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Anomalous Hall effect in heavy electron materials
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We propose an empirical formula for the anomalous Hall effect in heavy electron materials based on a
phenomenological two-fluid description of the f -electron states. This formula incorporates two previous theories,
proposed by Fert and Levy in 1987 and Kontani et al. in the early 1990s, and takes into account both incoherent
and coherent skew scatterings from local and itinerant f electrons. We perform experimental analysis in several
heavy electron compounds and show that the formula provides a consistent description of the evolution of the
Hall coefficient in the whole temperature range down to only a few Kelvin.
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I. INTRODUCTION

The anomalous Hall effect has attracted much interest in
recent years due to its topological origin.1 In general, the
measured Hall coefficient RH includes two terms, RH =
R0 + Rs , where R0 is the ordinary Hall coefficient and
Rs is the extraordinary or anomalous Hall coefficient. The
microscopic origin of Rs has proved quite complicated. Three
distinct contributions—intrinsic,2 skew scattering,3 and side
jump4—have been identified; each of them has an individual
scaling,

Rs ∝ ραMz/H, (1)

with respect to the longitudinal resistivity ρ. Here, Mz is the
magnetization and H is the magnetic field along the z axis.
In ferromagnetic conductors, a simple summation of the three
terms yields an empirical formula that explains a large amount
of experimental data.

In heavy electron materials, however, a satisfactory formula
has not been achieved despite a number of theoretical proposals
in the past three decades.5–9 The most prevailing theory
nowadays was developed by Fert and Levy in 1987.6 They
considered incoherent skew scattering of conduction electrons
by independent f moments and predicted

Rs = rlρχ, (2)

where χ is the magnetic susceptibility and rl is a constant.
Their theory has been verified in CeAl3, CeCu2Si2, and most
other materials in the high-temperature regime, but fails when
coherence sets in. In the caged compound Ce3Rh4Sn13, in
which no lattice coherence is observed, the scaling persists
down to the lowest measured temperature.10 In most nonmag-
netic Ce and U compounds, such as CeRu2Si2, CeNi, CeCu6,
UPt3, and UAl2, a different scaling,

Rs ∝ ρ2χ, (3)

has been observed at very low temperatures and explained
by Kontani et al. in the early 1990s as the coherent skew
scattering of f electrons.7–9 In the nonmagnetic compound
Ce2CoIn8, both scalings seem to apply in their respective high-
or low-temperature regime.11

But unlike in ferromagnetic conductors, a direct summation
of the two contributions fails to explain the experimental
result in the intermediate-temperature regime. The theory of

Kontani et al.9 extrapolates to a quite different scaling,

Rs = rhχ, (4)

where rh is a constant, and fails to describe localized
f moments at high temperatures in most heavy electron
materials. A proper interpolation is hence required as the
two formulas deal with different aspects of the f -electron
character. Such a combination is expected to be, if possible at
all, highly nontrivial, which requires detailed knowledge about
the incoherent and coherent behaviors of the f electrons.

Unfortunately, we still do not have a microscopic theory that
allows us to treat equally the incoherent and coherent behaviors
of heavy electrons. Nonetheless, a quantitative measure of the
dual feature of the f -electron states is now available thanks
to the recent development of a phenomenological two-fluid
framework.12 In this work, we take the two-fluid model as
a guide and propose an empirical formula for describing
the anomalous Hall effect in heavy electron materials. We
then perform data analysis in several compounds and present
experimental evidence that provides unambiguous support for
our formula.

II. MODEL

The anomalous Hall effect in Ce-115 (CeMIn5, M = Co,
Ir, Rh) provides the first insight into this complicated problem.
Figure 1(a) reproduces the experimental data of all three
Ce-115 materials.13,14 Their constant behavior at high tempera-
tures indicates that the incoherent skew-scattering contribution
predicted by Fert and Levy is negligible small, namely,
rl ≈ 0, and can thus be safely disregarded. Interestingly, the
Hall coefficient develops a strong temperature dependence
at low temperatures, accompanying the onset of coherence
below T ∗ ≈ 20, 30, and 50 K, respectively. The temperature
evolution of the Hall coefficient therefore reflects the con-
tribution of coherent f electrons. It turns out that the Hall
coefficient RH cannot fit to any combination of ραχ . Instead,
within the framework of the two-fluid model, it is found to
scale with a universal fraction of the magnetic susceptibility,
namely, the susceptibility of an itinerant heavy electron Kondo
liquid,15,16

