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Universal infrared absorbance of two-dimensional honeycomb group-IV crystals
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We show that the low-frequency absorbance of undoped graphene, silicene, and germanene has a universal
value, only determined by the Sommerfeld fine-structure constant. This result is derived by means of ab initio
calculations of the complex dielectric function for optical interband transitions applied to two-dimensional (2D)
crystals with honeycomb geometry. The assumption of chiral massless Dirac fermions is not necessary. The
low-frequency absorbance does not depend on the group-IV atom, neither on the sheet buckling nor on the orbital
hybridization. We explain these findings via an analytical derivation of the relationship between absorbance and
fine-structure constant for 2D Bloch electrons. The effect of deviations of the electronic bands from linearity is
also discussed.
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I. INTRODUCTION

The two-dimensional (2D) material graphene with its
honeycomb crystal structure, the characteristic π bonding,
and its peculiar band structure1 has lead to the discovery of
chiral massless charge carriers, the Dirac fermions.2,3 Among
the unique properties of graphene, the optical ones are of
special interest. A constant infrared dynamic conductivity and
optical absorbance have been predicted and also measured.4–8

It has also been demonstrated experimentally that visual trans-
parency of graphene is only determined by the Sommerfeld
fine-structure constant α = 1/137.036:6,7 because of Dirac
cones in the 2D band structure of graphene, its opacity
or absorbance is given by πα in the low-frequency limit.
This result has been obtained by means of the theory of
noninteracting isotropic Dirac fermions with pseudospin and
using the vector-potential gauge for the electromagnetic field
(see Refs. 6,9–11 and references therein). Recently, also an
effective fine-structure constant of freestanding graphene has
been measured in graphite.12

The question then arises if other 2D honeycomb crystals
based on group-IV elements could present the same remark-
able absorption feature at low frequency. Ab initio theory
predicts the stability of graphene-like 2D hexagonal silicon,
called silicene, and germanium, the so-called germanene.13

Differently from graphene, the Si- and Ge-based crystals are
buckled and do not show an sp2 hybridization but instead a
mixed sp2 − sp3 one. Despite a resulting buckling amplitude
�, the π and σ bands are still decoupled in silicene and
germanene, and Dirac cones are formed by the π and π∗
bands14 with zero gap at the corners K and K ′ of the 2D
Brillouin zone, although with a different slope and therefore
Fermi velocity compared to graphene. Interesting properties
have also been recently predicted for 2D honeycomb crystals
of silicon carbide,15 which, however, possess a large direct gap
at K and K ′ due to the symmetry breaking of the two sublattices
and the consequent charge transfer between Si and C atoms.
Hence, no Dirac cones are present in the electronic structure of
SiC layers. A gap is also opened and Dirac cones are destroyed
when hydrogenation leads to a full sp3 hybridization of the 2D
group-IV crystals.16

Very recently, the existence of silicene has been experimen-
tally demonstrated, at least in form of epitaxial sheets17,18 and
nanoribbons19,20 on silver surfaces and on diboride thin films.21

Apart from ab initio studies of the absorbance for vanishing
frequencies in a brief letter,22 neither theoretical predictions
nor measurements of the optical properties of silicene and
germanene are available.

In this paper, we study if the direct relation of the
absorbance to the fine-structure constant remains conserved in
the presence of real-structure effects such as the actual Fermi
velocity of the Dirac fermions and anisotropic deviations from
the linear wave-vector dispersion around the K and K ′ Dirac
points. The influence of the incomplete sp2 hybridization and
hence of the buckling of the honeycomb lattice is investigated
in the case of silicene and germanene. The effect of the gauge
of the electromagnetic field is discussed for vanishing photon
wave vectors. All issues are investigated using both ab initio
and analytic calculations of the dielectric function. Self-energy
and excitonic effects due to the electron-electron interaction8,23

in the sheet crystals are not taken into account.
The physical approaches and numerical methods are

described in Sec. II. Results of first-principles computations
including full band structures and analytical calculations for
Dirac particles are presented in Sec. III. Finally, in Sec. IV, a
brief summary and conclusions are given.

