g.,. quantum Hall systems,24 VBS
states,25 and ultracold-atom systems.26 However, the precise
characterization of these SUSY topological phases has not
been obtained so far and it would be quite useful to investigate
symmetry-protected topological order in model SUSY systems
from the entanglement point of view.

As the model SUSY states, we consider a class of
supersymmetric VBS (SVBS) states defined by the Schwinger
operator consisting of 2K bosons which represent the bosonic
degrees of freedom at each site (e.g., localized integer spins)
and N fermions which correspond to doped fermionic holes
(with K and N being integers). This class is interesting since it
includes the SVBS states investigated in Refs. 25 and 27 as well
as the SUSY extension of the SO(5) VBS state and the Sp(N )
VBS state introduced respectively in Refs. 28 and 29. The
(S)VBS states are rare examples where we can study nontrivial
topological properties even in 1D, and most of the calculations
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can be done without relying on any approximation. Taking
advantage of such properties of the SVBS states, we uncover
the roles of SUSY in topological phases in 1D.

The generalized hidden string order in the SVBS states25

has been investigated already in the previous work27 by the
authors. In contrast to what is known for the bosonic counter-
part (the spin-S VBS state12), the symptom of the nontrivial
topological order has been observed in the analysis of the string
order even for the even-integer superspin. To be more precise,
even when the string order vanishes, it revives upon the hole
doping; this might suggest the existence of topological order
in the SVBS states regardless of the parity of bulk superspin
S. In order for the better understanding of this phenomenon,
we first characterize symmetry-protected topological orders in
SUSY systems in the language of entanglement. To this end,
we use the supermatrix product state (SMPS) formalism to
generalize the arguments of Ref. 17 and derive the relation
between topological order in the bulk and the entanglement
structure. The SMPS formalism further enables us to obtain
the explicit relation between the entanglement spectrum and
the string-order parameters, and thereby to clarify why the
hidden string order revives after doping.

As has been emphasized in the previous work,27 in spite of
its name, the SMPS formalism does not assume any particular
form of SUSY. In fact, we do not need even postulate exact
SUSY and the only prerequisite is that the local Hilbert space
is made up of the bosonic part and the fermionic one. In view
of the ability of (S)MPS in approximating any gapped states in
1D with arbitrary precision,30,31 our results are applicable to a
wider class of 1D systems with some kind of relation between
bosons and fermions.

The organization of this paper is as follows. In Sec. II, we
introduce a class of UOSp(N |2K)-invariant SVBS states (2K

being the number of boson species and N for fermions) with
arbitrary superspins using the Schwinger operator. We then
construct the explicit SMPS representation for (N,K) = (1,1)
[UOSp(1|2)] and (1,2) [UOSp(1|4)] and summarize several
important properties of these states. As the first step toward
the investigation of topological order, we explicitly evaluate
the string-order parameters in the above two types of SVBS
states for different values of superspins in Sec. III. There we
find that the revival of the string order already observed for
UOSp(1|2) in Ref. 27 occurs in other SUSY cases as well.
In Sec. IV, the entanglement spectrum of these SVBS states
(in the limit of infinite-size systems) is derived and typical
features of the spectrum are discussed. In order to understand
the results obtained in the previous section and characterize
symmetry-protected topological order in 1D SUSY systems,
we generalize the argument of Ref. 17 to SUSY systems in
Sec. V and relate the structure of the entanglement spectrum
and the bulk topological order. Finally, the relationship
between the degeneracy of the entanglement spectrum and
nonvanishing string-order parameters is clarified in Sec. VI
by using the (S)MPS formalism. Section VII is devoted to
summary and discussions.

II. SVBS STATES AND SMPS FORMALISM

In this section, we briefly describe how the standard MPS
formalism is generalized to the cases with SUSY. Let us

begin with constructing the MPS of the spin-M (M: integer)
SU(2) valence-bond solid (VBS) state12 starting from its
representation in terms of the SU(2) Schwinger operators
φ = (b1†,b2†)t:

|VBS〉(M) =
∏
j

(
b1

j

†
b2

j+1
† − b2

j

†
b1

j+1
†)M |vac〉

=
∏
j

(
φt

j iσ2φj+1
)M |vac〉, (1)

where the metric [or, the SU(2) charge conjugation matrix]

iσ2 =
(

0 1

−1 0

)
(2)

has been used to form a maximally entangled (singlet) pair
between the sites j and j + 1. Therefore, by construction, the
VBS state is SU(2) invariant and represents a spin-isotropic
state.

A. General idea

The standard construction of the VBS-type of states32 starts
by preparing two auxiliary degrees of freedom on each site of
the lattice. Then, the (bosonic) VBS state is constructed first
by creating singlets between pairs of those auxiliary objects
on adjacent sites and then by projecting the tensor product of
the two auxiliary objects on each site onto the desired physical
Hilbert space.

The SVBS states are introduced by including the states
with one or more fermionic holes into the above bosonic
Hilbert space. Mathematically, we replace the usual Lie-
group symmetry [e.g., SU(2)] with that of the super Lie
group UOSp(N |2K) corresponding to 2K bosonic degrees
of freedom and N fermionic ones [for a review of super
Lie groups, see, for instance, Ref. 33, and for UOSp(N |2K),
Ref. 34]. Specifically, the SVBS states with UOSp(N |2K)
symmetry are defined as

|SVBS(N |2K)〉(M) =
∏
〈i,j〉

(ψ t
iRN |2Kψj )M |vac〉, (3)

where ψ stands for the UOSp(N |2K) Schwinger operator

ψ = (b1†,b2†, . . . ,b2K †
,f 1†, . . . ,f N †

)t . (4)

The 2K bosons bσ † (σ = 1,2, . . . ,2K) and the N fermions
f μ (μ = 1,2, . . . ,N ) satisfy the commutation relations
[bσ ,bτ †] = δστ , {f μ,f ν†} = δμν , [bσ ,f μ] = [bσ ,f μ†] = 0.
The matrix RN |2K signifies the UOSp(N |2K)-invariant matrix

RN |2K =
(

J2K 0

0 −1N

)
, (5)

where the USp(2K)-invariant 2K×2K antisymmetric matrix
J2K is defined using the Pauli matrix σ2 as

J2K =

⎛
⎜⎜⎜⎜⎝

iσ2 0

iσ2

. . .

0 iσ2

⎞
⎟⎟⎟⎟⎠ (6)
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and 1N denotes the N -dimensional identity matrix. By using
the above equations, it is straightforward to show that the
product of spinors ψ t

iRN |2Kψj is singlet under UOSp(N |2K).
As the number of fermion species N corresponds to that of

SUSY in the system, hereafter we call the SVBS states defined
by (3) and (4) the UOSp(N |2K) SVBS states. In this paper,
we give the detailed discussions for the two N = 1 cases,
specifically (K,N ) = (1,1) and (K,N ) = (2,1), in which
the following isomorphisms between the orthogonal groups
and the unitary symplectic groups hold: SO(3) � USp(2)/Z2

(K = 1), SO(5) � UOSp(4)/Z2 (K = 2). For UOSp(N |2)
(K = 1), the metric matrix is given by

RN |2 =
(

iσ2 0

0 −1N

)
, (7)

and for UOSp(N |4) (K = 2) by

RN |4 =

⎛
⎜⎝

iσ2 0 0

0 iσ2 0

0 0 −1N

⎞
⎟⎠. (8)

The particle number at each site is related to the superspin
S via

2S =
2K+N∑
α=1

ψα†ψα =
2K∑
σ=1

bσ †
bσ +

N∑
μ=1

f μ†
f μ = zM, (9)

where z is the lattice-coordination number (z = 2 in one
dimension). Throughout this paper, we reserve the symbol S
for superspin and use S for the bosonic spin. Since

∑
μ f μ†f μ

takes either 0 or 1, the possible values of SU(2) spin, which is
equal to the half of the number of bosons at each site, are

S = 1

2

2K∑
σ=1

bσ †
bσ

= 1

2
zM,

1

2
zM − 1

2
,
1

2
zM − 1, . . . ,

1

2
zM − 1

2
N. (10)

(If N � zM , it is implied that the above sequence terminates at
S = 0.) One may find that the inclusion of SUSY introduces,
as well as the states with the spin magnitude zM/2 which exist
already in the SU(2) case, those with spin smaller by 1

2 . In what
follows, we consider the one-dimensional cases (i.e., z = 2)
unless otherwise stated.

For the 1D chain (z = 2), the above sequence reads as

S = M, M − 1
2 , M − 1, . . . ,M − 1

2N, (11)

and correspondingly the emergent edge spin takes the follow-
ing values:

s = 1
2M, 1

2M − 1
2 , 1

2M − 1, . . . , 1
2M − 1

2N. (12)

(Again, if N � M , the above sequence is understood as to
stop at s = 0.) The dimension of the physical Hilbert space at
each site constructed in this way is given by the sum of the
one of each bosonic Hilbert space with a fixed boson number
(2S − n):

dS (N |2K) =
N∑

n=0

(
2K + 2S − n − 1

2K − 1

)
. (13)

It should be noted here that the Schwinger-operator construc-
tion presented here does not cover all the possible VBS-type
states with UOSp(N |2K) symmetry. In fact, there is an impor-
tant class of VBS states35 which is a SUSY generalization of a
series of SO(2n + 1)-invariant and USp(2K)-invariant states
considered, respectively, in Refs. 36,37 and 29. However, most
of the conclusions obtained here hold for those models as well.

The UOSp(N |2K) SVBS state (3) may be rewritten as

|SVBS(N |2K)〉(M) =
∏

i

(
ψ t

iRN |2Kψi+1
)M |vac〉

≡
∏

i

(
	 t

iR
(M)
N |2K	i+1

)|vac〉, (14)

where 	i is a graded fully symmetric representation of
UOSp(N |2K) of the order M and R

(M)
N |2K is the metric for this

representation.34 Another equivalent form (a matrix-product
form)27 may be useful for practical purposes:

|SVBS(N |2K)〉(M) = A1A2, . . . ,AL, (15)

where the matrix Ai is defined as

Ai ≡ R
(M)
N |2K	i	

t
i |vac〉i . (16)

B. UOSp(1|2) SVBS states

Let us begin with the simplest case25,27 (N,K) = (1,1). The
graded Schwinger operator is given by

ψi = (b1
i

†
,b2

i

†
,fi

†)t ≡ (a†
i ,b

†
i ,f

†
i )t, (17)

and the corresponding SVBS state, which we call the
UOSp(1|2) SVBS state (precisely, this is the one dubbed type-I
in Ref. 27), is given by

|SVBS(1|2)〉(M) =
∏

i

(a†
i b

†
i+1 − b

†
i a

†
i+1 − rf

†
i f

†
i+1)M |vac〉,

(18)

where we have added the fermion doping parameters r by hand.
However, such a parameter may be absorbed in the redefinition
of the normalization of fermions (f † �→ f †/

√
r , f �→ √

rf )
and the SVBS states possess SUSY even for finite values of
the parameter r .

