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Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures
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A rigorous derivation is given for the thermal conductivity accumulation function and mean free path (MFP)
spectrum of an isotropic bulk material. The key physical insight is to express the kinetic theory integral in terms
of MFP rather than frequency. Extending this framework to incorporate boundary scattering in nanostructures
leads to an integral equation that transforms a material’s bulk MFP spectrum into the size-dependent thermal
conductivity of the nanostructure. The kernel of this transform represents the boundary scattering rule for the
particular type of nanostructure. The principal benefit of this transform is that it requires only a single function,
the material’s bulk MFP spectrum, or equivalently its accumulation function. Explicit knowledge of the material’s
dispersion relation and frequency-dependent bulk MFPs is not needed, nor is a summation over polarizations,
because the bulk MFP spectrum already contains this information in exactly the form required to evaluate
boundary scattering. The utility of this framework is demonstrated through a case study of six models for the
phonon thermal conductivity of silicon: three analytical, one gray, and two numerical.
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I. INTRODUCTION

The thermal conductivity of a nanostructured material can
be greatly reduced compared to its bulk counterpart due to
the increased scattering of energy carriers (e.g., phonons, elec-
trons, photons, gas molecules) at the nanostructure surfaces, as
in wires,1 films,2,3 porous4 and nanocrystalline5 materials, etc.
Thermal transport in such nanostructured materials is relevant
for a broad range of applications in energy conversion,6

sensors,7,8 microelectronics,9 and lasers.10 The key physics
that determines the importance of this boundary scattering
is the comparison between the characteristic length of the
nanostructure and the bulk mean free paths (MFPs) of the
energy carriers. Thus it is very helpful to have a detailed
quantitative understanding of which bulk MFPs are important
in a given material.

The most common formulas for the bulk thermal con-
ductivity are based on kinetic theory, which can be derived
from the Boltzmann transport equation in the relaxation
time approximation.11,12 The polarization dependence and
frequency dependence of the heat capacity, group velocity, and
MFPs are readily accounted for using a summation and inte-
gration, respectively. Recently, a new perspective expressing
the thermal conductivity integral in terms of MFPs rather than
frequency has been developed.13–22 The main benefit of this
MFP spectrum approach is that it quantifies the contribution
of every MFP to the bulk thermal conductivity. An equivalent
concept is the thermal conductivity accumulation function,
which is the normalized integral of this MFP spectrum. The
resulting distributions visually and intuitively show which
ranges of MFPs are most important for thermal conductivity,
information which is not readily apparent in the traditional and
complementary approach of plotting the MFPs as functions of
frequency.

Although the concept of a MFP spectrum applies to
heat conduction by all types of energy carriers, most prior
work has focused on calculations for phonons, including
MFP distributions for analytical models13,15 and numerical
results from molecular dynamics (MD) simulations14 and
first-principles (1stP) calculations based on density functional

theory.12,17,20,21 Measurements of portions of the phonon MFP
distribution are also beginning to be reported for silicon18 and
several semiconductor alloys,19 although analyzing the raw
data requires certain assumptions which, although plausible,
have not yet been rigorously proven.

Here, we revisit the concept of the bulk MFP spectrum and
show how it is also useful for understanding nanostructures.
This paper has three major objectives. First, we rigorously red-
erive the expressions for the bulk MFP distribution and thermal
conductivity accumulation function first given by Dames and
Chen,13 identifying the major assumptions and restrictions,
not all of which were noted previously. Then we derive an
integral transform which, given a bulk MFP distribution and
a boundary scattering law, yields the thermal conductivity of
a nanostructure as a function of its characteristic length. As
summarized in Fig. 1, this integral equation does not require
any explicit knowledge of the carrier’s dispersion relation
or frequency-dependent scattering laws and thus represents
a quantitative application of the MFP spectrum beyond its
more common use for visualizing MFP distributions. Finally,
to demonstrate these concepts we present a detailed case study
of the phonon thermal conductivity of bulk and nanostructured
silicon, revealing major differences among the MFP spectra of
three common analytical models (Callaway,23 Holland,24 and
Born–von Karman-Slack13), an MD simulation,14 and a 1stP
calculation.20