II. APPROACHES AND COMPUTATIONAL METHODS

A. Atomic structure and electronic states

Our calculations of the ground-state, electronic and op-
tical properties are based on the density functional theory
(DFT)24,25 as implemented in the Vienna ab initio simu-
lation package (VASP).26,27 Exchange and correlation (XC)
are described within the generalized gradient approximation
(GGA).28,29 Pseudopotentials for C1s2, Si1s22s22p6, and
Ge1s22s22p23s23p63d10 cores and all-electron-like wave
functions are generated within the projector-augmented wave
(PAW) method.30,31 The wave functions between the cores
are expanded in plane waves with a kinetic energy cutoff
of 500 eV. The isolated C, Si, and Ge honeycomb layers
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TABLE I. Lattice constant a and buckling amplitude � for group-
IV honeycomb crystals. The Fermi velocity vF is also listed.

C Si Ge

a (Å) 2.466 3.866 4.055
� (Å) 0.00 0.45 0.69
vF (106 m/s) 0.829 0.532 0.517

are simulated by a graphite-like superlattice arrangement
with a large superlattice period, i.e., a distance between two
adjacent layers of L = 20 Å. The integration over the flat and,
hence, two-dimensional Brillouin zone (BZ) is replaced by a
�-centered 64 × 64 × 1 k-point Monkhorst-Pack32 mesh.

In the electronic-structure and optical studies, self-energy
and excitonic effects are not taken into account. It has been
shown for graphene that in the energy range below 2 eV, where
the approximation of Dirac particles is valid, the influence
of the many-particle effects is negligible.8 At the Dirac
points, the quasiparticle effects vanish. Moreover, we will
show that the zero-frequency result is independent of the
absolute value of the Fermi velocity vF . Its renormalization
by self-energy effects8 is therefore not expected to affect the
low-frequency result. The Fermi velocities in Table I represent
values that are only slightly smaller than the velocity measured
for graphene.3 For silicene on silver substrates, a larger vF

value is measured17 especially because of the influence of the
metal. Of course, for higher photon energies in the range of the
interband critical points, the many-body effects will influence
the optical spectra. Nevertheless, in this energy region, a partial
compensation of quasiparticle and excitonic effects takes
place. While the quasiparticle self-energy effects give rise to
a blue shift of the transition energies, the screened attraction
of electrons and holes leads to a redshift. Consequently, the
Kohn-Sham eigenvalues and eigenfunctions25 are used in all
numerical calculations.

In general, the influence of the electron-electron interaction
on the optical polarization function, i.e., on its irreducible
part, in graphene is controversially discussed in the literature,
especially in the low-frequency limit. First-order perturbation
theory including self-energy and ladder diagrams seems to
give renormalizations in the order of percent (see Ref. 23 and
references therein). One result is the logarithmic renormal-
ization of the Fermi velocity. However, such logarithmic
divergences cannot be resumed in higher-order perturbation
theory, and also angle-resolved photoemission spectroscopy
of graphene does not show any evidence (see Ref. 33 and
references therein). The situation seems to be similar for
silicene and germanene. Despite their sheet buckling and the
partial sp3 bonding, the electronic states near the Dirac points
are still dominated by π states. For wave vectors near the
corner points of the BZ, the π and σ states are still decoupled
because of the point symmetry of the honeycomb lattice.14 The
difference to graphene is, however, that massless Dirac-Weyl
fermions only appear in smaller energy intervals around
the zero gap.22 Another important point is that spin-orbit
interaction becomes important. Especially for germanene with
a corresponding gap opening of about 24 meV,34 it seems to be
more important in the ω → 0 limit than the electron-electron
interaction being marginally irrelevant near the Dirac points.33

We focus in this work on undoped materials, and therefore
we neglect electron-plasmon interaction that was recently
shown to be promisingly exploitable for plasmonics using
doped graphene.35 The deviations from a constant absorbance
of graphene for measurements down to photon energies of
0.2 eV7 may indeed be reduced to a Drude behavior of free
carriers. However, here, no Fermi-level position in Dirac cones
is investigated. Consequently, band filling effects, which are
described by the Burstein-Moss shift in semiconductors with
finite gap36 are also not taken into account. Another source
of departure from the universal value of absorbance in the
far-infrared region is due to intraband transitions caused by
scattering with phonons.37 However, a direct absorption of
light by phonons is impossible since lattice vibrations in
graphene, silicene, and germanene do not span dynamical
dipoles. Therefore free carrier and phonon contributions do
not play a role in agreement with the experimental findings
for several samples (see, e.g., Nair et al.6). Here, we have only
to deal with the consequences of interband transitions for the
three studied 2D honeycomb crystals.

