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Electronic correlation strength of Pu
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An electronic quantity, the correlation strength, is defined as a necessary step for understanding the properties
and trends in strongly correlated electronic materials. As a test case, this is applied to the different phases
of elemental Pu. Within the GW approximation we have surprisingly found a “universal” scaling relationship,
where the f-electron bandwidth reduction due to correlation effects is shown to depend only on the local density
approximation bandwidth and is otherwise independent of crystal structure and lattice constant.
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I. INTRODUCTION

Many technologically important materials have strong
electron-electron correlation effects. They exhibit large
anomalies in their physical properties when compared with
materials that are weakly correlated, and have significant
deviations in their electronic structure from that predicted by
conventional band-structure theory based on the local-density
approximation (LDA). Because the anomalies and deviations
are caused by electronic correlation effects, which often
dominate the physics of these materials, in this paper we define
a quantity that we call the “correlation strength,” or C, as
a necessary step in order to be able to describe trends and
bring order into our understanding of correlated materials. We
emphasize the word “quantity” since a quantitative measure is
needed to answer the question, “How strong are the electronic
correlations?” Without some understanding of how big this
is, it is not possible to make sense of the properties of these
materials. In this context, “correlation” is defined in a way
somewhat different from how it is sometimes used (e.g., in
the term “exchange-correlation potential”). By “correlation”
we specifically mean “correlation beyond LDA theory.” This
usage reflects the way the term is often loosely used in common
terminology in the area of strongly correlated electronic
systems.

To create a new quantity requires determining a “scale” by
which to measure its size. In principle, any experimental or
theoretical property (e.g., specific heat) that monotonically
increases or decreases over the full range of correlation
effects, where we define correlation strength to lie between
zero for none and one for full correlation, can be used
as a measure of this quantity. Hence correlation strength
is an indeterminant quantity and depends on the property
used to define it. However, this does not matter since only
relative rather than any absolute strength is important for
characterizing these materials and for predicting trends in their
properties. Any measure based on one property can easily be
converted to that based on another property. In this paper we
develop a theoretical correlation strength based on the GW
approximation1–4 to electronic-structure theory and apply it to
plutonium,5,6 which is known to have significant correlation
effects. The GW approximation is named for the correction
term in this theory, which is a Green’s function G times

a screened Coulomb interaction W. We also demonstrate a
scaling relationship that is universal in that it is independent
of crystal structure and atomic volume. The ideas in this paper
could certainly be modified and generalized to be able to treat
other types of correlated materials (e.g., spin-fluctuation or
high-temperature superconducting materials) by using other
electronic properties to determine a correlation strength and
by using more sophisticated theoretical techniques than are
considered here.

Of course, there is a long history in physics and chemistry
of using various quantities to predict materials trends. For
example, with respect to the actinides, in 1970 Hill7 plotted
the magnetic and superconducting transition temperatures of
actinide compounds as a function of the actinide-actinide
nearest-neighbor distance. These “Hill plots” brought some
sensible order into what had previously been seen as a
somewhat random occurrence of these various ground states,
and also provided some degree of predictability, in that
superconducting compounds tended to occur for short actinide
spacings and magnetic compounds at large spacings.8 The
plots were intuitively based on the idea that f -wave-function
overlap was the key factor determining the stability of the
relative ground states. These plots failed for heavy-fermion
compounds8 and our understanding of electronic structure
has now advanced to the point where we realize that at large
actinide nearest-neighbor distances the f electrons tend to hop
predominantly through hybridizations with other orbitals on
nearby atoms rather than through a direct f -f hybridization.

Another important actinide trend was developed by Smith
and Kmetko.9 They showed that the crystal structures of the
actinides can be plotted as a continuous function of atomic
number (Z), with alloys filling in between the atomic numbers
of the pure elements. When plotted in this way, one obtains
“connected binary alloy phase diagrams for the light actinides,”
which provide a clear picture of the trends and relationships
between the crystal structures of all the light actinides “at a
glance.”

More generally, in materials science, many different vari-
ables have been used in an attempt to understand system-
atic trends in crystal structures among classes of different
compounds. Such variables have included electronegativity
differences, covalent and ionic contribution to the average
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spectroscopic energy gap, and various types of core, ionic,
and metallic radii. These have been reviewed in a review article
on “Structure Mapping” by Pettifor;10 see also Refs. 11–15.
However, these methods are not relevant for our purposes,
since, as we shall show below, correlation effects are more
important than crystal structure for determining the properties
of many actinide metals.