II. THEORETICAL FRAMEWORK

A. Bulk MFP spectrum and thermal conductivity accumulation
function

Our starting point is the kinetic theory integral for the
thermal conductivity of an isotropic bulk material,

κbulk =
∑

s

∫ ∞

0

1

3
Cv�bulkdω, (1)

where C is the volumetric specific heat capacity per unit
frequency, v is the group velocity, �bulk is the bulk MFP,
ω is the frequency, and s indexes the polarizations. The
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FIG. 1. The framework of using a MFP spectrum (or, equiva-
lently, accumulation function) to model the thermal conductivity of
an isotropic bulk material and a corresponding nanostructure. The
multiple arrows at top left suggest multiple polarizations s. Other
variables are defined in the main text.

most important assumption of this work is that the dispersion
relation and bulk MFPs are well-approximated as isotropic.
From symmetry considerations this assumption is exact for
gases (e.g., molecules, photons, free electrons), as well as
electrons and phonons in amorphous materials. In crystalline
materials the dispersion relation of electrons and phonons
depends on direction and a more general form12 of Eq. (1) is
appropriate, even if κbulk itself is isotropic (as in crystals with
cubic symmetries). Nevertheless, such dispersion anisotropies
are commonly neglected in models of the thermal conductivity
that have been shown to agree well with experiments in
cubic crystals as well as noncubic crystals that are only
weakly anisotropic,23–28 and the present work is limited to
materials where this isotropic approximation is acceptable.
Furthermore, to ensure that the only subcontinuum effects are
due to boundary scattering and not ultrafast phenomena, the
analysis is restricted to heat transfer problems that are steady,
or if unsteady involve transients that are slow compared to the
carrier relaxation times τ .

To focus the theoretical framework on the bulk MFPs,
we formally change the integration variable from ω to �bulk,
obtaining

κbulk = −
∑

s

∫ ∞

0

1

3
Cv�bulk

(
d�bulk

dω

)−1

d�bulk. (2)

The negative sign arises from swapping the limits of integra-
tion, because the dominant trend of d�bulk/dω is negative, and
the final value of κbulk will still be positive.

Physically, the change of variables in Eq. (2) can be
understood as changing to a different labeling scheme for
the energy carriers. In general, four numbers are required
to uniquely specify a carrier, for example, {qx,qy,qz,s} or
{q,θ,φ,s}, where q is the wave vector of magnitude q and
direction (θ,φ). It is common to use the dispersion relation
ω = ω(q,s) to change the labeling scheme to {ω,θ,φ,s}.
The change of variables in Eq. (2) is equivalent but instead
uses the bulk scattering function �bulk = �bulk(q,s) to get a
{�bulk,θ,φ,s} scheme. Then, with the key assumption that
ω(q,s) and �bulk(q,s) are approximately isotropic, the labeling
scheme reduces to simply {�bulk,s}. That is, every energy

carrier is uniquely identified by its bulk MFP and polarization
branch.

For fixed s, often �bulk is a smooth, monotonically
decreasing function of ω. In cases where �bulk(ω,s) is not
monotonic in ω, the inverting function ω(�bulk,s) will be
multivalued and there may appear to be an ambiguity in the
{�bulk,s} labeling scheme. However, this is easily remedied
by breaking the offending polarization branch into piecewise
monotonic sections and increasing the number of branches
in the index list s accordingly. This remedy of piecewise
integration can also be used to avoid any singularities which
arise at points where d�bulk

dω
= 0.

Returning to Eq. (2), because the integrals converge we
apply Fubini’s theorem to exchange the orders of summation
and integration and write

κbulk =
∫ ∞

0
K�d�bulk, (3)

where

K� = −
∑

s

1

3
Cv�bulk

(
d�bulk

dω

)−1

(4)

is the thermal conductivity per MFP, with SI units (W/m2 K).
This function13 is known as the MFP distribution or MFP
spectrum for the bulk thermal conductivity. By definition, the
quantity K�(�bulk) · d�bulk represents the differential thermal
conductivity due to those energy carriers with MFPs between
�bulk and �bulk + d�bulk.