B. Frequency-dependent dielectric function

The optical properties of the 2D crystals are derived from
the in-plane dielectric function ε(ω) for normal incidence
in the independent-particle approximation38 for the used
superlattice arrangement. Here, we only study undoped 2D
group-IV crystals where the Fermi energy crosses the zero gap.
Therefore, in the low-temperature limit, only optical interband
transitions take place. The electrons and holes are described
as common fermions. The Bloch bands εν(k) with their full
wave-vector dispersion are taken into account. The optical
absorption is determined by the imaginary part of the dielectric
function written in form of the Ehrenreich-Cohen formula
for completely empty conduction (filled valence) bands ν = c

(ν = v):

ε(ω) = 1 + 8π

LA

∑
c,v

∑
k

|Mcv(k)|2

×
∑
β=±

1

εc(k) − εv(k) + β(h̄ω + iγ )
(1)

with A as the sheet area and L the distance between the sheets
in the periodic supercell arrangement. Within the longitudinal
approach,39 the optical transition matrix element is given by

Mcv(k) = limq→0
e
|q| 〈c; k|eiq·r|v; k + q〉 (2)

for a vanishing vector q (whose direction is later identified
with that of light polarization) with the Bloch functions |ν; k〉
(ν = c,v; k ε BZ).

Within the PAW approach, these functions are all-electron
wave functions. The corresponding Hamiltonian is local in
space and, hence, the dipole matrix element can be directly
related to the optical transition matrix element of the momen-
tum operator p, since the commutator of the Hamiltonian and
the space operator is related to the momentum operator p.38

Equation (2) can be rewritten as

Mcv(k) = eh̄

m

〈
c; k

∣∣ q
|q|p

∣∣v; k
〉

εc(k) − εv(k)
. (3)
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The appearance of the momentum-operator matrix element
can be also interpreted as the use of the transverse gauge of the
electromagnetic field. Varying the orientation of the photon
wave vector q, the full dielectric tensor can be determined.39

Here, only in-plane wave vectors are considered.
Sometimes the two different types of optical transition

matrix elements in Eqs. (2) and (3) are identified as the
consequence of different, longitudinal and transverse, gauges
of the electromagnetic field.39 This is in agreement with the fact
that for macroscopically isotropic systems (such as a sheet with
hexagonal symmetry) the longitudinal and transverse in-plane
dielectric functions are identical in the limit of vanishing
photon wave vectors.

The frequency-dependent electronic polarizability of an
isolated sheet can be derived from Eq. (1) by

α(ω) = L[ε(ω) − 1]/4π. (4)

The optical absorption in an isolated sheet is given by the
imaginary part of the 2D electronic polarizability Imα(ω) =
L Im[ε(ω) − 1]/4π = L Imε(ω)/4π , which is directly related
to the thickness-independent absorbance of such a sheet
A(ω) = 4πω

c
Imα(ω), i.e.,

A(ω) = ω

c
L Imε(ω) (5)

with c as the speed of light. We have calculated A(ω) and
the optical spectra using a refined Monkhorst-Pack mesh of
400 × 400 × 1 k points. A total of 16 bands is taken into
account. The low-energy limit of the absorbance is calculated
using a further refined, nonuniform hybrid mesh of k points
around K (or K ′) BZ boundary points (about 13 700 mesh
points) in a sector corresponding to the irreducible part with a
radius 0.05 2π/a.

III. RESULTS AND DISCUSSION

A. Geometry and electronic structure

The optimized atomic geometries have been obtained by
minimizing the total energy as a function of the lateral
lattice parameter a. At each value of the lattice constant
a, the atomic positions, for symmetry reasons, essentially
the sheet buckling �, were fully relaxed to reduce the
Hellmann-Feynman forces to values below 1 meV/Å. Results
are summarized in Table I. In the carbon case, the optimized
lattice is unbuckled (� = 0), whereas the minimum of the
total energy with a finite buckling � = 0.45 Å is lower in
energy for silicene. For germanene, only the buckled structure
is stable with � = 0.69 Å. For silicene and germanene, the
optimized buckling amplitudes are slightly smaller than the
value � = a/2

√
6 predicted for a complete sp3 hybridization.