1. S = 1

Let us consider the superspin S = 1 case. Since S is related
to the number M of SUSY valence bonds through (9), the case
M = 1 of Eq. (18) corresponds to S = 1.

The SVBS state on a finite open chain specified its edge
states α and β, respectively, on the sites 1 and L:

|SVBS(1|2)〉(1)
αβ = (R1|2ψ1)α

L−1∏
i=1

(
ψ t

iR1|2ψi+1
)
ψ

β

L |vac〉, (19)

where ψ t
j = (a†

j ,b
†
j ,

√
rf

†
j ) and the UOSp(1|2) metric R1|2 is

defined in (7). The state |SVBS-I〉(M=1)
αβ can be expressed as a

product of the matrices A(1)
i defined on each site:

|SVBS(1|2)〉(1)
αβ = (A(1)

1 A(1)
2 , . . . ,A(1)

L

)
αβ

, (20)
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where A(1)
j is given by

A(1)
j = R(2)

I ψjψ
t
j |vac〉j =

⎛
⎜⎝

|0〉j
√

2| − 1〉j
√

r|−1/2〉j
−√

2|1〉j −|0〉j −√
r|1/2〉j

−√
r|1/2〉j −√

r|−1/2〉j 0

⎞
⎟⎠ =

∑
a=−1,0,1

A(a)|a〉 +
∑

σ=−1/2,1/2

A(σ )|σ 〉, (21)

with

A(1) =

⎛
⎜⎝

0 0 0

−√
2 0 0

0 0 0

⎞
⎟⎠, A(0) =

⎛
⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎠, A(−1) =

⎛
⎜⎝ 0

√
2 0

0 0 0

0 0 0

⎞
⎟⎠,

(22)

A(1/2) =

⎛
⎜⎝

0 0 0

0 0 −√
r

−√
r 0 0

⎞
⎟⎠, A(−1/2) =

⎛
⎜⎝

0 0
√

r

0 0 0

0 −√
r 0

⎞
⎟⎠.

The five basis states corresponding to the S = 1 irreducible
representation (denoted by 5) are given by

|1〉 = 1√
2
a†2|vac〉,|0〉 = a†b†|vac〉,| − 1〉 = 1√

2
b†

2|vac〉,
(23)

|1/2〉 = a†f †|vac〉,| − 1/2〉 = b†f †|vac〉,
where |vac〉 is the vacuum of both the boson and the
fermion: a|vac〉 = b|vac〉 = f |vac〉 = 0. The first three states
correspond to the spin-1 (3) representation of SU(2), and the
second two states constitute 2 with spin- 1

2 .
The parent Hamiltonian of the state (19) is constructed25,27

in such a way that the local Hamiltonian hj,j+1 acting on the
bond (j,j + 1) annihilates all the nine states appearing in the
product AjAj+1. Therefore, the ground state on a finite open
chain is ninefold degenerate with respect to the matrix indices.
Since the ψj and ψ t

j represent the two auxiliary degrees of
freedom at the site j , the above ninefold degeneracy reflects
the existence of the three edge degrees of freedom on both
edges of an open chain:

|↑〉〉 = a†|vac〉,|↓〉〉 = b†|vac〉,|0〉〉 = f †|vac〉. (24)

As the doping parameter r is changed, the state (19)
interpolates between the two well-known states: at r → 0,
|SVBS(1|2)〉(1) is reduced to the original VBS state1 |VBS〉:
|SVBS(1|2)〉(1) → |VBS〉(1) =

∏
i

(a†
i b

†
i+1 − b

†
i ai+1)|vac〉,

(25)

while, at r → ∞, |SVBS-I〉 is reduced to the Majumdar-Ghosh
(MG) dimer state38 |MG〉:

|SVBS(1|2)〉(1) →
∏

i

f
†
i |MG〉, (26)

where

|MG〉 =
(∏

i:even

−
∏
i:odd

)
(a†

i b
†
i+1 − b

†
i a

†
i+1)|vac〉. (27)

In the discussion of the entanglement spectra (Sec. IV), we
will see in the two limits the entanglement entropy nicely
interpolates between that of the VBS state and the MG state.

2. Higher S
It is easy to generalize the above strategy to the cases with

general superspin S. In Ref. 27, the expression of the A matrix
for superspin-S type-I SVBS state is given as

A(S)
ab (j ) = FL

a (a†
j ,b

†
j ,f

†
j )FR

b (a†
j ,b

†
j ,f

†
j )|vac〉j , (28)

where the Sth-order polynomials FL
a and FR

b are defined in
Eqs. (C3 a) and (C3 b) of Ref. 27. The above expression may
be readily rewritten into the standard form (16):

A(S)
ab (j ) = R

(S)
1|2 	j	

t
j |vac〉j , (29a)

where

(	j )a ≡ FR
a (a†

j , b
†
j , f

†
j ) (1 � a � 2S + 1),

(
R

(S)
1|2
)
ab

≡
{

(−1)a−1δb,(S+2)−a (1 � a,b � S + 1),

(−1)S−(a−1)δb,(3S+3)−a (S + 2 � a,b � 2S + 1).

(29b)

C. UOSp(1|4) SVBS states

Now, we proceed to the case (N,K) = (1,2) (one fermion
species and four bosonic). For UOSp(1|4), the graded
Schwinger operator is given as

ψ = (b1†,b2†,b3†,b4†,
√

rf †)t. (30)

These five operators correspond to the five-dimensional rep-
resentation (5) of UOSp(1|4); the first four (b1†,b2†,b3†,b4†),
respectively, create the four bosonic states

|1〉 = ∣∣ 1
2 , 1

2

〉
, |2〉 = ∣∣− 1

2 , − 1
2

〉
,

(31)
|3〉 = ∣∣ 1

2 , − 1
2

〉
, |4〉 = ∣∣− 1

2 , 1
2

〉
,

which are already contained in the spinor representation
of SO(5), and the last one f † creates the fermionic state
|5〉 = |f 〉. We prepare z copies of 5s to construct the physical
Hilbert space at each site of the lattice with the coordination
number z and, according to which representation is chosen
from the tensor product of z 5s, we can obtain several
different types of MPSs. For instance, since a pair of 5s is
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decomposed as

5 ⊗ 5 ∼ 1 ⊕ 10 ⊕ 14, (32)

two different SVBS states (10 and 14) are obtained in one
dimension (z = 2).

Following the general method described in Sec. II A, one
can construct the following UOSp(1|4) SVBS state:

|SVBS(1|4)〉(M)

=
∏
〈i,j〉

(
ψ t

iR1|4ψj

)M |vac〉

=
∏
〈i,j〉

(
b1

i

†
b2

j

† − b2
i

†
b1

j

† + b3
i

†
b4

j

† − b4
i

†
b3

j

† − rf
†
i f

†
j

)M |vac〉,

(33)

where the summation is taken over the nearest-neighbor pairs
〈i,j 〉 and r denotes a real parameter varying from 0 to ∞.
The state has the same structure as the UOSp(1|2) SVBS state
except for the metric R1|4 defined in (5) or (8). The superspin
S in this state is given as

2S =
4∑

σ=1

bσ
i
†
bσ

i + f
†
i fi = zM. (34)

The dimension of the local physical Hilbert space (i.e., the size
of the representation S) (13) reads as, for (N,K) = (1,2),

dS (1|4) =
(

2S + 3

3

)
+
(

2S + 2

3

)

= (4S + 3)(2S + 1)(S + 1)

3
. (35)

In the following, we consider the one-dimensional case (z = 2)
with M = 1(= S) where the SO(5) spin magnitude takes the
following two values:

Si = 1

2

4∑
σ=1

bσ
i
†
bσ

i = M,M − 1

2
(36)

and d1(1|4) = 14.
On a finite one-dimensional chain, the UOSp(1|4) SVBS

state (33) may be written as

|SVBS(T)〉αL,αR = {R1|4ψ1}αL

L−1∏
j=1

(
ψ t

jR1|4ψj+1
){

ψ t
L

}
αR

|vac〉
(37)

= (A(T)
1 A(T)

2 , . . . ,A(T)
L

)
αL,αR

,

whereR1|4 is given by (8) with N = 1. The matrixA is defined
by

A(T) = R1|4ψψ t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

|1,2〉 √
2|2,2〉 |2,3〉 |2,4〉 √

r|2,f 〉
−√

2|1,1〉 −|1,2〉 −|1,3〉 −|1,4〉 −√
r|1,f 〉

|1,4〉 |2,4〉 |3,4〉 √
2|4,4〉 √

r|4,f 〉
−|1,3〉 −|2,3〉 −√

2|3,3〉 −|3,4〉 −√
r|3,f 〉

−√
r|1,f 〉 −√

r|2,f 〉 −√
r|3,f 〉 −√

r|4,f 〉 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≡
4∑

σ�τ=1

A
(B)
T (σ,τ )|σ,τ 〉 +

4∑
σ=1

A
(F)
T (σ )|σ,f 〉,

where the D = 14 basis states are given in terms of the graded
Schwinger operators in (30) as (σ,τ = 1,2,3,4)

|σ,σ 〉 ≡ 1√
2

(bσ †)2|vac〉,

|σ,τ 〉 ≡ bσ †
bτ †|vac〉 (σ < τ ), (38)

|σ,f 〉 ≡ bσ †
f †|vac〉.

The expressions of the 14 matrices A(σ,τ ) and A(σ ) are given
in Appendix A 1.

Since the Schwinger operators are used, it is obvious
that the physical Hilbert space thus constructed is the S = 1
(i.e. 14) fully symmetric representation in the tensor-product
decomposition (32):

(5 ⊗ 5)fully sym. = 14
SO(5)−−−→ 10 ⊕ 4, (39)

where “→” denotes the decomposition into the SO(5)
irreducible representations. As in the case of UOSp(1|2)
[(N,K) = (1,1)], the physical Hilbert space contains two
irreducible representations of SO(5): the spinor (4) and the

adjoint (10) representations. Since all the 14 bases correspond
to the components of the rank-2 symmetric tensor made of the
two constituent spinors (5), we call the MPS thus constructed
tensor type and use the suffix “T”.