A complementary perspective is the thermal conductivity
accumulation function,

α (�α) = 1

κbulk

∫ �α

0
K�d�bulk, (5)

which represents the fraction of the total thermal conductivity
due to carriers with MFPs less than �α . Thus, the range �0.1 <

�bulk < �0.9, analogous to the 10%–90% rise time of a signal
on an oscilloscope, is one useful guideline to the range of bulk
MFPs that are important for heat conduction in a given system:
80% of the thermal conductivity is carried by particles with
MFPs in this range, with only 10% carried by MFPs shorter
than �0.1 and another 10% carried by MFPs longer than �0.9.

Equations (4) and (5) are the first major results of this paper.
These equations quantify the range of MFPs that contribute
to heat conduction, which traditionally was described mainly
through a single lumped “gray” or effective MFP,

�gray = κbulk

/ (∑
s

∫ ∞

0

1

3
Cvdω

)
. (6)

This is equivalent to a MFP distribution that is a Dirac δ

function with weight κbulk centered on �gray. Such a gray
MFP model is a good approximation in systems where the
real MFP distribution is narrow, including ideal gases29 and
free electron gases. However, in other systems with strongly
frequency-dependent scattering, the distributions can be quite
broad. For example, as we discuss further in Sec. III, phonons
in semiconductor crystals and alloys are generally believed to
have MFP distributions typically spanning two or more orders
of magnitude from �0.1 to �0.9.13–15,18–21
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B. An integral transform to relate bulk and nanostructures

We now shift attention from bulk to nanostructures and
make the common assumption that wave confinement effects
are negligible. This is generally appropriate as long as
the structure’s characteristic length Lc is much larger than
the thermal wavelengths of the energy carriers13,30,31 and
there is sufficient roughness or disorder to wash out any
coherence effects. Thus, the group velocity and spectral heat
capacity in the nanostructure are identical to those in bulk,
so the only effect of the nanostructuring is to reduce the
effective MFP �nano by scattering at boundaries and interfaces.
Thus, the nanostructure thermal conductivity is commonly
written3,5,13,32,33

κnano,t =
∑

s

∫ ∞

0

1

3
Cv�nanodω, (7)

where �nano(ω,s) < �bulk(ω,s) and the subscript t indicates
the “type” of geometry (such as a wire, film, etc.). We again
change variables from ω to �bulk and rearrange to obtain

κnano,t =
∫ ∞

0

[
−

∑
s

1

3
Cv�bulk

(
d�bulk

dω

)−1
]

�nano

�bulk
d�bulk,

(8)

where the term in square brackets is exactly the bulk MFP
spectrum K� from Eq. (4), an important feature we return to
shortly. Recall that physically this change of variables from
ω to �bulk is equivalent to choosing to label each carrier by
its polarization and bulk MFP, even though now that carrier’s
MFP in the nanostructure is reduced to �nano.

There is a deep physical reason for choosing �bulk as
the independent variable in Eq. (8), rather than τ bulk, ω, q,
wavelength λ, or indeed any other quantity. The key is in the
functional dependencies of the effective MFP �nano. �nano

obviously must depend on Lc and the type of nanostructure
(wire, film, etc.). More importantly, we recognize the very
general result that �nano transitions between bulk and strongly
confined behaviors depending primarily on the comparison
between Lc and �bulk. Therefore, the simplest, and also very
common, situation is that �nano is a function exclusively
of Lc and �bulk. In this case, from basic considerations of
dimensional analysis the functional relationship between these
three length scales must be expressible in the form

�nano

�bulk
= Bt

(
�bulk

Lc

)
= Bt (Kn) . (9)

Here Bt is some function to be determined that depends only
on the type of nanostructure and on the ratio �bulk/Lc. Note
that this reasoning has nothing to do with Matthiessen’s rule
and that the ratio �bulk/Lc is the Knudsen number, Kn.

Thus, of all possible quantities to label an energy carrier, it
is uniquely �bulk that has the strongest physical connection to
the processes of boundary scattering. Indeed, for a wide variety
of geometries the most common boundary scattering laws for
�nano can be written in the form of Eq. (9) without any other
explicit dependence on polarization, group velocity, frequency,
etc. Examples include wires of arbitrary cross section,34–36 thin
films both in-plane and cross-plane,37–40 porous media with
arbitrary pore shapes and distributions,15 and simple models

of grain boundary scattering.5,41,42 Equation (9) will also result
for the combined effect of scattering by bulk and surface mech-
anisms in single-phase structures with arbitrarily complicated
geometries and with surface roughness, as long as all of the
important energy carriers experience the same specularity, p,
representing the probability of specular scattering.43 Such a
constant p approximation has been used for wires43 and thin
films.37,38

