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Scattering resonances in two-dimensional crystals with application to graphene
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We address the band structure of two-dimensional crystals above the vacuum level in the context of discrete
states immersed in the three-dimensional continuum. Scattering resonances are discovered that originate from the
coupling of the in-plane and perpendicular motions, as elucidated by the analysis of an exactly solvable model.
Some of the resonances turn into true bound states at high-symmetry k vectors. Ab initio scattering theory verifies
the existence of the resonances in realistic graphene and shows that they lead to a total reflection of the incident
electron below and total transmission above the resonance energy.
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The electronic structure of single-layer crystals has at-
tracted much attention due to the discovery of graphene1

and other atomically thin systems (boron nitride,2 silicene3).
Graphene is the most popular material because it combines
the unique electronic properties with technological robustness,
which makes it especially promising for nanoelectronics.4 Its
most exciting feature—the linear dispersion of the highest
occupied π and lowest empty π∗ bands—has been known
since 1947, when Wallace5 obtained it analytically in a tight-
binding model. The bound electronic states of the freestanding
graphene have been recently addressed in a number of ab initio
studies,6–11 so its low-energy band structure is presently well
understood.

At energies above the vacuum level we enter the continuous
spectrum due to the infinite motion perpendicular to the layer,
as shown in Fig. 1 for the band structure of graphene. Some of
the lines entering the continuum from below are seen to retain
their individuality inside the continuous spectrum. Their origin
is clear: They correspond to the states of an in-plane motion
but with the energy above the continuum edge. However, at a
deeper level, a fundamental issue arises: An electron moving
with a sufficiently high energy within the layer and parallel
to it has, generally speaking, a nonzero probability to escape
into vacuum, which would impart this state a finite lifetime,
i.e., turn it into a resonance. The presence of the resonances
in the band structure of 2D crystals above the vacuum level
as exemplified by graphene is the main message of this Rapid
Communication. We argue that those resonances are of special
kind: They originate from the coupling of two motions, of
which one is across the layer under the action of the layer’s
confining potential well and another is in the layer’s plane
in a periodic 2D lattice potential, each of those potentials
separately supporting no resonances. We will also show that
some of the discrete levels retain zero linewidth, by this being
true bound states immersed into continuum.

The discrete levels within the continuous spectrum deserve
close attention because they strongly affect optical absorption
in the UV range, as well as electron photoexcitation and prop-

agation toward the detector in a photoemission experiment.
Recent experimental progress in angle-resolved photoemis-
sion (ARPES) on epitaxial12–17 and suspended18,19 graphene,
as well as in low energy electron diffraction (LEED),20,21 calls
for a detailed understanding of its electronic structure at higher
energies.

We start by considering a trivial case: Let us have a quantum
well V (z) in the z direction with the flat potential in the xy

plane. Then, if the well supports a bound state, and since the
two perpendicular motions are independent in this case, the 3D
wave function is a product of a bound state in the z direction
and a plane wave in the xy plane. As a result, there exist states
which are bound to the well while having an arbitrarily high
energy above the vacuum level due to the motion in xy plane.
If, however, we apply a potential that is periodic in the xy plane,
the variables in the Schrödinger equation do not separate any
more; i.e., the two perpendicular motions become coupled. To
get a better insight on how this affects the high-lying energy
bands of the in-plane motion, we first introduce a model which
is exactly solvable and at the same time retains all the basic
physics involved:

δ-function quantum well with laterally periodic potential.
We are looking for a solution of the Schrödinger equation

[ − 1
2� + V (z,r‖)