Together with the buckling amplitudes, the resulting lattice
constants a = 2.47 Å (graphene), 3.87 Å (silicene), and 4.06 Å
(germanene) in Table I follow a clear chemical trend.

In general, our structural results are in agreement with
previous DFT calculations.13,40–43 In any case, the sheet
buckling in silicene and germanene exhibits strong deviations
from the sp2 hybridization of planar graphene toward an sp3

hybridization similarly to bulk Si and Ge crystallizing in
diamond structure. The deviations from the planar geometry
and the sp2 bonding are usually important for avoiding a

FIG. 1. (Color online) Interband transition energies along high-
symmetry lines in the BZ for graphene (a), silicene (b), and
germanene (c). The red horizontal lines indicate energies of van Hove
singularities which give peak structures in the absorbance in Figs. 2
and 5. The resulting joint densities of states D(ω) are displayed in
addition [in units of (eV)−1].

metallic character of the 2D honeycomb crystals, in particular
in the Ge case.44 Nevertheless, despite the buckling, the π

and σ bands remain decoupled in silicene and germanene for
symmetry reasons13 with the resulting gap to be zero as for
graphene.

The eigenvalues εν(k) of the Kohn-Sham equation25 are
used to illustrate the optical interband transition energies
�εcv(k) = εc(k) − εv(k) and the joint density of states (JDOS)
D(ω). Results for three honeycomb sheet materials are given
in Fig. 1. They illustrate how and with which joint density
of states the energy conservation is fulfilled in the optical
absorption for a given photon energy h̄ω. In the range of very
low photon energies, whose limit decreases along the row C,
Si, and Ge, the isotropic Dirac cones are also visible in the
joint band structure at K (or K ′). The Dirac cones give rise
to a linear increase of D(ω) in the low-energy region h̄ω.
For higher interband energies, the critical points k0 and van
Hove singularities ∇k[εc(k) − εv(k)]|k=k0 = 0 appear. Their
energies are indicated by horizontal lines in the interband
structure. They indeed give rise to spectral features in the JDOS
D(ω) beginning near 4.0 eV (graphene), 1.6 eV (silicene), and
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FIG. 2. (Color online) Ab initio calculated optical absorbance of
graphene (black solid line), silicene (red dashed line), and germanene
(blue dotted line) vs photon energy. The absorbance is normalized
to πα. The reduced infrared absorbance is depicted in the inset vs
photon-energy square.

0.9 eV (germanene). The weak intensity of the lowest van
Hove singularity for germanene at 0.9 eV related to the lowest
interband transition at � is due to its small effective interband
mass. Division of D(ω) by h̄ω makes this van Hove singularity
visible in the absorbance spectrum of germanene (see Fig. 2).

B. Low-frequency absorbance

The frequency dependence of the absorbance (5) is cal-
culated numerically from Eq. (1) for the dielectric function
using the ab initio electronic structure, more precisely the
band structure εν(k) and Bloch functions |ν; k〉. The obtained
interband structures are plotted in Fig. 1 in a small range of
photon energies for the three studied 2D crystals. The longitu-
dinal representation39 of the optical transition matrix elements
(2) has been used. First, we investigate the resulting infrared
absorbance as displayed in Fig. 2. Indeed, for graphene, we
observe the result, known from measurements6,7 and from
the theoretical prediction assuming Dirac fermions and the
vector-potential (transverse) gauge,6 that in the limit ω → 0,
the absorbance approaches to A(0) = πα (=0.022925) with
α = e2/h̄c in excellent agreement with the predicted value
and also in good agreement with the experimental findings for
practically undoped graphene.7,8 We find that this holds also
for silicene and germanene and that the numerical values are
A(0) = 0.02293 (graphene), 0.02290 (silicene), and 0.02292
(germanene). Hence the absorbance A(0) is independent of
the studied group-IV material and of the sheet buckling, i.e.,
of the strong deviations from the sp2 hybridization in silicene
and germanene. The reason is that the point-group symmetry
of a 2D honeycomb lattice is conserved independent of the
buckling amount.