A remark is in order here about other possible MPSs. In
fact, as has been mentioned before, another important MPS
is obtained35 if we use the 10-dimensional antisymmetric
representation (vector representation; hence the MPS may be
called vector type) instead of the 14-dimensional one:

(5 ⊗ 5)antisym. = 10
SO(5)−−−→ 5 ⊕ 4 ⊕ 1. (40)

The MPS obtained in this way is a direct generalization of
the SO(5)-invariant MPS considered in Refs. 36 and 37. The
details of this class of MPS will be reported elsewhere.35

1. Limiting cases

Now, let us consider the two important limiting cases
r → 0 and r → ∞. In the limit r = 0, the UOSp(1|4) SVBS
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FIG. 1. (Color online) The r → ∞ limit of S = 1 SVBS state.
Filled circles denote the bosonic qubits [S = 1

2 spins for UOSp(1|2)
and four-dimensional SO(5) spinors for UOSp(1|4)]. On a chain with
even number of sites, the MPS is block diagonal with the (1,1)
block B1,1 and the (2,2) block B2,2 corresponding to states A and
B, respectively.

states (33) or (37) reduce to the following VBS states:

|VBS〉 =
∏
〈i,j〉

(
b1

i

†
b2

j

† − b2
i

†
b1

j

† + b3
i

†
b4

j

† − b4
i

†
b3

j

†)M |vac〉,

(41)

dubbed bosonic SO(5) VBS state in Ref. 28.
In the other limit r → ∞, the dominant part of A(T) reads

as (after dropping factors proportional to
√

r)

A(T)
∞ (j ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 |2〉j
0 0 0 0 −|1〉j
0 0 0 0 |4〉j
0 0 0 0 −|3〉j

−|1〉j −|2〉j −|3〉j −|4〉j 0

⎞
⎟⎟⎟⎟⎟⎟⎠.

(42)

Then, the two-site MPSA(T)
∞ (j )A(T)

∞ (j + 1) takes the following
block-diagonal form:

A(T)
∞ (j )A(T)

∞ (j + 1) = ±
(
B1,1(j,j + 1) 0

0 B2,2(j,j + 1)

)
,

(43)

where |1〉, . . . ,|4〉 are defined in Eq. (31) and the (2,2) block
is the SO(5) singlet made up of two spinors:

B2,2(j,j + 1)

= |1〉j |2〉j+1 − |2〉j |1〉j+1 + |3〉j |4〉j+1 − |4〉j |3〉j+1.

(44)

When the 4×4 matrix B1,1(j,j + 1) is multiplied by B1,1(j +
2,j + 3) from the right, a new SO(5) singlet is inserted at
the bond (j+1,j+2). Therefore, one sees that the string of
A(T)

∞ represents an SO(5) generalization of the Majumdar-
Ghosh valence-bond crystal38 (see Fig. 1). The vector-type
UOSp(1|4) SVBS state mentioned above shares the same
property.35

III. STRING ORDER

One of the striking features of these VBS states is the
existence of nonlocal order called string order. In the usual spin
systems, it is known6 that the string order is a manifestation
of the spontaneous Z2×Z2 symmetry breaking in the ground
state.

FIG. 2. (Color online) The string-order parameter O∞
string for

several values of superspin S plotted as a function of r (Ref. 27). Note
that O∞

string(r = 0) = 0 for even S corresponding to the vanishing of
string-order parameter for even S.

A. UOSp(1|2) SVBS states

In the case of the usual (pure) spin systems, the string-order
parameters are defined by the infinite-distance limit of the
string correlation functions4

Oz
string ≡ lim

n↗∞

〈
Sz

j exp

⎡
⎣iπ

j+n−1∑
k=j

Sz
k

⎤
⎦ Sz

j+n

〉
, (45a)

Ox
string ≡ lim

n↗∞

〈
Sx

j exp

⎡
⎣iπ

j+n∑
k=j+1

Sx
k

⎤
⎦ Sx

j+n

〉
. (45b)

It is straightforward to generalize the string-order param-
eters to the case with SUSY by replacing the spin operators
Sa to their (4S+1)-dimensional expressions. For superspin
S = 1, it is given by27 [Ox

string = Oz
string by SU(2) symmetry]

O
x,z
string(r) = 4{r4 + 14r2 + 18 + 2(r2 + 3)

√
8r2 + 9}

(8r2 + 9)(
√

8r2 + 9 + 3)2
. (46)

In the limit r → 0, the above string expression reproduces
the well-known value6 4

9 (perfect string correlation). In the
opposite limit r ↗ ∞, the string-order parameter O∞

string

approaches to a finite value 1
16 , which implies that the string

order survives in the r ↗ ∞ limit. This agrees with the fact
that the spin-1 Haldane state is adiabatically connected to the
spin- 1

2 dimer state.39

One can readily generalize the above results to the higher-S
cases,25 which are SUSY analogs of the higher-spin (bosonic)
VBS state introduced in Ref. 12. In the original spin-S
VBS states (r = 0), the string-order parameters have been
investigated8,9 and it has been concluded that they vanish for
even integer S. In contrast, for finite values of the doping
parameter r , the string-order parameters revive27 due to the
existence of SUSY (see Fig. 2). This interesting behavior
will be discussed in Sec. VI in light of symmetry-protected
topological order.

B. UOSp(1|4) SVBS states

In Ref. 37, it has been pointed out that the idea of
hidden symmetry breaking6 and the associated string-order
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parameters4 can be generalized to a class of models with
higher symmetry SO(2n+1) by using the 2n-dimensional
spinor representation as the auxiliary Hilbert space.

The four string-order parameters for the SO(5) (n = 2) VBS
state are defined37 by analogy with their SU(2) cousin:

Oab
string ≡ lim

n↗∞

〈
Lab

j exp

⎡
⎣iπ

j+n−1∑
k=j

Lab
k

⎤
⎦Lab

j+n

〉
(47)

[Lab = −Lba are the SO(5) generators]. The set of integers
(a,b) (with a,b = 1,2,3,4,5) labels the 10 generators and we
may choose, e.g., (a,b) = (1,2), (2,5), (3,4), and (4,5).

Since, by the SO(5) symmetry, the string-order parameters
are independent of the SO(5) indices a,b, we can assume
(a,b) = (1,2) without a loss of generality. In Ref. 37, it has
been argued that the string order of the SO(5) VBS state is
a consequence of the hidden (Z2×Z2)2 symmetry breaking.
In the original SU(2) case, we pick up a pair {Sz,Sx} and
the two commuting Z2’s are generated by eiπSx

and eiπSz

, the
former of which plays the role of the flipping operator of Sz. In
the case SO(5), we have two [=rank of SO(5)] such pairs (e.g.,
{L12,L25} and {L34,L45}) and this is why the square of Z2×Z2

appears. Similarly, as we already know that the generalized
string order exists27 in the UOSp(1|2) SVBS state, we can
expect finite string order in the case of UOSp(1|4) as well by
considering two pairs of string-order parameters.

First, we set r = 0 and consider the SO(5) limit. By plotting
the eigenvalues of local (L12,L34) appearing in the string (37)
of A(T), one can easily see28 that both L12 and L34 exhibit
a kind of hidden antiferromagnetic order which is essentially
the same as that observed4 in the S = 1 VBS state. In fact, the
string-order parameter (47) for (a,b) = (1,2) [(a,b) = (3,4)]
removes the effects of the randomly inserted zeros in the L12

(L34) configuration to pick up the hidden antiferromagnetic
order.

The generalization of Eq. (47) to the UOSp(1|4) SVBS
state with arbitrary superspin S is straightforward; for S = 1,
the bosonic generators Lab are replaced by the 14-dimensional
matrices (the explicit forms of them are not very important).
The MPS formalism enables us to obtain the following result:

Oab
string =

{
4r2 + 3

(√
16r2 + 25 + 5

)}2

(
16r2 + 25

) (√
16r2 + 25 + 5

)2

(48)

→
{

9
25 (r → 0),
1
16 (r → ∞).

In order to highlight qualitatively different behaviors with
respect to the superspin S, we plot the result in Fig. 3 together
with that of the superspin-2 case

Oab
string = 49(7 − √

40r2 + 49)2

400(40r2 + 49)
. (49)

From this plot, one can clearly see that, for finite doping,
both the S = 1 and 2 states are topological, while the latter is
nontopological (i.e., non-Haldane) at r = 0 (see also Fig. 2).
The limiting value 1

16 is equal to the string order of the
S = 1 UOSp(1|2) SVBS at r → ∞. Similar results have been
obtained35 for the vector-type MPS mentioned in Sec. II C.

FIG. 3. (Color online) The infinite-distance limit of the string
correlation function for UOSp(1|4) states. At r = 0, the string order
reproduces the known result (Ref. 28) 9/25 = 0.36. Also plotted is
the string order of the S = 2 (M = 2) state. As in the UOSp(1|2)
case, the string order vanishes at r = 0 and revives after doping.

IV. ENTANGLEMENT SPECTRA OF SVBS STATES

In the pioneering paper, Li and Haldane15 argued that
the entanglement spectrum, which is obtained by taking
logarithm of the Schmidt eigenvalues (or, the eigenvalues
of the reduced density matrix) of the ground-state wave
function, might be the fingerprint of the physical edge states
that reflect the topological order in the bulk. Specifically,
the entanglement levels below the entanglement gap reflect
the structure of the physical edge excitations.15,40 Later, the
entanglement spectrum has been proven useful in uncovering
the bulk topological properties in a variety of systems (e.g.,
quantum Hall systems,40–42 topological insulators,43–45 and
spin chains17,46) only by looking at their ground-state wave
functions. Since entanglement cut creates point boundaries in
one dimension, we may expect that the discrete level structure
of the entanglement spectrum reflects the bulk topological
order.

In order to carry out the explicit calculation of the Schmidt
coefficients (or, entanglement spectrum), we adopt the SMPS
formalism introduced in our previous paper.27 One of the
biggest merits of using the SMPS formalism is that the Schmidt
decomposition, which is the essential step of the calculation,
is almost done already when we write the SMPS expression.
Therefore, all we have to do is to rewrite the SMPS into the
form of the Schmidt decomposition by using the singular-
value decomposition.47,48 However, when the (S)MPSs with
different edge states are asymptotically orthogonal to each
other in the infinite-size limit [this is the case in all (S)MPSs
discussed below], the entanglement spectrum is most easily
obtained from the (infinite-size) norms for different edge
states:

λα = lim
j,L−j,L↗∞

√
Nj (αL,α)NL−j (α,αR)

NL(αL,αR)
, (50)

whereNj is the squared norm of the MPS on a length-j system

Nj (α,β) ≡ |(A1A2, . . . ,Aj )α,β |2. (51)
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FIG. 4. (Color online) The behavior of entanglement spectrum of
the S = 1 UOSp(1|2) SVBS state (the inset is for the bosonic-pair
VBS state). “B” and “F” denote bosonic and fermionic parts of the
spectrum, respectively.

A. UOSp(1|2) SVBS states

1. S = 1

By utilizing the SMPS, the Schmidt coefficients of the
SVBS infinite chain are readily derived as

λB
2 ≡ λ1

2 = λ2
2 = 1

4
+ 3

4
√

9 + 8r2
, (52a)

λF
2 ≡ λ3

2 = 1

2
− 3

2
√

9 + 8r2
, (52b)

which are shown in Fig. 4, and the corresponding entanglement
entropy

SEE = −
∑

α

λα
2ln2λα

2 (53)

is also depicted in Fig. 5. From the entanglement spectra,
we find that the bosonic and the fermionic sectors exhibit
distinct behaviors. As mentioned in Sec. IV A, the SVBS chain
interpolates the original VBS chain (r = 0) and the MG dimer
chain (r → ∞). Then, we expect the entanglement entropy of
the SVBS chain also reduces that of VBS at r = 0, and that of

0

FIG. 5. The behavior of the entanglement entropy of the S = 1
UOSp(1|2) SVBS state. (The inset is for the bosonic-pair VBS state.)