]
ψ(z,r‖) = Eψ(z,r‖), (1)

with the model potential being a product of a periodic function
in the xy plane and the δ-function quantum well in the z

direction

V (z,r‖) =
∑

G

VGeiG·r‖ δ(z), (2)

where G are the 2D reciprocal lattice vectors. We set V0 < 0
to ensure the existence of a state bound to the z = 0 plane.
The solutions of Eq. (1) with the potential (2) can be written
explicitly as Bloch waves with respect to the motion in the xy
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FIG. 1. (Color online) Band structure of graphene obtained in the
repeated supercell geometry. The all-electron full-potential linearized
augmented plane wave code ELK (Ref. 22) was used for this
calculation. The separation between the periodically stacked layers
is d = 400 bohrs. The energy axis zero is at the vacuum level at �

point.

plane

ψ(z,r‖) =
∑

G

aGei
√

2E−(G+k)2 |z|ei(G+k)·r‖ , (3)

where k is the in-plane wave vector within the first Brillouin
zone, and aG are still unknown coefficients. Importantly, in
Eq. (3) we have retained the exponent with one sign only,
which selects out bound and resonant states,23 if the latter
exist, while omitting the scattering states propagating in the
z direction.24 The jump in the wave function’s z derivative
ψ ′(z,r‖) is obtained by the integration of Eq. (1) in z over the
infinitesimal interval [0−,0+]

ψ ′(0+,r‖)−ψ ′(0−,r‖) = 2
∑

G

VGeiG·r‖ψ(0,r‖). (4)

Together, Eqs. (3) and (4) lead to the system of equations for
the coefficients aG

∑

G′
V (G − G′)aG′ = i

√
2E − (G + k)2 aG. (5)

The crucial point is the choice of the sign of the square roots
in Eqs. (3) and (5). Denoting the generic square root by s, the
rule is Re s > 0 if Re s2 > 0 and Im s > 0 otherwise, which
choice ensures the correct asymptotic behavior of the neces-
sarily normalizable and the necessarily nonnormalizable wave
functions, of the bound states and resonances, respectively.23

The values of E which allow for nonzero solutions of the
homogeneous system of linear equations (5) determine the
band structure of our model system. However, in contrast to
the original setup of Eq. (1), Eq. (5) constitutes a nonlinear
eigenvalue problem25 for the energies E. We emphasize that
this fundamental difference comes from the fact that the
separation of the bound and resonant states from those of
continuum has been already achieved in Eq. (5).

In Fig. 2, results of the numerical solution of the nonlinear
eigenvalue problem (5), which give the band structure of the
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FIG. 2. (Color online) Left: Band structure of the model system
obtained with the repeated supercell geometry calculation (blue lines)
and with solving the eigenvalue problem (5) for a stand-alone plane
(red points). The calculation has been conducted along �-K-M-�
lines. Right: The same for the asymmetric direction of k along
7b1 + 13b2, where b1 and b2 are the primitive reciprocal vectors.
The energy axis zero is at the vacuum level at � point.

stand-alone layer, are presented together with the results of
calculations carried out for the same system in the repeated
supercell geometry. The symmetry of the 2D periodic potential
is chosen that of the honeycomb lattice, graphene’s lattice
constant is used, and the values of the Fourier coefficients of
the potential are V0 = −0.7|b| and VG = 0.1|b| for the first G
star, and VG = 0 otherwise, b being the primitive vector of the
reciprocal lattice. In the left panel, the wave vector varies along
the �-K-M-� lines while in the right panel an asymmetric
direction of k is chosen. For the bands below the vacuum edge,
both the repeated-geometry and the stand-alone calculations
yield identical results regardless of the symmetry of the wave
vector. In contrast, above the vacuum edge, whether or not a
particular state localized near z = 0 survives as a true bound
state is determined by the symmetry of its k point. For the
asymmetric case of k, there are no such states. As can be seen
from Fig. 2, along the high-symmetry directions some of the
bound-state bands do survive. Moreover, an isolated high-lying
bound state exists at the � point at the energy of ≈83 eV (not
shown in Fig. 2). The 2D crystal, thus, presents a simple and
instructive example of bound states in the continuum, very
different from the known cases of atoms26 or quantum dots.27