Rs ∝ χh = χ0

(
1 − T

T ∗

)η (
1 + ln

T ∗

T

)
, (5)

where η ≈ 3/2 and χ0 is independent of temperature.
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FIG. 1. (Color online) Hall coefficient of Ce-115 and Ce-218
materials.13,17 The incoherent skew-scattering contribution is com-
pletely suppressed and the temperature dependence of the Hall
coefficient does not follow any combination of ραχ . Instead, it scales
with the susceptibility of the itinerant Kondo liquid (solid lines).15

Quite recently, similar scaling has also been observed in
Ce2PdIn8 with an almost constant Hall coefficient at high
temperatures [Fig. 1(b)].17 Such universal χh scaling seems to
support the prediction of Kontani et al. at high temperatures,9

but is only subject to its own magnetization given by the
heavy electrons. We hence expect that there are two seemingly
separate contributions in the anomalous Hall effect related to
the local and itinerant f electrons, respectively.

To see this, we consider a periodic Anderson lattice. The
optical conductivity is given by the current-current correlation
function,

σαβ = lim
ω→0

1

h̄ω

∫ ∞

0
dteiωt 〈[Jα(t),Jβ(0)]〉, (6)

where h̄ is the Planck constant and α,β denote the x,y

directions. The electrical current density has two components,
Jα = J c

α + J
f
α , from conduction electrons and f electrons,

respectively. The optical conductivity hence contains three
terms,

σαβ = σ c
αβ + σ

f

αβ + σ
cf

αβ , (7)

in which σ
c/f

αβ are determined by the correlation functions of

J
c/f
α for conduction and f electrons separately and σ

cf

αβ is the
mixed term, which is nonzero due to hybridization.

Since f electrons are well localized at high temperatures
and collective hybridization develops gradually with lower-
ing temperature, σ c

αβ is dominated by incoherent scattering
inherited from high-temperature local f moments. On the
other hand, σ

f

αβ and σ
cf

αβ only emerge as a result of collective
hybridization. We can therefore recombine the three terms and
get, in approximation, σ l

αβ = σ c
αβ and σh

αβ = σ
cf

αβ + σ
f

αβ , with
each representing either incoherent or coherent contributions
separately. Without going into detail and trying to solve the
complicated many-body problem, we restrict ourselves to this
lowest-order approximation and seek a simple formula that
can be used in experimental analysis. The Hall coefficient is
then given by

Rs = ρ2σxy/H =
(

σ l
xx

σxx

)2

Rl
s +

(
σh

xx

σxx

)2

Rh
s , (8)

in which Rl
s can be approximated only from scattering between

conduction electrons and residual localized f moments. Fol-
lowing Fert and Levy, we have Rl

s ≈ rlρlχl , where ρl = 1/σ l
xx

is the incoherent contribution to the longitudinal resistivity
and χl is the magnetic susceptibility of the residual unhy-
bridized f moments. For the prefactor σ l

xx/σxx , it has been
shown experimentally18 that for the whole temperature range
down to somewhere above the Fermi-liquid temperature, the
longitudinal resistivity is dominated by incoherent scattering
between conduction electrons and localized f moments so that
ρ ≈ ρl , or σ l

xx/σxx ≈ 1. This approximation becomes exact
for T > T ∗, where all f electrons behave as fully localized
magnetic moments. At very low temperatures where only
coherent heavy electrons exist, the approximation fails but
the formula still holds because of the suppression of Rl

s with
χl = 0.