Among different classes of correlated materials, supercon-
ducting transition pressures have often been plotted versus
either specific structural properties or some characteristic
correlated quantity. These are too numerous to report in full.
A typical example are trends in superconducting transition
temperatures16,17 with numbers of planar (layered or two-
dimensional) structural units (e.g., CuO2 or FeAs planes), and
similarly for representative classes of some heavy-fermion su-
perconductors (e.g., CeMIn5 and PuMGa5 for M = Co, Rh, Ir,
also including c/a structural anisotropies18). Closer in spirit to
this paper are trends in superconducting transition temperature
versus characteristic spin-fluctuation energies, except that the
trends were all based on experimental measurements rather
than theoretical input.18–20

Perhaps the closest analog to the ideas of our paper is
the correlation between crystal structure and d-occupation
numbers in rare-earth systems (including under pressure).21,22

In this case theoretical calculations are required to determine
the number of occupied d electrons as a function of d element
and volume per atom (which can be equated to pressure).
Given this input, however, the correct crystal structure can
then usually be predicted. What is different about our approach
is that we believe that not just one property such as crystal
structure or transition temperature but many properties of
actinide metals will follow trends based on our correlation
scale (see below).

The outline of the paper is as follows: In Sec. II, a
theoretical definition of the correlation scale is presented. It
is expressed in terms of the effective bandwidth based on the
parameter-free LDA and GW approaches. In Sec. III, we apply
the scenario to determine the correlation strength in elemental
Pu solids. A universal scaling relationship is obtained, where
the f -electron bandwidth reduction due to correlation effects
is shown to depend only upon the LDA bandwidth and is
otherwise independent of crystal structure and lattice constant.
The same type of trend is also found for the d-electron systems.
A concluding summary is given in Sec. IV.

II. THEORETICAL METHOD

Our meaning of correlation makes it necessary to use
a theory that includes correlation effects that go beyond
those included by the LDA approximation in order to de-
termine a theoretical correlation strength. This is challenging,
since the most sophisticated treatments of correlation effects
have historically been mainly confined to abstract theoretical
models, and have parameterized the electronic structure in
such an oversimplified manner that the connection with
actual materials examined experimentally was often somewhat
vague.23 In the last decade, however, great progress has been
made in this area, especially those involving dynamical mean-
field theory (DMFT)24–27 techniques, and strong correlation
effects are beginning to be integrated into true first-principles

methods. To achieve this, instead of using ad hoc Hubbard
Hamiltonians that were essentially added without derivation to
local density approximation calculations, more recent methods
have been attempting to explicitly calculate screened Coulomb
interactions directly in the random phase approximation (RPA)
and related approximations. These techniques have been
recently reviewed by Imada and Miyake.28 One direction
that has been particularly fruitful recently is the construction
of low-energy effective models involving a downfolding of
the electronic states and using localized Wannier orbitals
and ab initio real-space tight-binding models. States far
from the Fermi energy can be treated with conventional
LDA-like techniques, while correlation effects are taken
explicitly into account for the important states around the
Fermi energy. Usually constrained RPA (or cRPA) methods
are used to screen the Coulomb interactions. Such methods
have achieved a fair degree of success for semiconductors,
3d transition-metal oxides, iron-based superconductors, and
organic superconductors.

However, these methods rely upon being able to separate
the electronic structure into some electrons belonging to fairly
isolated bands near the Fermi level and the rest to band degrees
of freedom far from the Fermi level. For metals, as we are
considering, such methods therefore appear to be unlikely to be
successful. Another approach,29,30 which seems more suitable
to our case, is GW + DMFT. This has also been reviewed in
Ref. 28. Such a method involves GW (or RPA-like) methods for
calculating the Coulomb interactions that are then integrated
with DMFT techniques. In the full implementation the entire
scheme would be made self-consistent and would be indepen-
dent of the initial GW calculations used to initiate the method.
In the initial description of the method30 only a simplified
one-shot approach was applied to nickel. Since the initial
papers outlining the methodology, almost no progress has
been made, perhaps indicating the difficulty of this approach.
Very recently, however, a more sophisticated implementation31

has been applied to SrVO3. While these calculations are not
yet fully self-consistent, they may stimulate more interest in
pushing through the technical issues involved in implementing
this method.

Since there is not yet widely available a suitable code that
involves these more sophisticated treatments of correlation for
the metallic systems that we are interested in, we have used
the GW method1,3,4 as a theoretical method for estimating
correlation effects. Although this is a low-order approximation
that definitely fails for very strong correlation effects, it is
sufficient for our purposes as a way to estimate correlation
deviations from LDA band-structure theory, and in particular
for the main purpose of our work, which is to show that it is
possible and useful to define a new quantity, which we call
correlation strength, in order to be able to place new materials
in their proper physics context and hence to be able to observe
important trends in their properties.