While the results in Fig. 2 establish the existence of bound
states above the vacuum edge, they do not answer the question
of what happens with those that do not survive, i.e., whether
the latter turn into resonances by acquiring a finite lifetime
or whether they disappear at all. This is due to our numerical
search for the eigenvalues of the nonlinear eigenproblem (5)
having been restricted to the real axis of E, since no decisive
numerical procedure exists to either find all complex-valued
roots of this problem or to prove their absence. To shed light
on that issue, we solve the eigenvalue problem (5) analytically
for a reduced size of the V (G − G′) matrix to make the
problem computationally feasible. Using the MATHEMATICA

symbolic algebra software, we have analytically evaluated
the determinant �(E) of the system (5), then consecutively
eliminated the square roots in the equation �(E) = 0, which
made it possible to reduce it to a polynomial equation. All
roots of the polynomial (including the complex ones) were
then found with no loss of any of them guaranteed. Since
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TABLE I. Eigenenergies (in eV) for the model system obtained
with the reduced size of V (G − G′) matrix permitting the fully
analytical solution of the nonlinear eigenvalue problem (5).

� K M

− 20.3 − 11.9 − 13.9
5.8 − 0.6 − 9.5
11.0 26.0 − 0.2i 7.7
19.6 26.8 − 0.6i 9.8 − 0.6i

24.3 − 1.4i 28.5 − 0.9i 39.4 − 0.7i

80.1 − 0.9i 55.9 − 0.2i 42.1 − 0.3i

80.9 − 0.6i 61.6 − 0.6i 59.6 − 0.8i

82.4 − 0.2i 61.6 − 0.7i

83.2 64.6 − 0.8i

116.5 − 0.2i 127.7 − 0.6i

116.8 − 0.6i 127.7 − 0.5i

117.3 − 1.3i 160.8 − 0.5i

spurious zeros were introduced when reducing the equation
to the polynomial, the roots were finally sorted to retain
only those that satisfied the original equation �(E) = 0. This
has been done for �, K , and M points with the matrix
sizes of 19, 13, and 7, respectively. While all true bound
states, both below and above the vacuum edge, were found to
reproduce those previously obtained numerically, in addition,
complex eigenvalues were found. Results of this calculation
are collected in Table I.

Eigenenergies in the lower complex half plane (resonances)
physically manifest themselves as features in elastic scattering
spectra at the real energies in the vicinity of the complex
eigenvalues.23 In Fig. 3(a) we plot the coefficient of transmis-
sion of an electron incident normally onto our model system.
The features in the transmission spectrum clearly agree with
the resonances’ positions listed in the first column of Table I
(� point). We note that it is resonances, not the bound states,
that underlie the singularities in the elastic scattering spectra:
Bound states are orthogonal to the scattering states leading to
the independence of the two corresponding motions.

Having established the origin of high-energy resonances
in the infinitely thin system let us now return to a realistic
graphene. Experimentally, the scattering resonances can be
observed in low energy electron diffraction. Figure 3(b) shows
ab initio normal incidence electron transmission spectrum
calculated with the augmented plane wave (APW) based
variational embedding method.28,29 The ab initio spectrum of
graphene is similar to that of the model system: Just below
the lowermost resonance we find a point of total reflection
followed by total transmission just above the resonance. Total
reflection from a freestanding monolayer is a rather counter-
intuitive finding: Unlike the well-known case of LEED from
crystal surfaces, it is not caused by a gap in the energy spectrum
of the semi-infinite substrate.30 Indeed, the electron can freely
propagate in the vacuum half space behind the graphene layer,
and the reflection is solely due to the in-plane scattering.