Similarly, the second term only starts to contribute follow-
ing the emergence of heavy f electrons and can therefore be
treated purely as a coherent effect due to collective hybridiza-
tion. It was not obtained in the theory of Fert and Levy but only
derived later in a coherent treatment of the periodic Anderson
model by Kontani et al.9 They find Rh

s ∝ γ 2
h χh/(E2

f + γ 2
h ),

where Ef , typically of the order of T ∗, is the renormalized
f -electron energy relative to the Fermi energy, and γh is the
imaginary part of the f -electron self-energy, varying from a
few meV at zero temperature to ∼100 meV near T ∗.19–21 This
leads to the scaling Rh

s ∝ χh at high temperatures and Rh
s ∝

ρ2
hχh = ρ2χ at extremely low temperatures in the Fermi-liquid

regime, where ρ = ρh = 1/σh
xx ∝ γh and χ = χh. For rl = 0,

the χh scaling in Ce-115 therefore suggests that the prefactor
σh

xx/σxx is only weakly temperature dependent, at least in the
intermediate-temperature range, before it approaches unity
in the Fermi-liquid regime. This is further supported in
the dynamical mean-field theory (DMFT) calculations.22 A
crossover from ρ0 to ρ2 scaling is hence expected at a certain
temperature and may be responsible for the minimum in the
Hall coefficient of Ce2PdIn8.

Although we do not have a microscopic theory for the exact
behavior of the optical conductivity of an Anderson lattice,
the above argument at least suggests an approximate two-
component description of the Hall coefficient that could be
easily applied to experimental analysis,

RH ≈ R0 + rlρχl + rhχh, (9)

where R0, rl , and rh are all assumed to be constant. For T > T ∗,
we have χh = 0 and the formula reduces to RH = R0 + rlρχ ;
for T < TFL, we have instead χl = 0 and RH = R0 + r̃hρ

2χ ,
where r̃h is another constant prefactor different from rh. The
quite unusual form of RH reflects the fundamental difference
of heavy electron materials from ferromagnetic conductors
in that, with lowering temperature, localized f moments
gradually dissolve into the Kondo lattice and may not be
treated as a static spin-polarized background. This is in
fact a general feature of strongly correlated d-electron and
f -electron systems23 and has not been taken into account in
all previous proposals.1 In this sense, Eq. (9) provides not only
an alternative empirical formula for experimental analysis, but
also a possible direction for future theoretical investigation.
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III. EXPERIMENTAL ANALYSIS

We apply the above formula to experiment. As will be
shown below, our formula tracks the whole temperature
evolution of the Hall coefficient down to only a few Kelvin,
below which either a new phase emerges or a crossover
shows up entering a Fermi-liquid ground state. The first
and obvious prediction of the formula in the limit rl ≈ 0,
namely, the scaling RH = R0 + rhχh, after a temperature-
independent Hall coefficient in the high-temperature inco-
herent regime, has been confirmed in La-doped CeCoIn5

(Ref. 15) and all three Ce-115 compounds under pressure,13,14

and will not be repeated here. In Fig. 1(b), the very re-
cent experiment on Ce2PdIn8 once again verifies the χh

scaling.17

We need to consider materials with a non-negligible
incoherent contribution. The key point is to split the total
magnetic susceptibility into two components, χl and χh, so
that the formula can be applied to experiment in a straight-
forward manner. URu2Si2 provides a typical example, in
which the Knight-shift experiment24,25 allows us to determine
χl and χh unambiguously. The two-fluid description of the
magnetic susceptibility and the Knight shift15,18,26 reads χ =
χl + χh and K = K0 + Aχl + Bχh, where A and B are the
hyperfine couplings. At high temperatures, f electrons are
well localized so that K = K0 + Aχ for T > T ∗ ≈ 65 K;
while at very low temperatures deep within the hidden-
order phase,27 all 5f electrons become itinerant and we
have K = K0 + Bχ for T < TL ≈ 10 K. These determine
the values of K0, A, and B without arbitrariness. The two
components χl and χh for TL < T < T ∗ are then immediately
derived by using χl = (K − K0 − Bχ )/(A − B) and χh =
(K − K0 − Aχ )/(B − A).16,25 The results are plotted in the
inset of Fig. 2. As we can see, the partial susceptibil-
ity χh (diamonds) falls exactly upon the scaling formula
(solid line) of the Kondo liquid predicted in the two-fluid
framework.15
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FIG. 2. (Color online) Analysis of the Hall coefficient of
URu2Si2.19 The ordinary Hall coefficient is R0 = −7.27 ×
10−3 cm3 C−1. We have T ∗ = 65 K and TL = 10 K. Using the
formula, we find a good fit in the whole temperature range above
THO . The inset plots the two components of the susceptibility derived
from the Knight-shift analysis.16,24,25 The derived χh follows exactly
the scaling of the Kondo liquid (solid line).