Among the available GW codes, we have used the quasi-
particle self-consistent GW approximation (QSGW).32–34 The
GW approximation, itself, can be viewed as the first term in
the expansion of the nonlocal energy-dependent self-energy
�(r,r′,ω) in the screened Coulomb interaction W . From a
more physical point of view it can also be interpreted as
a dynamically screened Hartree-Fock approximation plus a
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Coulomb hole contribution.3,4 Therefore, GW is a well defined
perturbation theory. In its usual implemention, sometimes
called the “one-shot” approximation, it depends on the
one-electron Green’s functions which use LDA eigenvalues
and eigenfunctions, and hence the results can depend on
this choice. Unfortunately, as correlations become stronger
serious practical and formal problems can arise in this
approximation.33 However, Kotani et al.34 have provided a
way to surmount this difficulty, by using a self-consistent
one-electron Green’s function that is derived from the self-
energy (the quasiparticle eigenvalues and eigenfunctions)
instead of LDA as the starting point. In the literature, it
has been demonstrated that the QSGW form of GW theory
reliably describes a wide range of semiconductors,32,35–37

spd,32,38,39 and rare-earth systems.40 It should be noted that
the energy eigenvalues of the QSGW method are the same as
the quasiparticle spectra of the GW method. This captures the
many-body shifts in the quasiparticle energies. However, when
presenting the quasiparticle DOS, this ignores the smearing by
the imaginary part of the self-energy of the spectra due to quasi-
particle lifetime effects, which should increase as quasiparticle
energies become farther away from the Fermi energy.

To define a theoretical correlation strength some electronic-
structure quantity that scales with an intuitive notion of
correlation strength is needed. In our application to Pu, we
propose to consider the f bandwidth, Wf , and use the relative
bandwidth reduction in QSGW compared to LDA,

wrel = Wf (GW)/Wf (LDA), (1)

as the key quantity, where Wf (GW) and Wf (LDA) are the f

bandwidths as obtained from QSGW and LDA calculations,
respectively. This is consistent with the correlation-induced
QSGW f -bandwidth reduction in Pu that was demonstrated
in Ref. 5.

Using a quasiparticle calculation is important since lifetime
effects, which are absent in the LDA calculations, would
obscure the band narrowing in GW relative to LDA. We also
need a measure that is robust at the high temperatures of
the strongly correlated phases of Pu, where any low-energy
features in the electronic structure are likely to be thermally
averaged away.41 In this regard, it should be noted that although
temperature certainly plays an important role in predicting the
correct equilibrium crystal structure, we believe that it is
the resulting volume per atom of any Pu phase that determines
the amount of correlation, since this is an electronic property.
In particular, we do not expect that the bandwidth predicted
by our zero-temperature GW calculations will be sensitive to
any temperature in the range set by the Pu solid phases.

The choice of bandwidth narrowing as a measure of cor-
relation strength is consistent with ideas of correlation going
back almost to the beginning of modern electronic structure
theory. Quasiparticle descriptions of electronic structure have
been standard since Landau developed Fermi liquid theory and
have been derived from standard many-body approaches (see,
for example, the discussion in Refs. 2, 42, and 43). They
have since been extended to strongly correlated electronic
materials (see, for example, the review in Ref. 44). Much
of our modern understanding of correlation effects has been
developed using simple model Hamiltonians, especially the

Hubbard model.45 For metals, most of these approaches for
strong correlations have focused on low temperatures,44 where
the electronic structure at the Fermi energy can yield a rich and
diverse set of phenomena at low-energy scales. In such a case,
for example, specific heat or effective mass enhancements at
the Fermi energy have often been used to characterize the
strength of correlations. As we describe below, pure elemental
plutonium forms correlated states at very high temperatures,
and therefore electronic states are sampled that are far from the
Fermi energy. Although it is an interesting question how far
away from the Fermi energy correlations effects extend (see,
e.g., Ref. 46), it is nonetheless important to include correlation
effects for all the quasiparticle states of the f electrons in
Pu. By including the real part of the self-energy for all of
these states, which are involved in the band narrowing, our
GW approach is thus more relevant for these high-temperature
correlated phases than more traditional measures of correlation
that focus exclusively on effects at or near the Fermi energy.
In addition, the bandwidth is closely related to the bonding
strength of the 5f states (see Ref. 51 for more details about
this), and hence is highly relevant for tracking any property
involving bonding.