The most common breakdown of the functional form of
Eq. (9) is when p varies substantially with the wavelength of
the important energy carriers, as in the transition between
specular and diffuse scattering for a surface of roughness
δ comparable to the thermal wavelengths.5,43,44 In this case
Eq. (9) could be generalized to Bt (Kn, λ

δ
), although such

scattering laws would no longer be compatible with the
analysis in the remainder of this section. If δ is either much
smaller or much greater than the thermal wavelengths, then
p should be a constant for all important energy carriers, the
wave nature again should be negligible, and the form of Eq. (9)
recovered.

Proceeding, we restrict the analysis to those many systems
whose boundary scattering laws can be expressed in the form
of Eq. (9) and assume that the function Bt (Kn) is known. In
this case the nanostructure thermal conductivity in Eq. (8)
becomes

κnano,t =
∫ ∞

0
K�Btd�bulk. (10)

Equation (10) has a counterpart in terms of the accumulation
function. Integrating Eq. (10) by parts and using Eq. (5) gives

κnano,t = κbulk[α(�bulk)Bt ]
�bulk=∞
�bulk=0

− κbulk

∫ �bulk=∞

�bulk=0
α(�bulk)dBt . (11)

From the definition of accumulation, α(�bulk) = 0 when
�bulk = 0. Furthermore, Bt → 0 as �bulk → ∞ because in
this limit boundary scattering always dominates regardless of
the type of geometry, causing �nano � �bulk. Thus, Eq. (11)
simplifies to

κnano,t = −κbulk

∫ ∞

0
α (�bulk)

dBt

d�bulk
d�bulk. (12)

As noted above, in the present work the boundary scattering
function Bt (�bulk,Lc) is considered known,5,34,36,37 with two
specific examples given later in Secs. III C and III D for a
wire and film, respectively. As with Eq. (2), the negative
sign in Eq. (12) will be cancelled because the dominant
trend of Bt (�bulk) at constant Lc must be of negative dBt

d�bulk
.

Two examples of this trend are shown in Fig. 2 for the
simple cases of heat conduction along a round wire and in
the plane of a film. The exact expressions used for Bt are
given later in Eqs. (16) and (17). To obtain a consistent
nondimensional representation of dBt

d�bulk
we normalize �bulk in

the denominator by Lc, yielding dBt

dKn . In the limit of very large
structures, Lc � �bulk, it is obvious that boundary scattering
is negligible and thus �nano → �bulk, so Bt → 1. Conversely,
in the limit of very strong boundary scattering, Lc � �bulk,
clearly �nano � �bulk and thus Bt must asymptote towards
zero. Therefore, Bt very generally decreases from 1 to 0 with
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FIG. 2. (Color online) Two examples of the effect of Knudsen
number on (a) �nano, (b) the integral transform kernel Bt , and
(c) its derivative dBt

d�bulk
. Quantities are nondimensionalized by the

nanostructure’s characteristic length Lc, taken as the nanowire
diameter and film thickness, both of which are assumed diffuse.

increasing �bulk, confirming that the dominant behavior of
dBt

d�bulk
is negative.

Equations (10) and (12) are the second major result of this
paper. We recognize both as Fredholm integral equations of
the first kind. Equation (10) transforms the bulk MFP spectrum
K�(�bulk) to the size-dependent nanostructure conductivity
κnano,t (Lc) by means of the kernel Bt . Similarly, Eq. (12)
transforms the bulk accumulation function α(�bulk) to κnano,t

(Lc) using the kernel dBt

d�bulk
.