FIG. 3. (Color online) Comparison between the subtracted co-
herent contribution RH − R0 − rlρχl and ραχh for α = 0, 1, 2 in
URu2Si2. Only for α = 0 is an overall proportionality found in the
whole temperature range between T ∗ and THO .

We now turn back to the Hall measurements on URu2Si2.19

In the high-temperature regime T > T ∗, all f electrons are
localized and, by using the experimental data for the magnetic
resistivity,19 the Hall coefficient is found to scale very well
with the prediction of Fert and Levy up to the highest measured
temperature of about 300 K,

RH = R0 + rlρχ, (10)

which determines the values of R0 and rl . We can then
subtract the true incoherent contribution rlρχl to obtain the
possible forms of the coherent contribution. Figure 3 compares
RH − R0 − rlρχl and ραχh calculated from experimental data
for different values of α. Only for α = 0 do we find an
overall agreement for temperatures between THO and T ∗.
This provides an unambiguous support to Eq. (9) without any
adjustment of parameters. In Fig. 2, an excellent overall fit is
seen in the whole temperature range above THO . For T < THO ,
different values of R0 and rh are required to fit the data,
indicating a Fermi-surface change across the hidden-order
transition.27

The above analysis can be easily extended to other mate-
rials. If no additional experimental information is available
for the separation of χl and χh, a less rigorous method may
be applied by using a priori the scaling formula in Eq. (5).15

Once again, R0 and rl can be determined from the high-
temperature fit. We then analyze the data in the intermediate-
temperature regime by using

RH = R0 + rlρ(χ − χh) + rhχh. (11)

As an example, Fig. 4 shows the fit to the Hall data
in Ce2CoIn8.11 The inset compares RH with ρχ calculated
from experiment. The high-temperature behavior of the Hall
coefficient is well described by incoherent skew scattering.
Below T ∗ ≈ 50 K, the prediction of Fert and Levy in Eq. (10)
(dotted line) deviates severely from experiment. On the other
hand, using the formula presented here and taking into account
the coherent contribution, we obtain a good fit all the way
down to T0 ≈ 10 K, below which a ρ2 dependence was
claimed experimentally.11 For comparison, Fig. 4 also plots the
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FIG. 4. (Color online) Analysis of the Hall coefficient of
Ce2CoIn8.11 The parameters are T ∗ = 50 K, R0 = −4.12 ×
10−10 m3/C, and χ0 = 5.0 × 10−3 emu/mol-Ce. For comparison, the
dotted line shows the prediction of Fert and Levy with a constant rl .
The inset plots RH vs ρχ .

two contributions separately and the coherent skew scattering
is seen to have a major contribution (dash-dotted line) in
Ce2CoIn8. In Fig. 1(b), the incoherent skew scattering is even
more suppressed in the isostructural compound Ce2PdIn8,17

giving rise to a similar χh scaling that was discussed previously
in Ce-115 compounds.

In contrast, the anomalous Hall effect in YbRh2Si2 (Ref. 28)
is dominated by incoherent skew scattering. While its co-
herence temperature is ∼70 K,29,30 RH follows roughly the
prediction of Eq. (10) for all temperatures above ∼7 K, with
only a slight change of slope (rl) at ∼90 K,28 possibly due
to the crystal-field effect.31 The suppression of the itinerant
term may be understood from accidental cancellation of
positive and negative contributions from different sheets of
the Fermi surface.32,33 In particular, YbRh2Si2 also exhibits
little sign of the Knight-shift anomaly,34 unlike most other
heavy electron materials, and its origin needs to be further
explored. Because of this suppression, by applying an external
pressure or magnetic field, a clear crossover in the Hall
measurement should show up when all localized f moments
change their character and become itinerant, accompanied by a
reconstruction of the Fermi surface.16 This has been observed
in YbRh2Si2.35 The signature is expected to be less prominent
in other materials.