MG at r → ∞. Indeed, in such two limits, the entanglement
entropy gives those of the VBS and MG dimer chains:

lim
r→0

SEE(r) = ln 2, lim
r→∞ SEE(r) = 3

2 ln 2. (54)

The states are maximally entangled when

λ1
2 = λ2

2 = λ3
2 = 1/3(at r = 3), (55)

where the entanglement entropy takes the maximal value
S

(max)
EE = ln 3. In contrast to the usual bosonic VBS states,49–51

the entanglement entropy SEE of the SVBS states differs from
what is expected from the dimension of the MPS matrices
(i.e., bond dimension); they attain the maximal entanglement
only at a particular value of the doping parameter r , which
is different from the position of the maximal entanglement of
the corresponding maximally entangled pairs (for more details,
see the Supplemental Material52).

The “level crossing point” (r = 3) between the bosonic
and the fermionic spectra generally does not imply a quantum
phase transition, in the sense that divergence of physical
quantities, e.g., spin-spin correlation length, does not occur
at the point. The (open) S = 1 SVBS chain accommodates
S = 1

2 superspins at the edges, i.e., the number of the edge
degrees of freedom is 3 corresponding to a†|vac〉, b†|vac〉, and
f †|vac〉. Therefore, as has been found50,51 in the usual bosonic
VBS states, one sees that the entanglement entropy is bounded
by the logarithm of the number of the edge degrees of freedom.
However, here is one remarkable point; since the parameter r

controls the contributions of the bosonic and the fermionic
degrees of freedom, one might expect that the entanglement
is maximal at r = 1 where they appear with equal amplitudes
[indeed, this is the case for a system of two S = 1

2 superqubits
(see Ref. 52)]. Contrary to this naive expectation, the explicit
calculation indicates that the maximally entangled point is
located at r = 3 due to many-body effect of SUSY. Note still
in the bosonic many-body case, the entanglement is maximal
at r = 1 (see the inset in Fig. 5).

To see a property peculiar to the SUSY states, let us
introduce a “boson-pair VBS state”

|b-p VBS〉 =
∏
j

(a†
j b

†
j+1 − b

†
j a

†
j+1 − rc

†
j c

†
j+1)|vac〉, (56)

where c
†
i denotes the creation operator of bosonic holes that

satisfies [ci,c
†
j ] = δij and a

†
j aj + b

†
j bj + c

†
j cj = 2. The new

state |b-p VBS〉 derived simply by replacing the fermionic
operator f † in the SVBS state (18) with bosonic one c†

neither has the inversion symmetry with respect to the center
of a link (link inversion) nor has the UOSp(1|2) symmetry.
More importantly, The entanglement spectrum is plotted in
the inset of Fig. 4. As in the S = 1 SVBS state, the boson-pair
VBS chain has three Schmidt eigenvalues, two of which are
doubly degenerate and the other is nondegenerate. On the
other hand, the entanglement entropy (see the inset of Fig. 5)
exhibits a different asymptotic behavior for r → ∞ since
|b-p VBS〉 reduces, in the limit r → ∞, to the product state∏

j c
†
j |vac〉, while the SUSY version |SVBS(1|2)〉 still retains

finite entanglement due to SUSY.
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2. S = 2

Next, we proceed to the S = 2 SVBS chain. The bulk
superspin is S = 2 which consists of SU(2) S = 2 and S = 3

2
spins. Therefore, we have five Schmidt coefficients, three
of which (bosonic part) come from SU(2) S = 1 and the
remaining two (fermionic part) come from SU(2) S = 1

2 . The
Schmidt coefficients are calculated as

λB
2 ≡ λ1

2 = λ2
2 = λ3

2 = 1

6
+ 5(4 + √

25 + 24r2)

6(25 + 24r2 + 4
√

25 + 24r2)
,

(57a)

λF
2 ≡ λ4

2 = λ5
2 = 1

4
− 5(4 + √

25 + 24r2)

4(25 + 24r2 + 4
√

25 + 24r2)
.

(57b)

The bosonic part is triply degenerate as in the case of
original S = 2 VBS chain, while the fermionic part, which
newly appeared in the SUSY case, is doubly degenerate. Such
double degeneracy is a fingerprint of a symmetry-protected
topological (Haldane) phase in 1D.17 In the absence of
fermionic holes (r = 0), the fermionic part of the spectrum
is infinitely higher lying (see Fig. 6) and the entanglement
of the system is completely determined only by the bosonic
part which does not show the signature of the Haldane
phase.

In the SUSY case, on the other hand, the fermionic levels
appear above the finite entanglement gap and there always
exists doubly degeneracy in the Schmidt coefficients which
accounts for the topological stability of the SVBS state
regardless of the parity of the bulk superspin S. We will revisit
this in Sec. V. As shown in Fig. 6, the five Schmidt coefficients
take the same value 1

5 at r = 5, and the asymptotic behaviors
of the entanglement entropy are

lim
r→0

SEE(r) = ln 3, lim
r→∞ SEE(r) = ln 2 + 1

2 ln 6. (58)

Thus, at r → ∞, the S = 2 SVBS state supports the finite
entanglement entropy and does not reduce to a simple product
state as in the S = 1 SVBS chain.

FIG. 6. (Color online) The entanglement spectrum and the en-
tanglement entropy (inset) of the S = 2 UOSp(1|2) SVBS chain.
“B” and “F” denote bosonic and fermionic parts of the spectrum,
respectively.

FIG. 7. (Color online) The entanglement spectrum of the
UOSp(1|4) SVBS state (37). The entanglement entropy of the same
state is shown in the inset.

B. UOSp(1|4) SVBS states

In the case of UOSp(1|4) [(N,K) = (1,2)], we obtain the
entanglement spectrum of the MPS (33) as

[λσ (r)]2 = 1

8
+ 5

8
√

16r2 + 25
(σ = 1,2,3,4),

(59)

[λ5(r)]2 = 1

2
− 5

2
√

16r2 + 25
,

which are plotted in Fig. 7 together with the corresponding
entanglement entropy. The bosonic part of the spectrum is
quadratically degenerate, while the fermionic part is nonde-
generate. In both cases, the entanglement entropy SEE(r) takes
its maximal value ln 5 at intermediate value of r = 5

3 where
all the five Schmidt coefficients coincide. The entanglement
entropy SEE(r) exhibits the following asymptotic behaviors:

lim
r→0

SEE(r) = lim
r→∞ SEE(r) = ln 4 . (60)

If we had a boson b5† instead of the fermion f † in (33) as in
the boson-pair VBS state equation (56), entanglement would
vanish in the limit r → ∞. Therefore, the existence of finite
entanglement even in the r → ∞ limit may be attributed to
the fermionic property of the holes.

Here, it should be emphasized that all the limiting be-
haviors (54), (58), and (60) can be understood from the
viewpoint of the edge states; basically, the limiting value of
SEE(r) is determined solely by information of the irreducible
representation which describes the emergent edge states. In
fact, the general formulas (B9) and (B12) given in Appendix B
reproduce the above results.

V. SUPERSYMMETRY-PROTECTED
TOPOLOGICAL ORDER

In this section, we show that a family of SVBS states
|SVBS(1|2K)〉 exhibits the generalized topological order
which will be characterized below. Our argument is a SUSY
generalization of the one presented in Ref. 17. In the following
arguments, we utilize the SMPS formalism. The SMPS
formalism itself is defined independent of the super Lie-group
symmetries, and is a general formalism to treat a system
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of boson-fermion mixture whose ground state is represented
by a supermatrix. Therefore, although we mainly discuss the
SVBS states which have specific underlying particular super
Lie-group symmetries, the following arguments apply to any
boson-fermion–mixture systems.

Before going into the detail, we first characterize the
symmetry operation (both unitary and antiunitary) within
the framework of MPS.53 The MPS A1A2 . . . is said to be
invariant under the (anti)unitary operation if the transformed
state A′

1A′
2 . . . coincides with the original one up to an overall

phase. Then, it can be shown53 that the invariance of a pure
MPS is equivalent to the existence of a D-dimensional (D
being the size of the MPS matrix A) unitary matrix U which
satisfies

A′(m) = eiθU †A(m)U. (61)

The phase θ is not universal and depends, in general, on the
symmetry operation in question.

The (c-number) unitary matrix U in (61) may be postulated
as

UI =
(

UB 0

0 UF

)
, (62)

where UB and UF are unitary matrices that act on the two
bosonic subspaces having different fermion numbers. The
reason for choosing the above form may be seen as follows.
First, we note that Eq. (61) implies that the MPS transforms
like

|	〉 �→ str(U †A1A2 . . .A2n+1U ), (63)

where supertrace is defined as

str

(
A

(1)
B A

(1)
F

A
(2)
F A

(2)
B

)
= trA(1)

B − trA(2)
B . (64)

While in the case of bosonic MPS, this, combined with
tr(AB) = tr(BA), immediately implies I|	〉 ∝ |	〉, the re-
lation str(AB) = str(BA) holds only when A and B are super-
matrices (that contain the Grassmann-odd blocks in their off-
diagonal parts). In fact, if A and B were merely the c-number
matrices, A and B, in general, would not commute inside
str(. . .): str(AB) �= str(BA). To satisfy str(AB) = str(BA)
only with c-number matrices, either A or B is forbidden to
have c-number components in the off-diagonal blocks.

Physically, the above relation states that the original
symmetry operation (acting on the physical Hilbert space on
each site) “fractionalizes” into the ones (U and U †) which act
on the edge states on both ends of the system.

In what follows, we parametrize the A(m) matrices in terms
of the D×D matrices [�,{�(m)}] as A(m) = �(m)�. The
diagonal matrix � contains the Schmidt eigenvalues in its
diagonal elements [tr(�2) = 1] and commutes with the unitary
matrix: [�,U ] = 0. In what follows, we use the symbol � for
the MPS A matrices in the canonical form.47

Then, the � matrices satisfy the condition for the canonical
MPS on infinite-size systems48∑

m

�†(m)�2�(m) = 1D. (65)

(For more details about the properties of U , see Appendix A.)
In terms of these � matrices, Eq. (61) reads as

�′(m) = eiθU †�(m)U. (66)

Now, let us determine the properties of U satisfying the above
equation for specific symmetry operations.