To set an appropriate correlation scale, we define our
theoretical C by

C = 1 − wrel, (2)

which ranges from C = 0 (no bandwidth reduction) in the
LDA limit to C = 1 in the fully localized or atomic limit (the
bandwidth becomes zero).

As mentioned above, our test case for correlation is
elemental Pu, an actinide metal, which exhibits large volume
changes compared to predictions from band structure theory
that are clearly due to correlation effects.47–51 The large
variation in volumes is controlled by the amount of strong
f bonding, which is due to direct f -f wave-function overlap.
The f bonding for many of the different phases is greatly
reduced leading to anomalous volume expansions due to the
narrowing of the f bands that results from correlation effects.51

If no correlation were present, the f bonds would have their
full strength and a relatively small volume per atom for all
phases would be accurately predicted by LDA band-structure
methods. In the limit of extremely strong correlation the bands
would have narrowed so much that the f electrons would be
fully localized, and they would not contribute to the bonding.
The volume per atom would then be much larger and close to
that of Am, which has fully localized f electrons that do not
extend outside the atomic core.

Using the QSGW approximation we have calculated52 the
quasiparticle band structures of the fcc, bcc, simple cubic
(sc), γ , and pseudo-α phases of Pu as a function of volume.
The pseudo-α is a two-atom per unit cell approximation53

to the true α structure of Pu that preserves the approximate
nearest-neighbor distances and other essential features needed
for the electronic structure. In this way we avoid performing an
extremely large and expensive 16-atom per unit cell calculation
for the α structure. We are unfortunately unable to present GW
results for the β structure, which is even more complex than the
α structure, since no pseudostructure for this crystal structure
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is available and a QSGW calculation is presently not feasible
for so many atoms per unit cell.

To calculate the f -electron bandwidths from the f -electron
projected density of states (DOS), Df (E), an algorithm is
needed to determine the width of the main peak in this DOS.
A simple first guess is to choose a rectangular DOS and to
use a least-squares fit to the GW or LDA f -DOS to determine
the best height and width of the rectangle. A drawback of
this method is that an artificial broadening of the effective
f bandwidth appears, which is due to a significant d-f
hybridization at the bottom of the f -DOS that creates an extra
peak at low energies. This masks the correlation-induced band
narrowing. Since this peak has relatively lower height than the
main f peak, we may avoid this complication by generating an
algorithm that emphasizes the “high-peak” part of the f DOS.
The algorithm we have used is therefore the second moment
of the f DOS

W = 2(〈E2〉 − 〈E〉2)1/2. (3)

The factor of two is needed because the bandwidth extends
above and below the mean energy and is not just the average
deviation from the mean energy. To emphasize the main part
of the f -DOS peak, the square of the f DOS is used as weight
function:54

〈f (E)〉 ≡
∫

dEf (E)D2
f (E)/

∫
dED2

f (E). (4)

III. NUMERICAL RESULTS AND DISCUSSION

In Fig. 1 we illustrate how wrel varies with volume for
the five different phases considered here.55 Large volume
variations ranging between about 14–28 Å3 per atom are
considered, with bandwidths that span almost an order of
magnitude, from about 0.5 eV to 2.5 eV. Although the LDA
bandwidth decreases with increased volume due to reduction
in f -f overlap of the wave functions, the QSGW bandwidth
decreases even faster illustrating increased correlation effects
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FIG. 1. (Color online) Plot of wrel = Wf (GW )/Wf (LDA) versus
volume, V , per atom, for the γ , fcc, bcc, sc, and ps-α [pseudo-α, an
approximate α phase (Ref. 53)] crystal phases of Pu. Note that the sc
(simple cubic) is a hypothetical structure for Pu. The small, vertical
bars at the top of the figure mark the experimentally observed atomic
volumes (Ref. 54).
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FIG. 2. (Color online) Plot of wrel = Wf (GW )/Wf (LDA) versus
Wf (LDA) for the γ , fcc, bcc, sc, and ps-α. The dashed red line
represents the fit of Eq. (5). The small, vertical bars at the top of the
figure mark the values of Wf (LDA) calculated at the experimental
volumes of the five Pu phases (Ref. 54).

with lattice expansion. The bandwidth at a specific volume
depends on crystal structure (due to differences in coordination
and bond lengths), as does also the correlation strength.