The flowchart in Fig. 1 summarizes this approach. We
emphasize that the theoretical development so far is general
and applies to all types of energy carriers, provided their
bulk dispersion relations and bulk MFPs are approximately
isotropic. As a concrete example of the utility of this approach,
consider the phonon thermal conductivity of silicon. For
bulk silicon some of the most accurate models are based
on 1stP calculations12,20,21 or MD simulations14 and thus
lack any compact analytical form. After making the isotropic
approximation, the traditional way to extend such models to
predict the thermal conductivity of, for example, a nanowire is
based on Eq. (7). This requires detailed numerical information
about 12 functions from the bulk model: the 6 dispersion
branches ω(q,s) and 6 scattering laws �bulk(ω,s). Here the
key advantage of writing the kinetic theory integral in terms
of MFPs rather than ω becomes apparent: As shown in Fig. 1,
Eq. (10) or (12) requires only a single numerical function from
the bulk model, namely its MFP spectrum K� or, equivalently,
its accumulation function α. The information from the six dis-
persion branches and six scattering laws is not lost, but rather is
collapsed into the bulk MFP spectrum [recall Eq. (4)] in exactly
the form needed for the nanostructure calculation. Thus, if
we can obtain the MFP spectrum or accumulation function
of a bulk material—whether from an analytical solution,13,15

numerical model,12,14,17,20,21 or experiments18,19—given any
boundary scattering law Eq. (9) we can also evaluate the
thermal conductivity of the corresponding nanostructure.

C. Comparison of MFP spectrum and accumulation
function approaches

We have seen that K� and α are both equally valid for
visualizing a bulk MFP spectrum as well as transforming it
to a nanostructure’s thermal conductivity using Eq. (10) or
(12). However, there are certain practical reasons to prefer α

and Eq. (12). First, for distributions that span more than one
order of magnitude in �bulk, the accumulation function is far
more convenient for visualizing the breadth of the distribution
because the ordinate is expressed directly as a fraction of the
total thermal conductivity. On the other hand, plots of K�

require mentally integrating the area under the curve, which
is prone to misunderstanding if a logarithmic abscissa axis is
required to cover a large range of �bulk.

The second reason why Eq. (12) may be preferred is
related to numerical accuracy. Note that Eq. (12) involves
the integral of K� (namely, α) and the derivative of Bt ,
while Eq. (10) involves the derivative of α (namely, K�)
and the integral of dBt

d�bulk
. Note also that the current numer-

ical formulations14,15,17,20,21 and experimental estimates18,19

of the MFP distribution arise most fundamentally from an
accumulation perspective, α(�bulk), and thus the numerical
differentiation to generate K� is expected to introduce some
numerical noise. On the other hand, the expressions for Bt are
always analytical, so generating dBt

d�bulk
should not introduce any

additional noise. Therefore, for numerical reasons the form of
Eq. (12) is expected to be preferable to Eq. (10).

D. Gray approximation

The gray model is a common simple approximation where
at any given temperature the bulk MFPs are all assumed to
take the same gray value, �gr. Thus, the thermal conductivity
spectrum is a δ function, K� = κbulkδ(�bulk − �gr), and the
accumulation function α is a Heaviside step function, α =
H (�bulk − �gr). Applying either Eq. (10) or Eq. (12) shows
that this leads to the nanostructure thermal conductivity,

κnano,gr = κbulkBt

(
�gr

Lc

)
= κbulkBt (Kngr), (13)

where Kngr is the Knudsen number of the gray medium.

III. CASE STUDY: PHONONS IN Si

In this section we apply the above concepts to interpret six
models of the phonon thermal conductivity of silicon: three
analytical, one MD,14 one 1stP,20 and a simple gray model
for comparison. For the analytical models we use three of the
most common: Callaway,23,27,32,45 Holland,24 and Born–von
Karman-Slack (BvKS).25,33 Details of our implementation of
these models are given in Appendix A, including a modi-
fication of the Callaway model with an umklapp scattering
law appropriate for all temperatures. Below we present the
bulk MFP spectra of these six models and apply the integral
transform of Eq. (12) to calculate the corresponding size-
dependent thermal conductivity of nanowires and thin films.
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FIG. 3. (Color online) Comparison between three analytical mod-
els (lines) and experiment24,46 (points) for the thermal conductivity
of bulk silicon.

A. Temperature dependence of bulk and nanowire thermal
conductivity

For consistency we optimize the three analytical models
to the same experimental data set for bulk silicon, from
Holland.24,46 Thus, the fit parameters for our Holland model
are identical to those given in the original work,24 while the
parameters for our Callaway and BvKS models are given in
Appendix A. As shown in Fig. 3, the three models all fit the
experimental data very well. To quantify this agreement we
calculate the relative error between each model (κmodel) and
experiment (κexp) in a root-mean-square (rms) sense:

ε =
√√√√1

n

n∑
i=1

(
κmodel − κexp

κexp

)2

, (14)

where n is the number of experimental data points. As shown
in Table I, after optimizing their parameters the rms errors
of these three bulk models are all less than 10%, very good
agreement considering they span 2.5–3 orders of magnitude in
κ and T .

