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Ergodic versus diffusive decoherence in mesoscopic devices
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We report on the measurement of phase coherence length in a high-mobility two-dimensional electron gas
patterned in two different geometries, a wire and a ring. The phase coherence length is extracted both from
the weak localization correction in long wires and from the amplitude of the Aharonov-Bohm oscillations in a
single ring, in a low-temperature regime when decoherence is dominated by electronic interactions. We show
that these two measurements lead to different phase coherence lengths, namely Lwire

� ∝ T −1/3 and L
ring
� ∝ T −1/2.

This difference reflects the fact that the electrons winding around the ring necessarily explore the whole sample
(ergodic trajectories), while in a long wire the electrons lose their phase coherence before reaching the edges of
the sample (diffusive regime).
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Understanding the mechanisms of decoherence is a major
issue in mesoscopic physics, as it limits the existence of elec-
tronic interference effects.1,2 The experimental determination
of this quantity is thus of crucial importance. At relatively
high temperature (typically above 1 K), the electronic phase
coherence is limited by electron-phonon collisions.3 Contrar-
ily, at low temperatures, it is governed by electron-electron
interactions: The measurement of the phase coherence time
τ�(T ) thus provides an important check of the theoretical
models concerning these electronic interactions in metals4,5

and a probe for studying the fundamental question of the
interplay between interaction and disorder.

As it is well known that in diffusive conductors the temper-
ature dependence τ�(T ) depends on space dimensionality d; it
has long been assumed that it depends only on d. However, it
turns out that the situation is richer in quasi-one-dimensional
systems (d = 1), where decoherence results mostly from
processes involving small energy exchange between electrons,
therefore implying long length scales. Indeed it has been
shown in a pioneering work6 that in this case, the decoherence
mechanism can be seen as the result of the interaction between
one electron and the fluctuating electric field due to other
electrons; the random phase accumulated by an electron along
its diffusive trajectory increases with time with a characteristic
time τwire

� (T ) ∝ T −2/3. Implicitly this analysis is valid for a
infinite quasi-1D wire where diffusion is not limited in space.
It has successfully explained many experiments on quasi-1D
metallic or semiconducting wires.

In contrast, in a wire of finite length L, long diffusive
trajectories are obviously limited at this length scale L, which
must necessarily affect the decoherence mechanism. This
so-called ergodic regime is reached when the diffusion occurs
over times longer than the Thouless time τD = L2/D, where
D is the diffusion coefficient. The ergodic regime has not
been explored experimentally in diffusive wires. One reason
is that a transport experiment implies connecting the device to

external contacts; therefore it is hardly possible to investigate
this ergodic regime in a mesoscopic wire.

An alternative and appropriate device consists of a ring
in which the study of quantum oscillations in a magnetic
field naturally provides a selection mechanism between dif-
fusive and ergodic trajectories, because the harmonics of
the oscillations necessarily involve winding (and therefore
ergodic) trajectories. Several works7–11 have predicted that
the temperature dependence of the phase coherence time
obtained from magnetoconductance (MC) oscillations behaves
as τ

ring
� (T ) ∝ T −1 in contrast with the result for an infinite wire.

The present work constitutes experimental evidence for such
behavior in a single ring.

More precisely, the goal of this paper is to provide, through
magnetotransport measurements, a detailed comparison of the
phase coherence time measured in two different geometries,
namely an infinitely long wire and a ring. In a long wire,
interferences between time-reversed electronic trajectories
give rise to the weak-localization (WL) correction to the
average conductance. Its magnetic field dependence provides
a measure of the phase coherence length Lwire

� = √
Dτwire

� .2,12

In a single ring, the magnetic field reveals the sample specific
interference pattern: It modulates the phase difference between
electron paths in each arm, leading to the so-called Aharonov-
Bohm (AB)13 periodic oscillations of the conductance.14 The
amplitude of the AB oscillations, averaged over an appropriate
range of magnetic field, is controlled by the phase coherence

length L
ring
� =

√
Dτ

ring
� . In this Rapid Communication we

present a quantitative analysis of the temperature dependence
of L

ring
� extracted from AB oscillations of a single weakly

disordered ring. Our experimental analysis shows that the two
phase coherence lengths L

ring
� and Lwire

� present two different
temperature dependencies, thus confirming the importance
of the diffusive versus ergodic nature of the electronic
trajectories.15
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Samples have been fabricated from high-mobility
GaAs/AlGaAs heterostructures. These systems are intrinsi-
cally clean of magnetic impurities5 and thus provide a large
phase coherence length only limited by electronic interac-
tions at low temperature.17 Using electron beam lithography
on polymethyl-methacrylate resist and shallow etching, we
have patterned mesoscopic rings and arrays of wires in the
two-dimensional electron gas (2DEG). In addition, a Hall
bar allows the determination of the characteristics of the
2DEG: The electron density is ne = 1.56 × 1011 cm−2, the
mobility μe = 3.1 × 105 cm2/V s, and the elastic mean-free
path �(2DEG)

e = 2.13 μm, leading to a diffusion coefficient
D(2DEG) = 1700 cm2/s.