A. Inversion symmetry

A matrix product state on a circle is given by

|	〉 = str(A1A2 . . .A2n+1), (67)

where “str” denotes the supertrace. By the inversion with
respect to a given link, the state is transformed as

I|	〉 = str(A2n+1 . . .A2A1). (68)

Here, we use the property of the supertrace str(M1M2) =
str[(M1M2)st] = str(Mst

2 Mst
1 ) to rewrite the above as

I|	〉 = str
(
Ast

1Ast
2 . . .Ast

2n+1

)
, (69)

where supertransposition “st” is defined as(
M1 N1

N2 M2

)st

≡
(

M t
1 N t

2

−N t
1 M t

2

)
. (70)

Therefore, the link inversion I amounts, in terms of A, to

Ai
I−→ Ai

st. (71)

If we write

Ai =
∑
m

��(m)|m〉i , (72)

we see that I acts on �(m) as

�(m)
I−→ �′(m) = �(m)st. (73)

Here, m labels both bosonic and fermionic components and
�(m) are given by

�(m) =
(

M1(m) 0

0 M2(m)

)
(m: bosonic),

(74)

�(m) =
(

0 N1(m)

N2(m) 0

)
(m: fermionic).

Originally, M1, M2, N1, and N2 are all c-number coefficient
matrices. However, for practical reasons, it is often convenient
to assume that the basis states are commuting and take into
account the anticommuting properties of the fermionic states
by supermatrices.

If I leaves the MPS invariant up to a phase, the general
relation53 (66) implies that there exists a unitary matrix UI

satisfying

�(m)st = eiθI U
†
I �(m)UI . (75)

In fact, we can prove that θ can take the only two values, 0 and
π , namely,

UI
†�(m)UI = ±�(m)st. (76)
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For later convenience, we introduce the following diagonal
matrix having the same block-diagonal structure as UI :

P ≡
(

1B 0

0 −1F

)
(UIP = PUI ). (77)

Then, the fact that the link inversion squares to unity
leads to an important conclusion that UI is a “symmetric”
or “antisymmetric” unitary matrix

U t
I = ±PUI . (78)

The appearance of P is closely related to the property of
supertransposition:

(Ast)st = PAP. (79)

We give the outline of the proof in the Appendix C.
By computing the determinant of the above, one can show

that either fermionic (when the sign + occurs) or bosonic (−)
sector has evenfold degeneracy in each entanglement level,
which we will use as the fingerprint of the SUSY-protected
topological order.

B. Time-reversal symmetry

Before discussing the properties of SMPS under time
reversal, let us define the time-reversal operation in the SUSY
case. Under the time-reversal transformation T , the spin is
transformed as

Sa
T→ −Sa. (80)

In the usual matrix representation, the above relation can be
expressed as

Sa → −Sa = (eiπSy K)Sa(Ke−iπSy ) = R
y

ab(π )S∗
b , (81)

where K is the complex conjugation operator and Ry(π )
represents the π rotation around the y axis:

Ry(π ) =

⎛
⎜⎝

−1 0 0

0 1 0

0 0 −1

⎞
⎟⎠. (82)

As in the usual case, time-reversal operation is defined as

Sa
T→ (eiπSy K)Sa(Ke−iπSy ) = −Sa,

(83)
Sσ

T→ (eiπSy K)Sσ (Ke−iπSy ) = εστSτ ,

where UOSp(1|2) superspin matrices Sa (a = x,y,z) and Sσ

(σ = θ1,θ2) are defined as

Sa = 1

2

(
σa 0

0 0

)
, Sσ = 1

2

(
0 τσ

−(iσ2τσ )t 0

)
, (84)

with the Pauli matrices σa and τ1 = (1,0)t and τ2 = (0,1)t. The
fermionic generators Sσ have the off-diagonal blocks which
transform as different irreducible representations of SU(2) and
act as spin- 1

2 raising and lowering matrices. In the Schwinger
operator representation, Sσ are explicitly given by Sθ1 =
1
2 (a†f + f †b), Sθ2 = 1

2 (b†f − f †a). Under the time-reversal
transformation, the SU(2) spinor states are interchanged:
|↑〉 = a†|0〉 → |↓〉 = b†|0〉, |↓〉 = b†|0〉 → −|↑〉 = −a†|0〉,

and the spinless fermion state remains the same: f †|0〉 →
f †|0〉. This implies that the time-reversal transformation of Sσ

is given by (83). Then, we have T 2Sσ = −Sσ , so the relation
T 2 = −1 for half-integer spins appears for the “fermionic
spins.”

In fact, for integer superspins, T satisfies54

T 2 = P, (P)mn = δmn(−1)F (n), (85)

where P acting on the physical Hilbert space is analogous to
P in Eq. (77) acting on the auxiliary space and, due to the
fermion-number operator F (n) [F (n) = 0 or F (n) = 1 when
n labels the bosonic or fermionic variables], (−1)F (n) gives a
minus sign for the fermionic sector of the (physical) Hilbert
space.

Using the above properties, one can readily see that the
time-reversal operation transforms �(m) as

�(m)
T−→ �(m)′ =

∑
n

Ry
mn(π )�(n)∗. (86)

Then, time-reversal invariance of the SMPS means that there
exists a unitary UT such that53∑

n

Ry
mn(π )�∗(n) = eiθT U

†
T �(m)UT , (87)

with eiθT = ±1. The property T 2 = P (for integer superspin)
requires that the unitary matrix UT should satisfy

U t
T = ±PUT . (88)

Since this is exactly the same as Eq. (78) for the link inversion, a
similar conclusion is drawn about the entanglement spectrum.

C. Z2 × Z2 symmetry

The Z2×Z2 symmetry6 in the original bosonic case is
generated by the two commuting π rotations around x and
z axes. However, the symmetry around each axis alone does
not directly imply the double degeneracy of the entanglement
spectrum. Rather, it has been shown17 that their combination
leads to a nontrivial conclusion concerning the entanglement
spectrum. In the following, we show that an analogous
symmetry leads to a similar conclusion even in the presence
of SUSY.

The π rotation around the x (z) axis ûx(π ) [ûz(π )] acts on
SMPS as

�(m)
ûa (π)−−→ �(m)′ =

∑
n

Ra
mn(π )�(n) (a = x,z), (89)

where Ra
mn(π ) is the (4S + 1)-dimensional rotation matrix

of UOSp(1|2) [see, e.g., Eq. (C20)]. The right-hand side is
equivalent to the action of a unitary matrix Ua (Ref. 53):∑

n

Ra
mn(π )�(n) = eiθaU †

a�(m)Ua (a = x,z). (90)

Then, the property (Ra)2 = P implies the following:

e2iθx = 1 ⇒ eiθx = ±1, UaPUa = eiφa 1. (91)

The phase factor eiφa can be absorbed in the definition of Ua

and we may assume U
†
a = PUa (a = x,z) hereafter.
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On the other hand, for the combination of the rotations
ûx(π ) and ûz(π ), we obtain (see Appendix C 3 for detail)

eiθxz = ±1, (UzPUx)(U †
z U

†
x ) = eiφxz 1. (92)

By using U
†
a = PUa obtained above, one can show eiφxz = ±1

and the following exchange property:

UxUz = ±PUzUx. (93)

In terms of the block components Ua,B and Ua,F, this reads as

Ux,BUz,B = ±Uz,BUx,B, Ux,FUz,F = ∓Uz,FUx,F, (94)

which immediately implies the same degenerate structure of
the entanglement spectrum as in the two previous cases.

D. (Z2 × Z2)2 symmetry in UOSp(1|4) SVBS

Now let us discuss the entanglement spectrum in the
systems with SO(5) symmetry and its SUSY generalization
UOSp(1|4). Inversion symmetry acts independently of the
internal symmetry and leads to exactly the same conclusion
as above. The crucial difference from the SU(2) case is the
existence of (Z2 × Z2)2 symmetry37 in a class of the SO(5)
VBS states.55 Specifically, the group (Z2×Z2)2 consists of the
following 16 elements:

Z2×Z2︷ ︸︸ ︷
[1,R12(π )] × [1,R25(π )] ×

Z2×Z2︷ ︸︸ ︷
[1,R34(π )] × [1,R45(π )] , (95)

with Rab(π ) ≡ exp(iπσab) [σab: SO(5) generators]. The four-
fold degeneracy of the entanglement spectra of the SO(5) VBS
states has been discussed56 from the viewpoint of (Z2 × Z2)2

symmetry.
It is straightforward to generalize the above symmetry

to the UOSp(1|4) case; now, the matrices Rab(π ) satisfying
Rab(π )

2 = 1 are replaced by the block-diagonal matrices of
the form57

Rab(π ) =
(

R
(B)
ab 0

0 R
(F)
ab

)
. (96)

For instance, in the superspin-1 UOSp(1|4) SVBS state
discussed in Sec. II C, R

(B)
ab and R

(F)
ab are given by Rab(π )

in the adjoint (10) and the spinor (4) representations of SO(5),
respectively. It is easy to show that the above matrices satisfy

Rab(π )Rab(π ) = P4|10(no sum for a and b), (97a)

R12(π )R25(π ) = P4|10R
25(π )R12(π ),

(97b)
R34(π )R45(π ) = P4|10R

45(π )R34(π ),

R25(π )R45(π ) = P4|10R
45(π )R25(π ), (97c)

R12(π )R34(π ) = R34(π )R12(π ),

R12(π )R45(π ) = R45(π )R12(π ), (97d)

R25(π )R34(π ) = R34(π )R25(π ),

with

P4|10 ≡
(

110 0

0 −14

)
. (98)

Now, we can apply the argument in Sec. V C since we
have the same exchange relations (97a) and (97b) as before.
Then, we immediately conclude that there exist two sets of
the corresponding unitary matrices {U12,U25} and {U34,U45}
satisfying∑

n

[Rab(π )]mn�(n) = eiθabU
†
ab�(m)Uab, U

†
ab = PUab,

(99)
U12U25 = ±PU25U12, U34U45 = ±PU45U34,

where the matrix P is defined in Eq. (77). Note that the same
sign should be chosen for the two exchange relations above by
the SO(5) symmetry.

The role of the unitary transformation Uab is clear. First we
note that, as in the SO(5) case, the following two are mutually
commuting generators of the same block-diagonal form as
Rab(π ) [Eq. (96)]:

Lab =
(

σ
(B)
ab 0

0 σ
(F)
ab

)
(100)

and can be used as the weight of UOSp(1|4). Since R25 and
R45 act on the weight (L12,L34) as

R25†L12R25 = −L12, R45†L12R45 = L12,
(101)

R25†L34R25 = L34, R45†L34R45 = −L34,

it is legitimate to assume that the algebra is represented in
the product space V1⊗V2 where V1 and V2, respectively,
correspond to {U12,U25} and {U34,U45}. For instance, the two
unitary operations U25 and U45 actually mean

U25 ⊗ 1, 1 ⊗ U45, (U25 ⊗ 1)(1 ⊗ U45) = U25 ⊗ U45,

(102)
(1 ⊗ U45)(U25 ⊗ 1) = (PU25) ⊗ U45.