Even though these models can be tuned to agree closely with
each other and with experiments for bulk, the models’ internal
physical assumptions about C, v, and �bulk can be quite

FIG. 4. (Color online) Comparison between models and experi-
ment (Li et al.1) for the thermal conductivity of a silicon nanowire of
diameter 115 nm. The bulk data are from Refs. 24 and 46.

different. This begins to become apparent by comparing the
three models’ predictions for κnano(T ) of a 115-nm-diameter
Si nanowire,1 which tests the models’ assumptions about �bulk

while leaving C and v unchanged. The calculation combines
Eq. (12) with the boundary scattering rule given later in
Eq. (16).

As shown in Fig. 4 and summarized in Table I, for this
nanowire the BvKS model agrees better with the measure-
ments of Li et al.1 than the gray and other analytical models do.
Figure 4 also reveals other insights. For example, for nanowires
at T above around 100 K the prediction of the modified
Callaway model is substantially higher than that of the other
models and the experiments. This is because the Callaway
model’s Debye dispersion overestimates the average phonon
group velocities at moderate and large ω. However, as shown
in Fig. 3 the Callaway model still fits κbulk(T ) very well. This
is accomplished by using overly small �bulk to compensate
for the overly large Cv at moderate and high T . This is
also evident in the comparison of cutoff MFPs between the
BvKS and Callaway models in Table I and is discussed further
below. Thus, because at most T the Callaway model results
in �bulk that are too small, when applied to a nanostructure

TABLE I. Key parameters for the six models of bulk Si. Details for the three analytical models are given in Appendix A. The rms errors
refer to the fits in Figs. 3 and 4. The cutoff MFPs are defined in Eq. (5) and are evident graphically in Fig. 6(a). The MD data is from Henry and
Chen,14 the 1stP data were provided by Esfarjani47 at 300 K using the same methods as Ref. 20, and the gray MFP is calculated from Eq. (6)
using a BvK dispersion. rms errors were not evaluated for the MD and 1stP models because their temperature dependence was not available.

rms errors in κ(T ), ε (%) Cutoff MFPs at 300 K, �α (nm)

Bulk 115-nm nanowire �0.1 �0.5 �0.9 Bandwidth �0.9/�0.1

Callaway (modified) 9.2 50 30.1 134 3530 117
Holland 5.8 20 24.4 343 380 15.6
BvKS 6.5 15 79.3 532 14 000 177
MD 41.6 335 15 700 376
1stP 42.8 547 >6580 >154
Gray 0 23 205 205 205 1
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the Callaway model is too insensitive to further reductions in
�nano by boundary scattering, causing it to overpredict κnano

for a given Lc.

B. Bulk MFP spectra and accumulation functions

To quantify the different models’ internal assumptions
about �bulk, we calculated their bulk MFP spectra and
accumulation functions using Eqs. (4) and (5), shown in
Figs. 5(a) and 5(b), respectively. For comparison, this figure
also shows MFP spectra from MD calculations by Henry and
Chen14 and from 1stP calculations by Esfarjani47 at 300 K,
using the same 1stP method as in Ref. 20 at 277 K. It is
clear from Fig. 5(b) that the MFP spectra for several of the
models extend far beyond 1 μm, so this broad range is better
visualized on the logarithmic MFP scale of Fig. 6 at (a) 300 K
and (b) 1000 K. The gray MFPs were calculated using the
BvKS model and Eq. (6), yielding �gr = 205 nm at 300 K and
44 nm at 1000 K. This gray MFP at 300 K is consistent with
other gray calculations for Si (Refs. 48 and 49), which obtain
values in the range from 260 to 300 nm. Figure 6 also shows
how the MFP spectra are shifted towards shorter �bulk at higher
T , consistent with the increase in the phonon population (i.e.,
�umklapp ∝ T −1, for T near and above TDebye.)