The result in Fig. 2 has been found within a (normal)
Fermi-liquid approximation with optical interband transitions
between occupied and empty Bloch states. Important ingre-
dients are of course the linear k dispersion of interband
energies �εcv(k) = εc(k) − εv(k) (see Fig. 1) for extremely
small photon energies and precise values of the optical matrix

elements between pure π and π∗ bands at the corner points of
the BZ, k =̂ K or K ′, independent of the 2D material.

C. Matrix elements

The matrix elements for the lowest interband transitions
between the highest valence band v and the lowest conduction
band c are plotted in Fig. 3(a) along three high-symmetry lines
including the BZ boundary KM (or K ′M). For comparison,
the corresponding π and π∗ bands, that are involved in the
optical transitions, are shown in Fig. 3(b). Of course, away
from the BZ boundary near K or K ′ the first σ and σ ∗ bands
along the �M line and in its vicinity appear for silicene and
germanene close to the π and π∗ bands. In Fig. 3, the band
energies and the momentum matrix elements are normalized
to their characteristic values h̄vF π/a and m2v2

F , respectively,
in the Dirac-Weyl theory, i.e., near K (or K ′), in order to
demonstrate that in the studied energy and wave-vector regions
they are rather independent of the material.

Most important for the result A(0) = πα are the finite
interband transition matrix elements around K (or K ′) in

FIG. 3. (Color online) (a) Transition matrix elements of the
pure π − π∗ transitions along high-symmetry lines in the BZ for
graphene (black solid line), silicene (red dashed line), and germanene
(blue dotted line). The longitudinal representation (2) has been used
in the numerical calculations. (b) For illustration, the π and π∗ bands
that are involved in the optical transitions are also shown, indicated
by vertical arrows.
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Fig. 3(a). For their explicit computation, the longitudinal
representation (2) has been used. The results presented in
Fig. 3(a) are, however, rewritten as the momentum matrix
elements according to the relation between Eqs. (2) and
(3). They indicate that for low photon energies the optical
properties, which according to the interband structure and
the joint density of states are due to π → π∗ transitions,
are dominated by contributions from k points near the BZ
boundary along the MK (or MK ′) lines. The matrix elements
possess a maximum at an M point where, however, the
underlying atomic symmetry of the wave functions is modified
with respect to that at a K or K ′ point. The effects of the
group-IV material and the sheet buckling are small. More
precisely, at K and K ′ the momentum matrix-element squares
are the same in units of (mvF )2. Indeed, the numerical
treatments yield to values 0.995 (graphene), 0.995 (silicene),
and 1.004 (germanene) very close to the value 1 (see below)
expected. The numbers also illustrate the quality of the PAW
functions used for the calculation of optical properties.38 In
general, the normalized momentum matrix element appearing
in Fig. 3(a) only exhibits a weak wave-vector dispersion. At
M , a minor reduction occurs along the row C → Si → Ge,
whereas along K� and M� an opposite tendency is observed.
The chemical trends are in rough agreement with the energy
differences of the π and π∗ bands in Fig. 3(b). Along KM ,
the interband energies are increased, while they are slightly
reduced from K toward �.

D. Understanding within an analytical approach

The result A(0) = πα can be also analytically derived,
using the tight-binding method14,45 but restricting only to the
pz-orbitals and their nearest-neighbor interaction. Inserting
Eq. (1) into Eq. (5), for normal incidence, and, thus, in-plane
polarization of the light, the optical absorbance of a two-
dimensional crystal is described by

A(ω) = 8π2ω

cA

∑
c,v

∑
k

|Mcv(k)|2δ[εc(k) − εv(k) − h̄ω], (6)

where all interband transitions between Bloch states |v; k〉
with energy εv(k) and |c; k〉 with energy εc(k) are taken into
account. Within the transverse gauge, the transition matrix
elements Mcv(k) (3) are directly related to the momentum
matrix elements 〈c; k|px |v; k〉 and 〈c; k|py |v; k〉 of the in-
plane momentum operator.