Rings have a perimeter L = 13.6 μm, a lithographic width
w

ring
litho = 740 nm, and are connected to large reservoirs, as

presented in the inset of Fig. 2(b). Arrays of wires are
composed of 20 wires in parallel (in order to suppress
conductance fluctuations) of width wwire

litho = 800 nm and length
L = 150 μm. Note that due to depletion effects, the real widths
wring and wwire are somehow smaller: It was shown in Ref. 17
for similar samples that depletion length is �190 nm leading
to wwire ∼ wring ∼ 400 nm. Analysis of the MC of the wires
shows that the mean-free path is close to the one of the 2DEG:
�e � �(2DEG)

e . In the two geometries, we thus probe the diffusive
quasi-1D regime (L� � �e, w).

MC measurements are performed on the ring and the wires
simultaneously, using a standard ac lock-in technique and a
homemade ultralow-noise amplifier (0.4 nV/

√
Hz) at room

temperature.
We sweep the magnetic field perpendicularly to the sample

on a span of ±50 G around zero field. The conductance of
the arrays of wires increases with magnetic field as expected,
due to the suppression of the weak-localization correction. We
then fit the MC with the well-known expression2,12

�G = −2e2

h

1

L

[(
1

Lwire
�

)2

+ 1

3

(
ewwire

∗ B

h̄

)2
]−1/2

, (1)

where w∗ is an effective width accounting for flux cancellation
effect [for a wire, w∗ = w if �e � w (Ref. 12) and w∗ ∼
w

√
w/�e if �e � w (Ref. 18)]. As shown in the inset of Fig. 1,

we can extract Lwire
� at several temperatures ranging from

52 mK to 1 K. The resulting temperature dependence of Lwire
�

is displayed in Fig. 1. In this temperature range, decoherence is
dominated by electronic interactions, and the phase coherence
length is given for quasi 1D diffusive samples by17

L� =
√

Dτ� =
√

D

a T θ + b T 2
, (2)

where, for a wire, θ = 2/3 and the factor a is theoretically
given by D/atheo = 2(m∗wwireD2/πkB)2/3 with kB the Boltz-
mann constant and m∗ the effective mass of the electrons,
whereas the adjustable parameter b takes into account inter-
actions involving high-energy transfers.6,17,19,21 As shown on
Fig. 1, Lwire

� (T ) is well described by Eq. (2), setting aexp as a
fitting parameter. A quantitative comparison of aexp and atheo

for similar wires has been provided in Ref. 17 and has shown
that the analysis of the WL leads to a reliable determination
of Lwire

� ; we will not elaborate more on this point since the
present analysis does not rely on it.

FIG. 1. (Color online) Phase coherence length Lwire
� as a function

of temperature, extracted from weak-localization measurements. The
solid line shows the theoretical fit to Eq. (2), using θ = 2/3. Inset:
Magnetoconductance of the wires measured at several temperatures.
Dashed lines represent the fits to Eq. (1).

The magnetoconductance measured in the ring presents
periodic oscillations. After substraction of a smooth back-
ground component, we obtain the characteristic Aharonov-
Bohm oscillations shown in Fig. 2(a). These oscillations are
�0 periodic with the magnetic flux, where �0 = h/e. This
corresponds to a field periodicity B0 = �0/(πr2

0 ) with r0

the mean radius of the ring. A Fourier transform of the
signal is then performed using a rectangular window; this
is presented in Fig. 2(b). A clear peak around B0 = 2.7 G
appears in the spectrum. From this value, we can extract
r0 = 2.17 μm, in excellent agreement with the lithographic
radius r0 = 2.13 μm.