All together, while Ce-115, Ce2PdIn8, and YbRh2Si2
represent rare extremes with almost completely suppressed
incoherent or coherent contributions, most compounds are
like Ce2CoIn8 and URu2Si2 and exhibit the two-component
physics. Our analysis confirms the proposed formula in
Eq. (9).

IV. DISCUSSIONS

Our results suggest an alternative categorization of the rich
variety of the Hall behaviors in heavy electron materials:

(i) Above the characteristic temperature T ∗ determined by
the onset of coherence,29 there are only localized f moments
and their incoherent skew scattering gives RH = R0 + rlρχ .6

(ii) In the Fermi-liquid regime, where all f electrons are
itinerant, the anomalous Hall effect is given by coherent
scattering alone so that RH = R0 + r̃hρ

2χ . The tempera-
ture region of this ρ2 scaling depends on the details of
hybridization.9

(iii) In between, the normal-state f electrons are both
dynamically itinerant and localized so that both incoherent
and coherent scatterings contribute and give rise to the unusual
formula, RH ≈ R0 + rlρχl + rhχh.

(iv) In special cases where incoherent skew scattering
is completely suppressed (rl = 0), one finds a universal χh

scaling.15 Ce-115 (Refs. 13 and 14) and Ce2PdIn8 (Ref. 17)
fall into this category, but the origin of the suppression has not
been explained. In the theory of Fert and Levy, the incoherent
contribution originates from the interference between the f

and d partial waves, with rl ∝ sin δ2 cos δ2, where δ2 is the
phase shift of the d-scattering channel.6 A detailed study of
the distinction between Ce2CoIn8 and Ce2PdIn8 may be able
to determine δ2 and help resolve this issue.

The specific conditions that control the relative importance
of Rl

s and Rh
s in the two-fluid regime are not known. Theo-

retically, although we were partly motivated by the theory of
Kontani et al.,9 its validity for heavy electron materials remains
unclear. A notable prediction of the theory is that the sign of
rh depends on the location of the renormalized f -electron
energy around the Fermi energy, so that Ce compounds would
have a positive rh and Yb compounds would have a negative
rh. Instead, we find negative values of Rh

s and R0 in Ce-115,
Ce2CoIn8, and Ce2PdIn8, and positive values of Rh

s and R0 in
YbRh2Si2, in line with the electron or hole nature of their
charge carriers. A thorough understanding of the formula
presented here may hence require a microscopic theory of the
two-fluid physics that is not yet available. Nevertheless, the
fact that χh scaling is in good agreement with the quasiparticle
density of states calculated by DMFT20 seems to suggest that
DMFT may provide an explanation to our empirical formula
by separating the contribution of coherent quasiparticles and
that of incoherent skew scattering due to incomplete screening
of the f moments at finite temperatures. We will leave this for
future work.

In conclusion, we propose an empirical formula for the
anomalous Hall effect in heavy electron materials. The
formula makes it possible for better data analysis and allows
a consistent interpretation of the Hall experiment over a
broad temperature range down to only a few Kelvin. It
unifies the various scalings observed in different temperature
regimes in experiment and provides a basis for developing
an improved theory incorporating previous proposals and
the two-fluid physics. The identification of incoherent and
coherent contributions opens an avenue for future numer-
ical investigations. A similar phenomenon may also be
found in other physical properties such as the spin Hall
effect.
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10U. Köhler, A. P. Pikul, N. Oeschler, T. Westerkamp, A. M. Strydom,

and F. Steglich, J. Phys.: Condens. Matter 19, 386207 (2007).
11G. Chen, S. Ohara, M. Hedo, Y. Uwatoko, and I. Sakamoto, J. Phys.:

Condens. Matter 15, S2175 (2003).
12Y.-F. Yang, N. J. Curro, Z. Fisk, D. Pines, and J. D. Thomspon,

J. Phys.: Conf. Ser. 273, 012066 (2011).
13M. F. Hundley, A. Malinowski, P. G. Pagliuso, J. L. Sarrao, and

J. D. Thompson, Phys. Rev. B 70, 035113 (2004).
14Y. Nakajima, H. Shishido, H. Nakai, T. Shibauchi, K. Behnia, K.

Izawa, M. Hedo, Y. Uwatoko, T. Matsumoto, R. Settai, Y. Ōnuki,
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