In the limit of vanishing frequencies ω → 0, only the lowest
π∗-like conduction band c = + and the highest π -like valence
band v = − near K and K ′ points contribute to the interband
absorption (cf. Fig. 1). For symmetry reasons, honeycomb
crystals are optically isotropic for normal incidence. Together
with the replacement of the wave-vector sum in Eq. (6) by an
integral over the BZ one finds

A(ω) = αh̄

m2ω

∫
BZ

d2k
∑

j=x,y

|〈+; k|pj |−; k〉|2

× δ[ε+(k) − ε−(k) − h̄ω], (7)

where the Sommerfeld fine-structure constant α has been
introduced. The two bands of the lowest interband pair of
the studied 2D zero-gap semiconductors form Dirac cones at

the three K and three K ′ points koi (i = 1 − 6) (see Fig. 1).
Because of the energy conservation in Eq. (6) we restrict the k
integral to these six important regions in the BZ from which the
principal contributions to the optical absorption are expected
for low photon energies. Thereby, we have to take in mind that
groups of three K (K ′) points are equivalent and only one third
of each environment of a K (K ′) point belongs to the BZ. So
we have in total to study only two nonequivalent koi (one K

and one K ′) points with their full environment. Because of the
convergence of all integrals we extend these environments to
infinite.

The bands in Fig. 3(b) forming the Dirac cones at each koi

are

ε±(koi + �k) = ±h̄vF |�k| (8)

with �k = k − koi . The Fermi velocity vF in Table I charac-
terizes the linear band dispersion. Then, Eqs. (7) and (8) give
rise to

A(ω) = αh̄

m2ω

2∑
i=1

∑
j=x,y

∫
d2(�k)

× |〈+; koi + �k|pj |−; koi + �k〉|2
× δ(2h̄vF |�k| − h̄ω). (9)

The strength of the optical transitions between the Dirac cones
of electrons and holes is determined by the squares of the
momentum matrix elements between the valence band v = −
and the conduction band c = + [see Fig. 3(a)]. We investigate
them near a K (or K ′) point koi . We assume [and indeed we
numerically found in Fig. 3(a)] that the transitions, despite their
vanishing excitation energy, are dipole-allowed at k = koi .
Their strength is given by D = ∑

j=x,y |〈+; koi |pj |−; koi〉|2.
At such a Dirac point koi , in the limit �k → 0, the two
Bloch functions |+; koi〉 and |−; koi〉 approach to each other
(apart from a phase factor). This is shown in Fig. 4 where the
squared moduli of the eigenstates are depicted for silicene.
The squares are identical for the lowest unoccupied state

FIG. 4. (Color online) Wave-function squares in silicene for the
highest occupied π state (a) and the lowest unoccupied π∗ state (b) at
K . The atomic positions in the isolated Si sheet indicate the buckled
honeycomb geometry.
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and the highest occupied state as well as for K and K ′ (not
shown). Their symmetry and the maxima to find an electron
or hole are identical. This can also be immediately seen using
a tight-binding approximation with pz orbitals localized at A

and B atoms.14 Consequently, at K or K ′, the strength can be
approximately replaced by D = ∑

j=x,y |〈±; koi |pj |±; koi〉|2,
i.e., formally by intraband transition matrix elements. For
intraband matrix elements, it however holds 〈ν; k|p|ν; k〉 =
m
h̄
∇kεν(k). Together with Eq. (8) then the total strength is

found to be

D = (mvF )2 (10)

in complete agreement with the ab initio calculations in
Fig. 3(a). This result also follows within the nearest-neighbor
tight-binding approximation if the parameter M as defined
by Grüneis et al.14 is related to the Fermi velocity as |M| =√

8
3mvF .
With the value (10) of the momentum matrix elements at a

K or K ′ point it follows from Eq. (9) in the vanishing frequency
limit,

A(ω) = 2
h̄v2

F

ω
α

∫
d2(�k)δ(2h̄vF |�k| − h̄ω). (11)

Interestingly, similar integrals appear in a time-dependent
formulation of the response of Dirac-Weyl particles.11 Finally,
we obtain

A(ω) = 2
h̄v2

F

ω
α

πω

2h̄v2
F

= πα. (12)

In the limit of vanishing optical transition energies, the
crystal-material dependence in the matrix elements and that
in the interband energies compensate each other. Indeed, the
infrared absorbance is determined by a universal constant, the
Sommerfeld fine-structure constant for all honeycomb crystals
formed by only one group-IV element.