In both T (E) spectra, one can also see a sharp structure
due to the emergence of the secondary beams. Both in the
model and in the actual graphene it appears as a transmission
minimum at the same energy EKIN = 33.1 eV; see Fig. 3. Such
structures are well known in classical LEED,31,32 and contrary
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FIG. 3. (Color online) Energy dependence of the electron trans-
mission coefficient T (E) through a freestanding layer for the model
system (a) and for graphene (b). The incidence is normal to the layer.
Vertical dashed lines in graph (a) indicate the positions of resonances
at � point from Table I. In both graphs, vertical bars at kinetic energy
of 33.1 eV indicate the onset of nonspecular reflected beams.

to the ones found here, they have a purely “structural” origin
and does not depend on details of the electronic structure.

By changing the incidence angle one can observe the
scattering band structure as the dispersion of transmission
probability with k. The ab initio calculation of T (k,E) in the
directions �K and �M is presented in Fig. 4(a). The resonance
at � is seen to split at the off-normal incidence into three
branches with a pronounced anisotropic dispersion, which
highlights the non-free-electron character of the graphene
states at high energies. A high intensity of umklapp bands
is seen as well. To visualize the scattering resonance in real
space we present in Fig. 4(b) the energy dependence of the
electron density distribution in the LEED state as it comes out
of our ab initio calculation. The white stripe in the left half
space at EKIN = 25.5 eV corresponds to the total reflection,
and the vanishing beating in the right half space at 31.5 eV to
the total transmission. The resonance is seen as the pronounced
local density enhancement at the graphene layer at 27.5 eV.
In perfect accord with our model, it is located between the
minimum and the maximum of T (E).

The discovered resonances are, thus, typical of atomic
monolayers, and at the surfaces of 3D crystals they may be
blurred by the interlayer scattering. For example, in graphite,
the resonance falls in a wide gap in the k = 0 projected
spectrum; see Fig. 6 in Ref. 33.

These findings suggest important implications on LEED
and ARPES from graphene. The two techniques are related by
the one-step theory,34,35 according to which the photocurrent
is proportional to the probability of the optical transition to
the time-reversed LEED state. For the supported graphene,
for a sufficiently weak interaction with the substrate, one can,
apparently, reduce or enhance the signal from the substrate
by tuning the photon energy to the reflection or transmission
point. The resonances are rather prominent also at off-normal
incidence [Fig. 4(a)]. As they are associated with a strong in-
plane scattering it is especially important to be aware of them
in studying the corrugated suspended graphene with LEED or
ARPES because the resonance area is most strongly affected
by the lattice deformation.

Finally, we mention a classical-mechanical analogy of the
same effect. Classically, a particle moving along the crystal
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FIG. 4. (Color online) (a) Energy-momentum distribution of the transmission probability T (k,E) through the graphene monolayer.
(b) Energy-dependent density distribution ρ(z,E) in the normal incidence LEED state. Graphene plane is at z = 0. The wave is incident
from the right; it is normalized as 1 × exp(iq · r).

plane may be scattered away from the plane having collided
with an obstacle. In this case, the “lifetime” of the particle
would be the time of flight between two collisions, which for
an energetic electron is negligible. We are, however, dealing
with a perfectly periodic system with the lattice constant of a
few angstroms. The large lifetimes of the quantum resonances
we obtain are due to the coherent quantum scattering and they
cannot be accounted for by the classical picture. Moreover,
high-symmetry pure bound states survive, which is impossible
classically.

To summarize, we have shown that atomically thin mono-
layers support resonances of a special nature: They originate
from a strong coupling of the in-layer scattering to the motion
perpendicular to the layer, while each of the two motions,
separately, does not support a resonance. For the exactly
solvable model of an infinitely thin crystal we have found
the complex eigenvalues of the resonances and demonstrated
that they lead to strong sharp structures in the electron
diffraction spectra. Another interesting result is that apart from
the resonances there exist true bound states immersed in the
continuum spectrum, which survive up to high energies above
the vacuum level. The purely real eigenvalues are, however,
restricted to high-symmetry directions of the 2D Brillouin
zone, and they turn into resonances at general k points.

These general results have found full verification in our
ab initio calculation of electron diffraction from a realistic
freestanding graphene monolayer. The resonance causes a total

reflection of the normally incident electron with an energy just
below the resonance—a unique phenomenon, as it is caused
by purely in-plane scattering.