In the following, we detail the procedure used to extract
the amplitude of the AB oscillations. As the width of the arms
of the ring is finite, all electron trajectories lying between
the inner radius r1 and the outer radius r2 of the ring can
participate in the oscillations. In addition, due to depletion
inherent in the fabrication process (etching), the inner and
outer radii are not the lithographic ones and the effective width
of the arms of the ring wring is smaller than w

ring
litho. We observe

a broadening of the Fourier peak between 1/B2 and 1/B1

[dashed lines in Fig. 2(b)] corresponding to B1 = �0/(πr2
1 )

and B2 = �0/(πr2
2 ). From these results, we can extract the

effective width wring = r2 − r1 = 360 nm; it corresponds to
a depletion length of 190 nm, in accordance with the value
reported elsewhere using another method on similar samples.17

The conductance oscillations are Fourier transformed over
a window [−50 G, + 50 G] (larger than the correlation
field estimated to be Bc ∼ 8 G). We clearly identify a peak
corresponding to the AB �0-periodic oscillations (Fig. 2): In
this case the AB amplitude is given by integrating this peak
as δG2

AB ∝ ∫
peak h/e

dK δG̃(K)2 where δG̃(K) is the Fourier
transform plotted in Fig. 2(b). Theoretically, we expect that,
for L

ring
� � L, δGAB depends on L

ring
� as14

δGAB � C
e2

h

LT

L

(
L

ring
�

L

)η

e−L/2L
ring
� , (3)

where LT = √
h̄D/kBT is the thermal length, L the perimeter

of the ring, and C a constant of order 1. The exponent η depends
on the nature of the contacts. If the ring is isolated it is equal to
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15 µm

(a)

(b)

FIG. 2. (Color online) (a) Magnetoconductance δG of the ring
measured at 55 mK, after substraction of a smooth background
signal. (b) Fourier transform δG̃ of the signal showing the �0 = h/e

periodicity at B0 (dotted line). The width of the main peak is
represented by the dashed lines and corresponds to the values 1/B1,2

for the inner and outer r1,2 radii of the ring. Inset: Scanning electron
microscope image of the ring.

η = 1/3.8,9,22 We now justify that this value is appropriate in
our samples. The 2D large contacts are connected to the ring
through relatively narrow constrictions of width of the same
order than wring. Because the motion is ballistic at the scale
of the contact (since �e > wring), forward scattering should
be favored for an electron winding inside the ring; i.e., the
probability to exit should be diminished, compared to the
diffusive contact with �e � wring. Note however that the value
of η will not affect strongly the fitting procedure for L

ring
� .

From the experimental data we can extract the phase
coherence length in the ring L

ring
� as a function of temperature.

Note that Eq. (3) is strictly valid only in the regime where L� <

πr0, the length of one arm of the ring. Indeed, in the opposite
case L� > πr0, electrons may explore the contacts with a
high probability, which affects the decoherence and strongly
modifies the L� dependence of the AB amplitude:9,22,23 For
this reason, our analysis only holds above T � 300 mK.

A direct comparison between Lwire
� (T ) and L

ring
� (T ) is

presented in Fig. 3. We observe that the two phase coherence
lengths differ both in absolute value and in temperature
dependence. By fitting the data we obtain Lwire

� ∝ T −0.33±0.01

FIG. 3. (Color online) Phase coherence lengths obtained in a wire,
Lwire

� , and in a ring, L
ring
� , as a function of temperature. The dashed

lines show the theoretical fit obtained with Eq. (2).

for the wire and L
ring
� ∝ T −0.49±0.09 for the ring.24,25 These

exponents are in perfect agreement with the theoretical
predictions Lwire

� ∝ T −1/3 6 and L
ring
� ∝ T −1/2 (Refs. 7–9).

We now recall simple arguments to understand the different
exponents.7–9,16 In Ref. 6, it is argued that decoherence results
from the randomization of the phase of a given electron by
the fluctuating electric field created by other electrons. Within
this picture an electron receives a phase �(t) ∼ ∫ t

0 dτ V (τ )
from the electric potential whose fluctuations are characterized
by the fluctuation-dissipation theorem

∫
dτ 〈V (τ )V (0)〉 ∼

e2TRt , where Rt is the resistance of the part of the sample
probed by the electron during a time scale t . It can be written
Rt ∼ x(t)/sσ0, where s is the section of the wire, σ0 the Drude
conductivity, and x(t) the distance covered by the electron.
The electronic phase presents a behavior with time given
by 〈�(t)2〉 ∼ ∫ t

0 dτ
∫ t

0 dτ ′ 〈V (τ )V (τ ′)〉 ∼ e2T t x(t)/sσ0. In a
long wire, the motion is of diffusive nature, x(t) ∼ √