E. Corrections to the infrared absorbance for ω > 0

In order to obtain an analytical result that remains valid also
for ω > 0, we improve the band dispersion, more precisely,
take deviations from the isotropic Dirac cones into account, but
also account for the wave-vector dispersion of the transition
matrix elements away from the Dirac points K and K ′. In
the tight-binding approximation with first nearest-neighbor
interaction, one finds instead of ε+(k) − ε−(k) = 2h̄vF |�k|
in Eqs. (8) and (9) the corrected π − π∗ interband energies

ε+(k) − ε−(k) = 2h̄vF

2√
3a

|f (k)| (13)

with the structure factor

f (k) = exp

(
i

√
3a

2
kx

)
+ 2 cos

(a

2
ky

)
. (14)

Correspondingly, the optical matrix elements are given by

〈+; k|pj |−; k〉 = mvF√
3a

2i

|f (k)|Im

[
f ∗(k)

∂

∂kj

f (k)

]
. (15)

For the K- and K ′-point contributions to Eq. (9), we expand
Eqs. (13) and (15) to the second order in the wave-vector

deviation �k from such a high-symmetry point. It means that
the nonlinearity and anisotropy of the interband Dirac cones
as illustrated in Fig. 1 are taken into account,46

ε+(k) − ε−(k) = 2h̄vF |�k|
[

1 ± a

4
√

3
sin(3ϕ)|�k|

]
. (16)

In addition, also the anisotropic wave-vector dispersion of the
matrix elements in Fig. 3(a) contributes according to∑

j=x,y

|〈+; k|pj |−; k〉|2 = m2v2
F

[
1 ± a√

3
sin(3ϕ)|�k|

+ 1

6
a2 cos2(3ϕ)|�k|2

]
. (17)

As a result of integration of Eq. (9) using the polar coordinates
|�k| and ϕ, we obtain the first nonvanishing frequency-
dependent correction to the absorbance according to

A(ω) = πα[1 + β2(h̄ω)2] (18)

with β =
√

3a
8h̄vF

. This result indicates a parabolic deviation with
respect to ω from the zero-frequency value of the absorbance.
Nearly the same contributions to the prefactor come from the
interband dispersion (5/64) in Eq. (16) and the matrix-element
variation (4/64) in Eq. (17).

Indeed, in agreement with the analytical results, above
ω = 0 the ab initio calculated absorbance increases ∼ω2 as
indicated in the inset of Fig. 1. According to the analytical
studies, this trend is mainly a consequence of the deviation of
the π − π∗ interband energies (13) and dipole matrix elements
(15) from the linearity and isotropy of the Dirac particles.
The qualitative agreement of the ab initio computations (6)
in Fig. 2 and tight-binding calculations (7) is underlined
by the fit values from the curves in the inset of Fig. 2,
β = 0.23, 0.62, and 0.58 (eV)−1 and the values β = 0.10,
0.23, and 0.30 (eV)−1 calculated by the expression (7), but
with improved energies (16) and improved matrix elements
(17), for graphene, silicene, and germanene, respectively. As a
consequence, the quadratic term in the tight-binding result
for the low-frequency absorbance (18) underestimates the
dispersion deviations from the Dirac cones compared to the
ab initio results for the absorbance in Fig. 2.

The deviations in the absolute values are mainly a conse-
quence of the neglect of the second- and more distant-neighbor
interactions in the tight-binding approach. The deviations from
a chemical trend along the row C→Si→Ge of the ab initio
calculated β values are a consequence of the deviations of
the real electronic structure with respect to the Dirac-cone
behavior [see Figs. 3(a) and 3(b)]. Figure 1 shows that in
germanene the first minimum at � appears for lower energies
than the saddle point at M , in contrast to silicene and graphene.

F. Region of van Hove singularities

In contrast to the behavior in the infrared spectral region in
Fig. 2, the absorbance shows completely different frequency
variations for the three 2D honeycomb materials graphene,
silicene, and germanene in the visible and ultraviolet spectral
regions, as shown in Fig. 5. The main reason is related to
the different band structures [see Fig. 3(b)], especially the
interband ones in Fig. 1. The van Hove singularities in the
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FIG. 5. (Color online) Spectral absorbance (in units of πα) for
graphene (black solid line), silicene (red dashed line), and germanene
(blue dotted line).