The thickness of an atomic monolayer is much smaller than
the typical mean-free path of the photoelectron, so graphene
offers a rare opportunity to get rid of the surface sensitivity of
photoemission, which is an intrinsic and unavoidable aspect
of solid-state electron spectroscopies.36 At the same time, a
strong elastic multiple scattering over a wide energy range
is retained, producing a well-defined band structure, which
can be measured in an angle-resolved experiment. Thus, the
studies on the suspended graphene and related structures are
expected to shed light on fundamental aspects of spectroscopy,
which are blurred in bulk crystals. This concerns, for example,
inelastic scattering beyond the concept of mean-free path,
nature of multiphoton transitions,37–39 and the laser streaking
of electrons emitted from a solid.40–42 In this view, the
discovered resonances may have important implications for
various fields of electron spectroscopy, as they are a general
property of atomic monolayers.

The authors thank Eugene Kogan for valuable discus-
sions. V.U.N. acknowledges partial support from National
Science Council, Taiwan, Grant No. 100-2112-M-001-025-
MY3. E.E.K. and V.M.S. acknowledge partial support from
the Spanish Ministerio de Ciencia e Innovación, Grant No.
FIS2010-19609-C02-02.

*nazarov@gate.sinica.edu.tw
1A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

2D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang,
and C. Zhi, ACS Nano 4, 2979 (2010).

3P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis,
M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Phys. Rev. Lett.
108, 155501 (2012).

4L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W.
Hill, K. S. Novoselov, and A. K. Geim, Science 320, 356 (2008).

5P. R. Wallace, Phys. Rev. 71, 622 (1947).
6S. Latil and L. Henrard, Phys. Rev. Lett. 97, 036803 (2006).

7P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and
V. Olevano, Phys. Rev. Lett. 101, 226405 (2008).
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16I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T. N’Diaye,
C. Busse, and T. Michely, Phys. Rev. Lett. 102, 056808 (2009).

17Y. Liu, L. Zhang, M. K. Brinkley, G. Bian, T. Miller, and T.-C.
Chiang, Phys. Rev. Lett. 105, 136804 (2010).

18D. Niesner, T. Fauster, J. I. Dadap, N. Zaki, K. R. Knox, P.-C. Yeh,
R. Bhandari, R. M. Osgood, M. Petrović, and M. Kralj, Phys. Rev.
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M. A. Niño, P. Kim, A. Morgante, and R. M. Osgood, Phys. Rev. B
84, 115401 (2011).

20A. Locatelli, K. R. Knox, D. Cvetko, T. O. Mentes, M. A. Niño,
S. Wang, M. B. Yilmaz, P. Kim, R. M. Osgood, and A. Morgante,
ACS Nano 4, 4879 (2010).

21P. W. Sutter, J.-I. Flege, and E. A. Sutter, Nat. Mater. 7, 406 (2008).
22http://elk.sourceforge.net
23L. D. Landau and E. M. Lifshitz, Quantum Mechanics: The Non-

Relativistic Theory (Butterworth-Heinemann, London, 1981).
24All the solutions (3) are even in z (σ bands), which is the

consequence of the δ potential supporting one bound state at most.
25G. H. Golub and H. A. van der Vorst, J. Comput. Appl. Math. 123,

35 (2000).
26H. Friedrich and D. Wintgen, Phys. Rev. A 32, 3231 (1985).
27G. Cattapan and P. Lotti, Eur. Phys. J. B 66, 517 (2008).
28E. E. Krasovskii, Phys. Rev. B 70, 245322 (2004).

29The method employs eigenfunctions of a repeated-slab band
structure as basis functions to represent the LEED state. For the
present purpose they were obtained with the full-potential linear
APW of Ref. 43.