Now, we use the fact that V1 and V2 should always have
even-dimensional sectors V

(e)
1 and V

(e)
2 [they have the same

dimensions by the SO(5) symmetry] to show that the dimen-
sion of V

(e)
1 ⊗V

(e)
2 should be an integer-multiple of four. This

explains the existence of the fourfold-degenerate entanglement
level in the UOSp(1|4) SVBS states (see also the argument in
Appendix C 4).

VI. RELATIONS BETWEEN STRING-ORDER
PARAMETER AND TOPOLOGICAL ORDER

Later, the use of the string-order parameters in detecting the
Haldane phase was criticized16 since they are well defined only
in a restricted class of models and fail to capture the robustness
of the Haldane phase as a symmetry-protected topological
phase (see Refs. 58 and 59 for the attempts at alternative
order parameters). Now, a natural question arises: Under what
conditions do the string-order parameters (45a) and (45b)
correctly capture the topological nature of the Haldane phase?
In the following, we will uncover the explicit relationship
between the string order and the topological order to answer
to this question.
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A. String-order parameters in MPS framework

Let us first consider the structure of the string-order
parameters (45a) and (45b) from the MPS point of view.9,53

In evaluating them using MPS, the following matrices are
necessary:

[T a]ᾱ,α;β̄,β ≡
d∑

m,n=1

[A∗(m)]ᾱ,β̄ [A(n)]α,β 〈m|Sa|n〉,

[Tstring]ᾱ,α;β̄,β ≡
d∑

m,n=1

[A∗(m)]ᾱ,β̄ [A(n)]α,β 〈m|eiπSa |n〉,

[T a
string]ᾱ,α;β̄,β ≡

d∑
m,n=1

[A∗(m)]ᾱ,β̄ [A(n)]α,β 〈m|SaeiπSa |n〉

(a = x,z) (103)

as well as the usual transfer matrix. For instance, the MPS
expression of the string-order parameter Oz

string (for an open
chain) reads as

Oz
string ≡

〈
Sz

j exp

⎡
⎣iπ

j+n−1∑
k=j

Sz
k

⎤
⎦ Sz

j+n

〉

= T NLT z
string(Tstring)n−1T z T NR, (104)

where we have omitted the denominator necessary to nor-
malize the MPS. The two parts T NL (NL = j − 1) and T NR

(NR = L − n − j ) are straightforward; for the canonical MPS,
they reduce, in the infinite-size limit, to

[T NL ]ᾱL,αL;β̄,β

NL↗∞−−−−→ δᾱL,αLδβ̄,β,
(105)

[T NR ]ᾱ,α;β̄R,βR

NR↗∞−−−−→ δᾱ,αδβ̄R,βR
.

The boundary-dependent factors δᾱL,αL and δβ̄R,βR
are canceled

by those coming from the denominator. Therefore, all we
have to compute is the infinite-distance limit (n ↗ ∞) of the
following quantity:∑

α,β

[T z
string(Tstring)n−1T z]α,α;β,β . (106)

B. String-order parameters and entanglement spectrum

Now, we show that the existence of nonvanishing string-
order parameters serves as the sufficient condition for the
symmetry-protected topological order discussed in the pre-
vious section. Let us begin with the simpler case of the
usual VBS states. Since we are interested in the long-
distance limit |i − j | ↗ ∞, we need to know the asymptotic
behavior of the string (Tstring)|i−j |. To this end, we can
borrow the results of Ref. 53 (Theorem 2); according to the
theorem, the MPS should be invariant under both of the π

rotations

ûx = ⊗j e
−iπSx

j , ûz = ⊗j e
−iπSz

j (107)

in order for the string (Tstring)|i−j | not to vanish in the long-
distance limit. Then, Lemma 1 of Ref. 53 guarantees that there
exists a pair of unitary matrices Ux and Uz which are unique

and satisfy

d∑
n=1

R(S)
a (π )mnA(n) = eiθaU †

aA(m)Ua (a = x,z; eiθa = ±1),

(108)
(Ua)2 = 1, UxUz = ±UzUx,

where the two sign choices are independent. The above
exchange property between Ux and Uz has a very im-
portant implication to the structure of the entanglement
spectrum:17

det {(UxUz)λ} = det {(Ux)λ} det {(Uz)λ}
= (±1)dλ det {(UzUx)λ}
= (±1)dλ det {(Ux)λ} det {(Uz)λ} ( �= 0).

(109)

Therefore, the degree of degeneracy dλ of each entanglement
level λ should be even when Ux and Uz are anticommut-
ing. Typically, this happens in the VBS states with odd
integer S.

Now, we show that when the string-order parameters are
nonvanishing Oz,x

string �= 0, the minus sign realizes (i.e., Ux and
Uz anticommute) in Eq. (109) and the entanglement spectrum
has the degenerate structure. To this end, we investigate
Eq. (106). First of all, the invariance of the MPS under ûx,z

implies that the string part (Tstring)n−1 reduces essentially to
a phase (eiθa )n−1 = (±1)n−1. This is a direct consequence of
Theorem 2 of Ref. 53 and is easily understood since the overlap
〈	|ûa|	〉 = (Tstring)L vanishes otherwise. The price to pay is
the boundary factors appearing at the two endpoints of the
string correlation functions (see Fig. 8):

∑
α,β

⎧⎨
⎩T z

string

⎛
⎝ D2∑

n=1

V(u)
R,nV(u)

L,n

⎞
⎠ (Tstring)n−1T z

⎫⎬
⎭

α,α;β,β

|i−j |↗∞−−−−−→
∑
α,β

{(
T z

stringV(u)
R,1

)(
V(u)

L,1T
z
)}

α,α;β,β

=
∑
α,β

{(
T z

string

{
1⊗U †

a

}
1
)(

1 {1⊗Ua} T z
)}

α,α;β,β
, (110)

where V(u)
L/R,n denotes the left (L) and the right (R) eigenvectors

of Tstring.

FIG. 8. (Color online) Diagrammatic representation of the main
part of string correlation function {(T z

stringV(u)
R,1)(V(u)

L,1T
z)}.
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FIG. 9. (Color online) Rewriting the boundary factor (for a = z)
using ûx . When Ux and Uz are anticommuting, the minus sign coming
from ûxS

zû†
x = −Sz is canceled and an overall plus sign is recovered.

To see whether the boundary factors are nonvanishing or
not, we consider the right-boundary factor (1 {1⊗Uz} T z) of
Oz

string (i.e., a = z). First, we rewrite it by using (see the second
figure of Fig. 9)

Sz = û†
xûxS

zû†
xûx = û†

x(−Sz)ûx (ûx = ⊗ke−iπSx

). (111)

The unitary operators û
†
x and ûx appearing on both sides of

−Sz can be absorbed into the MPS matrices by using Eq. (108)
(the third figure of Fig. 9). By rearranging the unitary matrices
UxUz (the fourth figure of Fig. 9), we arrive at the expression

1 {1⊗Uz} T z = 1
{
1⊗(UxUzU

†
x )
}

(−T z)

= 1
{
1⊗(±UzUxU

†
x )
}

(−T z)

= ∓1 {1⊗Uz} T z. (112)

Therefore, we see that the boundary factors, and hence the
string-order parameter itself, vanish when Ux and Uz are
commuting (as, e.g., in the even-S VBS states). On the other
hand, if both of the string-order parameters are finite, this
immediately implies that the ground-state MPS is not only
invariant under the two π rotations53 ûx and ûz, but also has
the adjoint Ux,z matrices satisfying

UxUz = −UzUx. (113)

By the argument in Ref. 17, the ground state is topologically
nontrivial in the sense that each entanglement level is evenfold
degenerate. Therefore, the finiteness of the pair of string-order
parameters Ox,z

string is the sufficient condition for the topological
phase. It is crucial that both Ox

string and Oz
string are nonzero

for the existence of the topological order. For instance, one
can construct a solvable spin-1 model60 which exhibits a kind
of “hidden order” similar to the one in the VBS model and
has61 Ox

string = 0 and Oz
string �= 0. In fact, in this case, the two

entanglement eigenvalues are no longer degenerate and the
state is not topological.

C. Case of SMPS

Basically, we follow the same line of arguments to show
that finite string correlation implies the topological phase. The
only difference is that now we have the P matrix (77) in the
key equation (113):

UxUz = ±PUxUz. (114)

Correspondingly, the last step (see Fig. 9) in evaluating the
boundary factor is modified. Specifically, instead of Eq. (112),

FIG. 10. (Color online) Rewriting the boundary factor (for a = z)
using ûx . When Ux and Uz are anticommuting, the minus sign coming
from ûxS

zû†
x = −Sz is canceled and an overall plus sign is recovered.

Note that an extra P matrix appears in the SUSY case.

we have (see Fig. 10)

1 {1⊗Uz} T z = 1{1⊗(UxUzU
†
x )}(−T z) = ∓1 {1⊗PUz} T z.

(115)

Therefore, one of the two components (bosonic and fermionic)
vanishes just by symmetry:

(116)

Therefore, if the two string-order parameters are both nonva-
nishing, either the bosonic or the fermionic sector exhibits the
degenerate structure mentioned in Sec. V and the ground state
is topologically nontrivial.

Now, it is straightforward to generalize the above argument
to the case of UOSp(1|4) to show that when all the four string-
order parameters

Oab
string ≡ lim

|i−j |↗∞

〈
Lab

i exp

[
iπ

j−1∑
k=i

Lab
k

]
Lab

j

〉
(117)

[where (a,b) = (1,2), (2,5), (3,4), and (4,5), and Lab are the
SO(5) generators] are nonzero, 22×(integer)-fold degeneracy
occurs in some (bosonic or fermionic) sectors of the entangle-
ment spectrum.

VII. SUMMARY AND DISCUSSIONS

We investigated the effects of doped fermionic holes on the
topological phases in quantum antiferromagnets. To this end,
we first introduced a family of SVBS states which may be
thought of as the hole-doped version of the usual (bosonic)
VBS states, e.g., spin-S SU(2) states, the SO(5) and the
Sp(N ) VBS states. One of the standard ways of looking at
the topological properties in these states is to investigate the
string-order parameters. We explicitly evaluated the behaviors
of the string-order parameters of the UOSp(1|2) and the
UOSp(1|4) SVBS states for various values of superspin S,
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and found that even when the string-order parameters vanish
identically in the absence of doping, they revive immediately
after holes are introduced in the system. This might suggest
that the doped holes change the property of the ground state
and thereby stabilize the topological phase.