joint density of states in Fig. 1 and the energy dependence
of the optical matrix elements determine the lineshape of the
absorbance. The peaks and shoulders in A(ω) can be almost
related to minima (M0), maxima (M2) or saddle points (M1)
in the 2D interband band structure and JDOS47 (as indicated
by dotted horizontal lines in Fig. 1), respectively. Because of
the strong transition strength at the M point in the 2D BZ [see
matrix elements in Fig. 3(a)] the saddle point in the difference
εc(k) − εv(k) of the lowest conduction band (π∗-like) and
highest valence band (π -like) gives rise to a pronounced peak
at 4.0 eV (graphene), 1.6 eV (silicene), or 1.7 eV (germanene).
Of course, the true position should be somewhat shifted to
higher energies due to quasiparticle and excitonic effects, e.g.,
by 0.5 eV as shown for graphene.8 The other spectral features
appearing for silicene and germanene can be also explained
in terms of the joint band structure and density of states in
Fig. 1. The right-handed step at h̄ω = 0.9 eV for germanene is
in agreement with the 2D nature and the minimum character of
the lowest interband transitions at �. The absorbance feature
near h̄ω = 3.1 eV is related to manifold contributions from
M0, M1, and M2 at the �M and MK lines (see Fig. 1),
enforced by high JDOS due to several band crossings. The

most pronounced structure in the spectrum for silicene at
h̄ω = 3.9 eV is mainly related to the M2 maximum of the
interband transition energy at the �M line. However, there are
also contributions from M0 singularities at �, M , and K points
as well as M1 on the MK lines. Also the remaining features
in the spectra of Fig. 5 can be approximately related to critical
points and van Hove singularities in Fig. 1.

G. Gauge invariance of absorbance

The absorbance of the three 2D crystals graphene, silicene,
and germanene is displayed in Fig. 6 versus a wide range
of photon energies. The two different gauges of the elec-
tromagnetic field expressed by the two types of transition
matrix elements (2) and (3) have been used. The figure
clearly demonstrates that within the used PAW approach the
longitudinal and transversal expressions for the frequency-
dependent absorbance yield identical results for the energy
positions of the spectral features as peaks and shoulders. This
is a consequence of the identical joint density of states used.
However, also the peak heights are more or less independent of
the used description of the transition matrix elements, at least
for C- and Ge-based sheets. This fact numerically confirms
the assumption that the PAW approach generates all-electron
wave functions and eigenvalues for the valence and conduction
states.38 The fictitious all-electron potential is local in space
and hence leads to the strict relation between the matrix
elements in Eqs. (2) and (3). Only for Si the peak intensities
are slightly reduced when the longitudinal expression is
applied for A(ω). The same effect has been observed for the
absorption spectra of bulk silicon.39 The deviation is mainly
a consequence of the numerical description. The authors39

argued that the discrepancies between the two gauges may
be compensated by the inclusion of d state projectors and d

one-center terms within the PAW spheres.

IV. SUMMARY

Summarizing, we have studied the optical absorbance
of the 2D honeycomb crystals graphene, silicene, and ger-
manene by ab initio and analytical calculations within the

FIG. 6. (Color online) The frequency-dependent absorbance for (a) graphene, (b) silicene, and (c) germanene. Besides the longitudinal
gauge (2) (black solid line) also the transversal gauge (3) (red solid line) has been used.
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independent-particle approach. We started with the full elec-
tronic structure of the sheets as derived within the common
Fermi-liquid picture, i.e., with 2D Bloch bands and Bloch
wave functions. In the limit of vanishing frequencies, we found
A(0) = πα as predicted for chiral massless Dirac fermions.
This result is explained by an isotropic linear band structure
around the six K and K ′ Dirac points and optical interband
matrix elements at these points which can be universally
related to the Fermi velocity vF of the 2D material, i.e., to
the slope of the linear bands. This result is independent of
the longitudinal or transverse gauge of the electromagnetic
field and universal for all group-IV crystals independent of the
value of vF , the degree of sp2 and sp3 hybridizations, and the
sheet buckling. The lowest optical π − π∗ transitions at K and
K ′ are dipole-allowed. For higher frequencies, the absorbance
spectra start to deviate significantly with the group-IV material.
We have related this fact mainly to deviations from the

Dirac-cone behavior of the interband energies and the cor-
responding matrix elements for higher photon energies. The
low-lying van Hove singularities in the joint density of states
are however observable for photon energies in the visible and
ultraviolet spectral regions.
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