Figures 5 and 6 reveal striking differences between the
various MFP spectra. The models can be roughly grouped
into those with broad distributions and those with tight
distributions. The first group comprises the Callaway, BvKS,
MD, and 1stP models, whose distributions all span more than
two orders of magnitude in “bandwidth” from �0.1 to �0.9

(see also Table I). Within this group the Callaway model
places more emphasis than the other models do on short MFPs.
An important feature of these models is their “long tails”: A
substantial portion of the heat in bulk is conducted by MFPs
much longer than the gray estimate of 205 nm. Specifically,
as summarized in Table II, at 300 K bulk MFPs larger than
1 μm account for 19% of the heat conduction in the Callaway
model, 31% in the MD results of Ref. 14, 39% in the BvKS

FIG. 5. (Color online) (a) MFP spectra and (b) accumulation
functions according to the six models described in the main text. The
MD calculation is from Henry and Chen14 and the 1stP calculation is
from Esfarjani et al.20,47

FIG. 6. (Color online) Thermal conductivity accumulation func-
tions for various models at (a) 300 K and (b) 1000 K, using a
logarithmic MFP scale. Panel (a) represents a superset of Fig. 5(b).
See also Table II. The MD calculation is from Henry and Chen14 and
the 1stP calculation is from Esfarjani et al.,20,47 although the 1stP data
were only available at 300 K and �bulk � 6.58 μm.

model, and 46% of the heat in 1stP results of Ref. 47. Even bulk
MFPs longer than 10 μm may not be completely negligible:
The BvKS and MD calculations both attribute 12% of the
conduction to such long MFPs. The 1stP distribution likely
also would assign over 10% of the heat conduction to MFPs
larger than 10 μm, though the exact value of α at 10 μm
is not available because that calculation stopped at 6.58 μm
(found to correspond to �0.86). If the 1stP calculation for
the long-MFP tail is assumed to follow a simple scattering
law of the form �bulk ∝ ω−n with known n, an analytical
extrapolation function is available (Appendix B).

The second group of models, with tight distributions,
comprises the gray and Holland models. At 300 K in the
Holland model of Si over 68% of the heat is carried by
high-frequency TA phonons, within the very narrow range
of MFPs from 321 to 385 nm. The Holland distribution is even
tighter at 1000 K, as shown in Fig. 6(b), with more than 95% of
the thermal conductivity contributed by phonons with MFPs
from 98 to 116 nm, very much like a gray model.

TABLE II. Fraction of thermal conductivity carried by phonons
with MFPs longer than three selected values of �bulk, in bulk Si at
300 K. These points are a subset of Fig. 6(a). N/A, not available.

1–α(�bulk) (%)

Model �bulk = 0.1 μm �bulk = 1 μm �bulk = 10 μm

Callaway 57 19 5.8
(modified)
Holland 82 5.6 2.3
BvKS 86 39 12
MD 72 31 12
1stP 74 46 N/A
Gray 100 0 0
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Among all six models presented here, considering their
greater sophistication it is reasonable to expect that the MD14

and 1stP20,47 models should be the best approximations of
real Si. It is noteworthy that these two accumulation functions
are also consistent with results from another first-principles
calculation recently reported by Li et al.,21 which found �0.1 =
50 nm and �0.9 = 13 000 nm for Si at 300 K. Among the
other four models presented here, Tables I and II and Figs. 5
and 6 show that the BvKS results are closest to those from
the MD and 1stP calculations, suggesting that among simple
models the BvKS model should be more accurate than the
gray, Holland, and modified Callaway models.

C. Diameter dependence of thermal conductivity for a nanowire

We now use the integral transform of Eq. (12) to calculate
the thermal conductivity of nanowires according to the various
bulk accumulation functions presented above in Fig 6(a). For
the geometry function Bwire, the exact analytical solution
of the Boltzmann transport equation in the relaxation time
approximation has been given by Dingle.36 Dingle’s result
indeed is of the form of Eq. (9), making it appropriate for this
framework, but here for convenience we use a more compact
analytical expression for a diffuse cylindrical wire based on
Matthiessen’s rule,

�−1
nano = �−1

bulk + D−1. (15)

It is readily shown that the errors in this approximation
are never more than 6% compared to the exact result from
Dingle.36 Thus, for a diffuse nanowire Eq. (9) becomes