Dt ,
leading to the phase diffusion 〈�(t)2〉 ∼ e2T t3/2

√
D/sσ0. We

extract the relevant time scale by writing 〈�(t)2〉 ∼ (t/τwire
� )3/2

with τwire
� ∝ T −2/3. In a ring, the winding trajectories are

ergodic and the length x(t) is simply the size of the system;
we thus obtain the behavior 〈�(t)2〉 ∼ e2T t L/sσ0 ∼ t/τ

ring
� ,

leading to the time scale τ
ring
� ∝ T −1. We may write the relation

between the two times as τ
ring
� ∼ (τwire

� )3/2/(τD)1/2, where
τD = L2/D is the Thouless time. The precise dimensionless
factor has been obtained by a careful analysis of the MC curve
in Refs. 8,9,16, and 22:

L
ring
� = 29/4

π

(
Lwire

�

)3/2

L1/2
, (4)

where L� = √
Dτ�. In Fig. 4 we check that L

ring
� (T ) and

Lwire
� (T ) extracted from the experiment obey relation (4)

with a very good accuracy. The experimental verification
of this relation definitely proves that the two temperature
dependencies of L�(T ) for the wire and for the ring emerge
from the same mechanism described in a coherent picture.7–9

Finally we comment on an issue which has been debated
in the past:8,26 For a given geometry, are the phase coherence
length obtained from weak localization (WL) and conductance
fluctuations (CF) identical? In Ref. 16, the measurement of
the WL of a large array of rings has led to L

ring,WL
� ∝ T −1/2.

041307-3



RAPID COMMUNICATIONS

THIBAUT CAPRON et al. PHYSICAL REVIEW B 87, 041307(R) (2013)

FIG. 4. (Color online) Experimental test of Eq. (4), from the phase
coherence lengths extracted from AB oscillations of the ring and WL
of the wire. The dotted line corresponds to 29/4/π � 1.514.

This corresponds quantitatively to L
ring,CF
� ∝ T −1/2 obtained

here. These two measurements therefore give an experimental
demonstration that the phase coherence lengths extracted from
WL and CF are indeed the same.27

In conclusion, we have measured the phase coherence
length L� in samples etched in 2DEG of two different
geometries by analyzing quantum corrections to the magneto-

conductance. We have been able to extract the temperature
dependence of the phase coherence length from the AB
harmonics of a single diffusive ring. The phase coherence
length obtained from this method presents the behavior L

ring
� ∝

T −1/2 different from the one obtained from the MC of a
long wire, Lwire

� ∝ T −1/3. This demonstration of the geo-
metrical sensitivity of the decoherence process by electronic
interactions emphasizes the very precise understanding of
the role of electronic interactions on low temperature phase
coherent properties of metals. In the present work, we have
been able to investigate ergodic trajectories in a nonergodic
temperature regime, T > 1/τ� > 1/τD , thanks to the selection
of winding trajectories by the magnetic field. An experimental
exploration of lower temperature is still desired: When τ� >

τD , quantum interferences involve large-scale properties which
affect the decoherence process.9 The investigation of the 0D
regime,10,11,30 1/T > τD , still remains a challenging issue.
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226801 (2009); Phys. Rev. B 81, 245306 (2010).

18V. K. Dugaev and D. E. Khmel’nitzkiı̆, JETP 59, 1038 (1984)
[Zh. Eksp. Teor. Fiz. 86, 1784 (1984)]; C. W. J. Beenakker
and H. Van Houten, Phys. Rev. B 38, 3232 (1988);
H. Van Houten et al., Surf. Sci. 196, 144 (1988).

19In Ref. 20, the study of the crossover between diffusive and
ballistic regimes in 2D samples has shown that the decoherence
rate is given by the addition of a term ∝T (2D-diffusive)
and a term ∝T 2 (ballistic) (Refs. 6 and 21). We assume that
diffusive and ballistic rates can also be added in the quasi-1D
geometry.

20B. N. Narozhny, G. Zala, and I. L. Aleiner, Phys. Rev. B 65, 180202
(2002).

21H. Fukuyama and E. Abrahams, Phys. Rev. B 27, 5976
(1983).

22C. Texier, Phys. Rev. B 76, 153312 (2007).
23V. Chandrasekhar, P. Santhanam, and D. E. Prober, Phys. Rev. B

44, 11203 (1991); K. Kobayashi, H. Aikawa, S. Katsumoto, and Y.
Iye, J. Phys. Soc. Jpn. 71, 2094 (2002).

24Measurements consistent with L� ∝ T −1/2 in similar samples were
mentioned in L. Angers, E. Zakka-Bajjani, R. Deblock, S. Guéron,
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