Although we expect electronic-structure calculations to
strongly depend on the crystal structure and lattice constant, we
surprisingly found that correlation effects were approximately
independent of these. Indeed, Fig. 2 shows that all of our
different calculations for our measure of correlation strength,
the reduced bandwidth, collapse to a single “universal” curve
when plotted as a function of the LDA bandwidth. In making
this plot, it is likely that the effective screened Coulomb
interaction between the 5f electrons is approximately constant
and that the correlation effects are being tuned by the effective
average kinetic energy of these electrons as reflected in their
LDA bandwidth. In the range of Wf values considered here
the curve is approximately quadratic, i.e.,

wrel(x) = 0.15 + 0.43x − 0.07x2, (5)

where x = Wf (LDA) in eV. From Eq. (2) we can use these
results to determine a correlation strength C. It is remarkable
that the many-body properties of a strongly correlated system
can be tuned with what is normally considered to be a one-
electron property.

In Fig. 3 we show56 that our definition of theoretical
correlation strength does indeed fulfill our expectations and
can be used to bring order into the trends for various
experimental properties, including volume, sound velocity, and
resistivity. These properties exhibit an approximately 25%,
50%, and 35% change over the correlation range (about 0.2 to
0.6) between the α and δ phases of Pu and, with some scatter
that might partially depend on sample quality, fall on smooth
curves when plotted as a function of our theoretical correlation
strength. It is remarkable that all of these data should collapse
to a single curve for each property that is independent of any
explicit consideration of temperature, crystal structure, or other
variable. However, more generally, we would only expect this
to be true for a property that was predominantly affected by
correlation effects.
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FIG. 3. (Color online) Trends in Pu properties as a function of
correlation strength C, including (a) volume per atom (Ref. 54), (b)
sound velocity (Ref. 57), and (c) resistivity (Ref. 57).

In terms of theoretical trends, various theories have often
attempted to estimate the amount of correlation in terms of the
Z factor,

Znk =
(

1 − 〈�nk|∂�(εnk)

∂ω
|�nk〉

)−1

, (6)

where �nk are the (LDA) electronic eigenfunctions with
energies εnk, and � denotes the self-energy. We have found
that the volume dependence of the Z factors follows the trend
of the f -bandwidth reduction in Fig. 1, i.e., our measure
of correlation strength, albeit with variations due to k- and
hybridization-dependence. However, it should be noted that
the relation between Z and bandwidth reduction is not the same
in all materials, especially for weakly correlated broadband
systems, which seem very different from strongly correlated
materials such as Pu.

The simplest Hubbard-like Hamiltonian45 to describe
strongly correlated electron systems has a form

H =
∑
ij,σ

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓ (7)
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FIG. 4. (Color online) C from GW theory versus 1/Wf (LDA).
The data for Co, Rh, and Ir are for the 3d , 4d , and 5d bandwidths,
respectively. The small, vertical bars at the top of the figure mark the
values of Wf (LDA)−1 calculated at the experimental volumes of the
five Pu phases (Ref. 54).

with two parameters: the Hubbard parameter U which induces
correlation, and an effective t , which can be related to the
uncorrelated bandwidth W . When W dominates, the system
is in a weakly correlated limit and, when U dominates, the
system is in a strongly correlated regime. Hence, one can
study the solutions as a function of U/W to go from one limit
to another. In more realistic electronic-structure calculations,
the same physics is intuitively expected to carry over. The
Hubbard U can then be thought of as a screened on-site
Coulomb interaction and the bandwidth as due to the normal
band-structure hybridization. In our context, this suggests that
the correlation strength C should also be a function of U/W . To
test this, in Fig. 4 we plot C versus 1/Wf (LDA). If the effective
U were approximately constant, we had hoped to observe
some approximate linear behavior at weak correlations, but
any such behavior is unclear in Fig. 4. To show what might
happen at weaker correlation strengths we have also included
in Fig. 4 the equilibrium-volume results for Co, Rh, and Ir
for the d-electron projected DOS. Interestingly enough, the
d-electron results seem to follow the same overall trend to
large bandwidths (small correlation). Among the transition
metals included in the plot, Co (3d) has the most narrow d

band, and the correlation value is close to the lowest values for
Pu in the figure.

IV. CONCLUSION

In summary, we have introduced the idea of a “correlation
strength” quantity C, which must be taken into account
in order to explain the properties of strongly correlated
electronic materials. As an example, we have shown how to
use the GW method to define a theoretical C for metallic Pu,
and that various experimental physical properties, including
anomalous volume expansion, sound velocity, and resistivity,
for the different phases of Pu follow well-defined trends
when plotted versus our theoretical correlation strength. We
have also demonstrated a universal scaling relationship for
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the correlation-reduced bandwidth as a function of the LDA
bandwidth.
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