30J. C. Slater, Phys. Rev. 51, 840 (1937).
31E. G. McRae, Rev. Mod. Phys. 51, 541 (1979).
32R. Jones and P. Jennings, Surf. Sci. Rep. 9, 165 (1988).
33N. Barrett, E. E. Krasovskii, J.-M. Themlin, and V. N. Strocov,

Phys. Rev. B 71, 035427 (2005).
34G. D. Mahan, Phys. Rev. B 2, 4334 (1970).
35P. J. Feibelman and D. E. Eastman, Phys. Rev. B 10, 4932 (1974).
36W. Schattke and M. A. Van Hove, eds., Solid-State Photoemission

and Related Methods: Theory and Experiment (Wiley-VCH, Berlin,
2003).

37H. Petek and S. Ogawa, Prog. Surf. Sci. 56, 239 (1997).
38W. Schattke, E. E. Krasovskii, R. Dı́ez Muiño, and P. M. Echenique,

Phys. Rev. B 78, 155314 (2008).
39H. Husser, J. van Heys, and E. Pehlke, Phys. Rev. B 84, 235135

(2011).
40A. L. Cavalieri, N. Mueller, T. Uphues, V. S. Yakovlev, A. Baltuska,

B. Horvath, B. Schmidt, L. Bluemel, R. Holzwarth, S. Hendel,
M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger,
F. Krausz, and U. Heinzmann, Nature (London) 449, 1029 (2007).

41A. K. Kazansky and P. M. Echenique, Phys. Rev. Lett. 102, 177401
(2009).

42E. E. Krasovskii, Phys. Rev. B 84, 195106 (2011).
43E. E. Krasovskii, F. Starrost, and W. Schattke, Phys. Rev. B 59,

10504 (1999).

041405-5

http://dx.doi.org/10.1103/PhysRevLett.100.107602
http://dx.doi.org/10.1103/PhysRevLett.100.107602
http://dx.doi.org/10.1021/nl901040v
http://dx.doi.org/10.1021/nl901040v
http://dx.doi.org/10.1103/PhysRevLett.102.056808
http://dx.doi.org/10.1103/PhysRevLett.105.136804
http://dx.doi.org/10.1103/PhysRevB.85.081402
http://dx.doi.org/10.1103/PhysRevB.85.081402
http://dx.doi.org/10.1103/PhysRevB.84.115401
http://dx.doi.org/10.1103/PhysRevB.84.115401
http://dx.doi.org/10.1021/nn101116n
http://dx.doi.org/10.1038/nmat2166
http://elk.sourceforge.net
http://dx.doi.org/10.1016/S0377-0427(00)00413-1
http://dx.doi.org/10.1016/S0377-0427(00)00413-1
http://dx.doi.org/10.1103/PhysRevA.32.3231
http://dx.doi.org/10.1140/epjb/e2008-00449-5
http://dx.doi.org/10.1103/PhysRevB.70.245322
http://dx.doi.org/10.1103/PhysRev.51.840
http://dx.doi.org/10.1103/RevModPhys.51.541
http://dx.doi.org/10.1016/0167-5729(88)90004-0
http://dx.doi.org/10.1103/PhysRevB.71.035427
http://dx.doi.org/10.1103/PhysRevB.2.4334
http://dx.doi.org/10.1103/PhysRevB.10.4932
http://dx.doi.org/10.1016/S0079-6816(98)00002-1
http://dx.doi.org/10.1103/PhysRevB.78.155314
http://dx.doi.org/10.1103/PhysRevB.84.235135
http://dx.doi.org/10.1103/PhysRevB.84.235135
http://dx.doi.org/10.1038/nature06229
http://dx.doi.org/10.1103/PhysRevLett.102.177401
http://dx.doi.org/10.1103/PhysRevLett.102.177401
http://dx.doi.org/10.1103/PhysRevB.84.195106
http://dx.doi.org/10.1103/PhysRevB.59.10504
http://dx.doi.org/10.1103/PhysRevB.59.10504