To better understand the nature of the states, we calculated
the entanglement spectrum. Basically, the spectrum consists
of the bosonic and the fermionic sectors; at zero doping r =
0, the fermionic sector is separated from the bosonic sector,
which constitutes the low-“energy” part of the spectrum, by an
infinitely large entanglement gap. Upon doping, the fermionic
sector starts participating in the entanglement. The point is
that the existence of supersymmetry allows the coexistence
of the two sectors having different entanglement structures.
In addition to that, the entanglement spectra in the SUSY
systems exhibit the following salient features: (i) In contrast
to naive expectation, the SUSY entanglement spectra for the
bosonic and the fermionic sectors do not coincide with each
other at r = 1, as a consequence of SUSY many-body effect.
(ii) In the two extreme limits of the doping parameter, r → 0
and ∞, the entanglement spectra of the SVBS states indeed
reproduce those of the original bosonic VBS state and the
Majumdar-Ghosh–type states, respectively.

On the basis of the observations made for the particular
states [UOSp(1|2) SVBS and UOSp(1|4) SVBS], we charac-
terized, with the help of the SMPS formalism, the symmetry-
protected topological orders in the SUSY systems in terms
of the entanglement spectrum. According to the results,
there always exists a topologically protected sector (whose
degenerate structure depends on the symmetry of the SMPS
in question) in the spectrum of the SUSY systems. Also, by
using the SMPS formalism, we clarified an intimate connection
between the finiteness of the string-order parameters and the
degenerate structure of the entanglement spectra; the finite
string order is the sufficient condition for the degeneracy in
the entanglement spectrum, which is the fingerprint of the
(topological) Haldane state in the bulk. These explain the
revival of the string order upon doping.

The above remarkable features can be understood in light
of the SUSY edge-state picture. Intuitively, the degenerate
structure can be understood by the existence of fictitious
“edge” superspins that appear at the entanglement cut of the
chain. When the bulk system has superspin S, two superspins
S/2s, which consist of the SU(2) spin S/2 and its superpartner
S/2 − 1/2, emerge at the edges:

S/2
SUSY←→ S/2 − 1/2. (118)

Then, there always exist half-odd-integer spins at the edges
regardless of the parity of the bulk superspin since SUSY,
being the symmetry that relates the state with integer spin
and that with half-odd-integer spin, guarantees the coexistence
of both. Such half-odd-integer edge spins bring the evenfold
degeneracy to the entanglement spectrum of the UOSp(1|2)-
symmetric systems. Therefore, if we have a topological phase
(e.g., Haldane phase) characterized by the above type of
degenerate structures in the entanglement spectrum, it exists
for all values of superspin S. A similar argument applies, with
due modification, to cases with other types of SUSY. In this

sense, one may say that SUSY plays a unique role in stabilizing
the topological phases of matter in 1D.

Since our study presented here is restricted to a particular
class of VBS states with SUSY, one obvious future direction
would be to extend it to more generic models. The argument
for symmetry-protected topological orders presented in this
paper can be generally applied to any system whose ground-
state wave function is given by the (S)MPS states. Thus, it
would be interesting to see, for instance, the robustness of the
Haldane phase in the SUSY Heisenberg model with respect
to the parity of the bulk superspin S. This might highlight the
unique behavior of SUSY topological phases in comparison to
the bosonic counterparts studied in Ref. 17.

Another future direction is the generalization to higher
dimensions. In higher dimensions, the SVBS states generally
interpolate between the bosonic VBS states and the resonating-
valence-bond (RVB) type of states,62,63 where the wave
function is given by the summation over all possible dimer
coverings of singlet [i.e., (a†

i b
†
j − b

†
i a

†
j )] bonds (in 1D, we

have the Majumdar-Ghosh valence-bond crystals). The latter
is well known to have nontrivial topological properties63 and
it would be interesting to study the change in the entanglement
properties and the edge-state structure as the doping is varied
by using the techniques of projected entangled pair states
(PEPS).64

Application to other topologically nontrivial states of
matter, such as quantum Hall states or various topological
states in cold-atom systems, is even more interesting. For
instance, the SUSY-extended Laughlin wave function, which
has a close analogy with the SVBS states studied here,
interpolates between different quantum Hall ground states,
such as the Laughlin states and the Moore-Read Pfaffian states.
In this respect, as the SVBS states in 1D provided a unifying
way of deriving the entanglement spectra of the (bosonic) VBS
state and the MG dimer state, the study of the entanglement
spectra of the SUSY Laughlin wave function will naturally
give a unifying understanding of the entanglement structure of
various quantum Hall ground states.

Note added. Finally, we would like to comment on
the recent work on the nonlocal order parameters for the
symmetry-protected topological order. When completing this
paper, we became aware of a recent preprint by Pollmann
and Turner (Ref. 59) which also discusses the string-order
parameter from the entanglement point of view. Although
some of the conclusions obtained there overlap with ours,
the main goal there is to go beyond the string-order parameter
and is different from that of this paper.
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APPENDIX A: A MATRICES FOR UOSp(1|4) SVBS STATES

1. Superspin-1 SVBS

The 14 5×5 A matrices for the S = 1 SVBS state discussed
in Sec. II C are explicitly given as

A(1,1) = −A(2,2)t = −
√

2

⎛
⎜⎝

σ− 0 0

0 02 0

0 0 0

⎞
⎟⎠,

A(3,3) = −A(4,4)t = −
√

2

⎛
⎜⎝

02 0 0

0 σ− 0

0 0 0

⎞
⎟⎠,

A(1,2) =

⎛
⎜⎝

σ3 0 0

0 02 0

0 0 0

⎞
⎟⎠,

(A1a)

A(1,3) = −A(2,4)t = −

⎛
⎜⎝

02 σ− 0

σ− 02 0

0 0 0

⎞
⎟⎠,

A(1,4) = A(2,3)t = 1

2

⎛
⎜⎝

02 −12 + σ3 0

12 + σ3 02 0

0 0 0

⎞
⎟⎠,

A(3,4) =

⎛
⎜⎝

02 0 0

0 σ3 0

0 0 0

⎞
⎟⎠,

A(1) = A(2)st =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 −√
r

0 0 0 0 0

0 0 0 0 0

−√
r 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠,

(A1b)

A(3) = A(4)st =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −√
r

0 0 −√
r 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠,

where the symbols “t” and “st” denote the transposition and
supertransposition (70), respectively. They can be represented
by linear combinations of the UOSp(1|4) generators.

2. Properties

As has been discussed in Sec. V A, the link-inversion
symmetry is implemented in the SMPS as

I : A(m) �→ A(m)st, (A2)

or to write the bosonic and the fermionic components sepa-
rately

I : A(σ,τ ) �→ A(σ,τ )t, A(σ ) �→ A(σ )st. (A3)

Then, it can be shown

A(m)st = W†A(m)W, (A4)

where

W =
(

W 0

0 1

)
(A5)

with

W =
(

0 iσ2

iσ2 0

)
. (A6)

APPENDIX B: EDGE STATES AND GENERAL
ASYMPTOTIC BEHAVIOR OF ENTANGLEMENT

The asymptotic behaviors (54), (58), and (60) can be
understood from a more general point of view. Let us consider
the UOSp(1|2K) SVBS state with bulk superspin S. The
UOSp(1|2K) SVBS has N = 1 supersymmetry, and consists
of one bosonic sector and one fermionic sector. For the bulk
superspin S, the emergent superspin-S/2 objects appear at the
edges and the UOSp(1|2K) SVBS state accommodates the
graded fully symmetric representation34 at each edge:

|m1,m2, . . . ,m2K〉
= 1√

m1!m2! . . . m2K !
(b†1)m1 (b†2)m2 . . . (b†2K )m2K |vac〉,

(B1a)

|n1,n2, . . . ,n2K〉
= 1√

n1!n2! . . . n2K !
(b†1)n1 (b†2)n2 . . . (b†2K )n2K f †|vac〉,

(B1b)

with m1 + m2 + · · · + m2K = n1 + n2 + · · · + n2K + 1 = S.
Then, the number of the bosonic and fermionic states on each
edge are, respectively, given by

DB =
(
S + 2K − 1

S

)
= (S + 2K − 1)!

(2K − 1)!S!
, (B2a)

DF =
(
S + 2K − 2

S − 1

)
= (S + 2K − 2)!

(2K − 1)!(S − 1)!
. (B2b)

[The bosonic degrees of freedom coincide with the fully
symmetric representation of USp(2K).29] For instance, for the
UOSp(1|2) (K = 1) SVBS state, we have

DB = S + 1, DF = S, (B3)

while for the UOSp(1|4) (K = 2) SVBS state,

DB = 1
6 (S + 1)(S + 2)(S + 3),

DF = 1
6S(S + 1)(S + 2). (B4)

In the infinite chain limit, the spin degrees of freedom are
equivalent:

λ1
2 = λ2

2 = . . . = λDB
2 ≡ λB

2,
(B5)

λDB+1
2 = λDB+2

2 = . . . = λDB+DF
2 ≡ λF

2,
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FIG. 11. (Color online) The r → ∞ limit of the bulk superspin
S = 2 UOSp(1|4) SVBS state is given by the superposition of the two
partially dimerized states related to each other by one-site translation.
When we make an entanglement cut at an arbitrary bond (shown by
wavy lines), we always have two different kinds of sections: one
with 4 “fermionic” edge states (upper) and the one with 10 “bosonic”
edge states (lower). These two different sections respectively yield
fourfold- and tenfold-degenerate entanglement levels.

and the normalization condition of the Schmidt coefficients∑DB+DF
α=1 |λα|2 = 1 is rewritten as

DB·λB
2 + DF·λF

2 = 1. (B6)

Then, the entanglement entropy is expressed as

SEE(r) = −
DB∑
α=1

|λα|2 ln |λα|2 −
DF∑
α=1

|λDB+α|2 ln |λDB+α|2

= −DB|λB|2 ln |λB|2 − DF|λF|2 ln |λF|2. (B7)

At r = 0, only the Schmidt coefficients of boson sector survive
and Eq. (B6) implies

λB
2 = 1

DB
, λF

2 = 0, (B8)

and hence

lim
r→0

SEE(r) = ln DB. (B9)

Thus, the entanglement entropy of the spin S original VBS
states is reproduced.

On the other hand, in the limit r → ∞, the SVBS states
reduce to the (partially) dimerized states (see Fig. 11). In the
upper state in Fig. 11, the fermionic edge states appear, while in
the lower the edge states are bosonic. Since both cases appear
with equal weights, the sum of the Schmidt coefficients for
the bosonic sector and that for the fermionic sector should be
equal:

DB∑
α=1

λα
2 =

DF∑
α=1

λDB+α
2 = 1/2. (B10)

Therefore, we have

λB
2 = 1

2DB
, λF

2 = 1

2DF
(B11a)

for r → ∞, and the corresponding entanglement entropy is
derived as

lim
r→∞ SEE(r) = ln(2

√
DBDF) (B12)

with DB and DF given by Eq. (B4). Thus, from the entan-
glement point of view, the role of SUSY is twofold. First, it
necessitates two different Schmidt eigenvalues corresponding
to the N = 1 SUSY. Second, it enables the system to support
finite entanglement even in the limit r → ∞.

For the superspin-S UOSp(1|2) SVBS states,27 the entan-
glement entropy behaves as

lim
r=0

SEE(r) = ln(S + 1), (B13a)

lim
r→∞ SEE(r) = ln 2 + 1

2 ln[S(S + 1)], (B13b)

which, for S = 1 and 2, reproduces the results (54) and (58).
For the superspin-S UOSp(1|4) SVBS states, on the other
hand,

lim
r=0

SEE(r) = ln(S + 1)(S + 2)(S + 3) − ln 6, (B14a)

lim
r→∞ SEE(r) = − ln 3 + ln(S + 1)(S + 2) + 1

2 lnS(S + 3).

(B14b)

Setting S = 1, we reproduce the previous result (60).

APPENDIX C: PROOFS

In this appendix, we outline the proofs of the important
relations (78), (88), and (93). For later convenience, we derive
a useful property of pure canonical MPSs. Suppose that we
have a pure MPS whose canonical form is characterized by
the MPS data32,48 (�,�) and that it satisfies the following
relation for some unitary matrix U :

�(m) = eiθU U †�(m)U. (C1)

Since the MPS is canonical, the following holds:∑
m

�†(m)�2�(m) = 1D. (C2)

Physically, it states that the D2-dimensional vector V(0)
L ,

(V(0)
L )a;b ≡ δab (1 � a,b � D), (C3)

is the dominant left eigenvector of the left transfer matrix

(TL)ā,a;b̄,b ≡
∑
m

[��∗(m)]āb̄[��(m)]ab. (C4)

Plugging �†(m) = e−iθU U †�†(m)U into (C2), we obtain

e−iθU

∑
m

U †�†(m)U�2�(m) = 1D (C5)

or equivalently∑
m

�†(m)�U��(m) = eiθU U. (C6)

This implies that the unitary matrix

Ub̄b =
∑

a

{1⊗U}aa;b̄b ≡
∑

a

δab̄Uab, (C7a)

when viewed as a D2-dimensional vector, is the left eigenvec-
tor of TL with the eigenvalue eiθU :

UTL = eiθU U. (C7b)
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Since, by assumption of canonical MPS, 1D is the unique
left eigenvector with the eigenvalue |λ| = 1, we conclude

eiθU = 1, U = eiφ1D. (C8)

Since in deriving the above, we have only assumed that
the (infinite-system) MPS in question is pure and takes the
canonical form, (C8) holds for any MPS (including SMPS)
satisfying the assumption.

1. Inversion symmetry

We use the property I2 = 1 to derive the important prop-
erty (78) of the adjoint UI matrix. Applying supertransposition
st on (75) and using (Ast)st = PAP , we obtain

�(m) = e2iθI (UIPU ∗
I )†�(m) (UIPU ∗

I ). (C9)

Postulate U is the block-diagonal matrix

U =
(

UB 0

0 UF

)
. (C10)

By Eqs. (C1) and (C8), this implies that the D×D matrix
(UIPU ∗

I ) should be equal (up to an overall phase) to the unit
matrix

(UIPU ∗
I ) = ei�I 1D. (C11)

After multiplying U t
I from the right and making transposition,

we deduce

UI = e−2i�I P 2UI = e−2i�I UI ⇔ e−i�I = ±1. (C12)

Therefore, we obtain Eq. (78):

U t
I = ±PUI . (C13)

It is interesting to calculate UI for superspin-S UOSp(1|2)
SVBS states. For the S = 1 SVBS state, U is identified as

UI = R1|2 =

⎛
⎜⎝

0 1 0

−1 0 0

0 0 −1

⎞
⎟⎠, (C14)

which satisfies

U
†
I �(m)UI = −�(m)st, U t

I = −PUI . (C15)

For the S = 2 SVBS state, U is identified as

UI =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 −1

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠, (C16)

and �(m) satisfy the relation

U
†
I �(m)UI = +�(m)st, (C17a)

U t
I = PUI . (C17b)

For the S = 1 UOSp(1|4) SVBS state, we use the relations
given in Appendix A 1 to show that

�(m)st = U
†
I �(m)UI , U t

I = −PUI (C18)

with UI = W defined in Eq. (A5). This is consistent with the
existence of the fourfold-degenerate entanglement level in this
state (see Fig. 7).

2. Time-reversal symmetry

If the MPS is invariant under time reversal, the � matrices
satisfy53 ∑

n

Ry
mn(π )�∗(n) = eiθT U

†
T �(m)UT , (C19)

where the rotation matrix R
y
mn(π ) takes the block-diagonal

form

Ry(π ) =
(

R
y

S (π ) 0

0 R
y

S−1/2(π )

)
(C20)

with R
y

S (π ) and R
y

S−1/2(π ) being the ordinary rotation matrices
for spin-S and (S − 1/2), respectively. Since T 2 = P [see
Eq. (85)],

(−1)F (l) �(l) =
d∑

m=1

R
y

lm

{
d∑

n=1

Ry
mn�

∗(n)

}∗

=
d∑

m=1

R
y

lm

{
e−iθT U t

T �∗(m)U ∗
T

}
= {UT U ∗

T }†�(l){UT U ∗
T } (C21)

or equivalently

�(l) = {UT U ∗
T }†(−1)F (l) �(l){UT U ∗

T }. (C22)

By using the property

(−1)F (l)�(l) = P�(l)P, (C23)

Eq. (C22) may be rewritten as

�(l) = {UT PU ∗
T }†�(l){UT PU ∗

T }. (C24)

Now, we can apply Eqs. (C1) and (C8) to conclude

U t
T = ±PUT . (C25)

For S = 1 UOSp(1|2) SVBS state, with �(1) =
A(1), �(2) = A(0), �(3) = A(−1), �(4) = A(1/2), �(5) =
A(−1/2) (22), and

UT =

⎛
⎜⎝

0 1 0

−1 0 0

0 0 1

⎞
⎟⎠,

(C26)

Ry(π ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠,
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we have ∑
n

Ry
mn(π )�∗(n) = U

†
T �(m)UT (C27)

and

U t
T = −PUT . (C28)

For S = 2 UOSp(1|2) SVBS state, with

UT =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 −1

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠,

(C29)

Ry(π ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0 0

0 0 0 −1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we have ∑
n

Ry
mn(π )�∗(n) = +U

†
T �(m)UT (C30)

and

U t
T = +PUT . (C31)

3. Z2×Z2 symmetry

Finally, consider the π rotation around the x and the z axes,

�(m) →
∑

n

Ra
mn(π )�(n) (a = x,z). (C32)

Instead of (Ra)2 = 1 in the bosonic case, Ra in the SUSY case
satisfies (Ra)2 = P [(P)mn = δmn(−1)F (n)]. Therefore, the use
of the terminology Z2×Z2 symmetry is not precise. However,
to underline the connection to its bosonic counterpart, we use
the terminology in the SUSY cases as well.

When the MPS has such a symmetry, we have53

∑
n

Ra
mn(π )�(n) = eiθaU †

a�(m)Ua (a = x,z) (C33)

for some block-diagonal unitary matrix

Ua =
(

Ua,B 0

0 Ua,F

)
. (C34)

Now, let us consider what (C33) implies. We begin by
(Ra)2 = P (valid for integer superspin S):

(P)nn�(n) = P�(n)P

= eiθa

∑
m

Ra
mn(π )U †

a�(m)Ua

= e2iθa (U †
a )2�(n)U 2

a , (C35)

which, after P s are rearranged, reads as

�(n) = e2iθa (UaPUa)†�(n)(UaPUa), (C36)

implying

(UaPUa) = eiφa 1D . (C37)

The phase eiφa can be absorbed in the definition of Ua and we
have

(UaPUa) = 1D ⇔ U †
a = PUa. (C38)

Next, we consider the product of the two rotations Rx and
Rz. In the case of SUSY, they obey the following exchange
relation:

RxRz = PRzRx. (C39)

When combined with Eq. (C33), this translates into the
following relation for �:

(UxUz)
†�(m)(UxUz) = (UzPUx)†�(m)(UzPUx). (C40)

After rearranging the U ’s, we arrive at the form to which
Eqs. (C1) and (C8) are applicable:

�(m) = (UzPUxU
†
z U

†
x )†�(m)(UzPUxU

†
z U

†
x ). (C41)

Therefore, we have

UzPUxU
†
z U

†
x = eiφxz 1D (C42)

with eiφxz = ±1. The resulting equation

UxUz = ±PUzUx (C43)

or

Ux,1Uz,1 = ±Uz,1Ux,1, Ux,2Uz,2 = ∓Uz,2Ux,2 (C44)

implies the degenerate structure of the entanglement spectrum.
Let us calculate U matrices for superspin-S UOSp(1|2)

SVBS states. For odd S, they assume the following form:

U (S)
a = −i

(
Ra

S/2(π ) 0

0 Ra
(S−1)/2(π )

)
, (C45a)

which satisfy

UxUz = −PUzUx. (C45b)

Therefore, the degenerate spectrum appears in the bosonic
sector.

For even S, on the other hand, they are given by

U (S)
a =

(
Ra

S/2(π ) 0

0 Ra
(S−1)/2(π )

)
, (C46a)

satisfying

UxUz = +PUzUx, (C46b)
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which implies that the fermionic spectrum exhibits the degen-
erate structure.

4. (Z2×Z2)2 symmetry

In this appendix, we summarize some useful relations
concerning the A matrices of the UOSp(1|4) S = 1 SVBS
states given in Appendix A 1. The invariance of the MPS
under Rab(π ) defined in Eq. (96) implies53 the existence of
the 5×5 unitary matrices Uab satisfying

14∑
n=1

[Rab(π )]mnA(n) = +U
†
abA(m)Uab. (C47)

Specifically, Uab are given by

U12 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 i

⎞
⎟⎟⎟⎟⎟⎟⎠,

U25 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −i 0

0 0 i 0 0

0 −i 0 0 0

i 0 0 0 0

0 0 0 0 i

⎞
⎟⎟⎟⎟⎟⎟⎠, (C48a)

U34 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 i

⎞
⎟⎟⎟⎟⎟⎟⎠,

U45 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −i 0 0

0 0 0 −i 0

i 0 0 0 0

0 i 0 0 0

0 0 0 0 i

⎞
⎟⎟⎟⎟⎟⎟⎠. (C48b)

It is easy to check that these matrices satisfy

(U12)2 = (U25)2 = (U34)2 = (U45)2 = P1|4,
U12U25 = −P1|4U25U12, U34U45 = −P1|4U45U34,

(C49)
U25U45 = −P1|4U45U25,

U12U34 = U34U12, U12U45 = U45U12, U25U34 = U34U25,

where

P1|4 =
(

14 0

0 −1

)
. (C50)

By the general argument in Sec. V D, one concludes that in
some sectors all the entanglement levels are four×(integer)-
fold degenerate as is seen in Fig. 7.
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