Bwire(Kn) = (1 + Kn)−1 , (16)

where the Knudsen number is Kn = �bulk/D.
Although the nanowire thermal conductivity for the gray

and analytical (Holland, BvKS, and modified Callaway) mod-
els could readily be calculated using the traditional integral
over frequency, Eq. (7), here we use the integral transform,
Eq. (12). As is suggested in Fig. 1, we emphasize that the
traditional approach of Eq. (7) requires knowledge of 12
functions from the bulk model (6 dispersion relations + 6
MFP functions, although the contribution of the optical modes’
3 + 3 functions is often negligible). On the other hand, the
strength of Eq. (12) is that it requires only one function (the
accumulation function, or equivalently the MFP spectrum),
and thus we can proceed without any explicit knowledge of
the dispersion relation or frequency-dependent MFPs that are
built into the MD14 or 1stP results20,47 for α.

Figure 7 shows the calculated nanowire thermal conduc-
tivities at 300 K, normalized to the bulk thermal conductivity
of 148 W/m K.24 The accumulation function from Esfarjani
et al.20,47 was only available for MFPs � 6.58 μm, at which
point α = 0.86, whereas Eq. (12) requires integration out
to �bulk = ∞. Therefore, we evaluated κnano(D) for both
bounding limits, where for all �bulk > 6.58 μm α either jumps
immediately to 1 or remains constant at 0.86. For clarity, Fig. 7
shows only the average of these two bounds. For this 1stP
result, the difference between the plotted curve and either
bound is less than 0.8% of κbulk for all D � 1 μm, and never
exceeds 7% even for D → ∞.

FIG. 7. (Color online) Normalized thermal conductivity
κnano(D)/κbulk of silicon nanowires calculated using the integral
transform of Eq. (12) and assuming diffuse boundary scattering. See
also Table III. The experimental data are from Li et al.1 As explained
in the main text, the curve for the 1stP spectrum is an average of two
bounding cases, with spread less than ± 0.8% of κbulk for D � 1 μm.

Figure 7 also shows that the transition from bulk to strong
boundary scattering behavior spans a larger range of D for
the Callaway, BvKS, MD, and 1stP models, as compared
to the other two models. This is because these four models
all have similarly broad accumulation functions as seen from
Table I and Fig. 5. The Callaway curve in Fig. 7 is shifted
to smaller D than the BvKS, MD, and 1stP calculations,
because the Callaway model places more emphasis on shorter
MFPs (Figs. 5 and 6). On the other hand, the Holland and
gray models show a steeper transition from bulk to confined
behavior, because both have much tighter MFP distributions
than the other four models.

Table III highlights the differences among the models’
predicted thermal conductivity reductions at three selected
diameters. For example, at D = 10 μm the BvKS model
predicts a reduction (17%) that is comparable to that of the MD
(15%) and 1stP (18.2 ± 4.0%) calculations, because these three

TABLE III. Thermal conductivity reduction of silicon nanowires
at 300 K compared with bulk, at three selected diameters. These points
are a subset of Fig. 7. The range of values for the 1stP calculation
reflects extreme bounds due to lack of information for α beyond
�bulk = 6.58 μm (see text).

Reduction compared to bulk,
(κbulk − κnano)/κbulk (%)

Model D = 0.1 μm D = 1 μm D = 10 μm

Callaway 59 25 9
(modified)
Holland 75 36 6
BvKS 77 43 17
MD 69 36 15
1stP 73.5 ± 0.1 44.0 ± 0.8 18.2 ± 4.0
Gray 67 17 2
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models all have the “longest tails” in their MFP distributions
[Fig. 6(a)]. On the other hand, at this same diameter the gray
(2%) and Holland (6%) models predict substantially smaller
thermal conductivity reductions, because of their tighter MFP
distributions and emphasis on shorter bulk MFPs.

Comparing the model curves in Fig. 7 with the experiments
of Li et al.1 suggests that the modified Callaway model is not
among the top choices. However, additional measurements
of larger-diameter samples (e.g., D = 1–100 μm) would be
needed to discriminate among the other five models. Also,
none of these models can explain the measurement of the
smallest diameter sample (22 nm), nor other recent reports
of sub-Casimir thermal conductivity in Si nanowires.50–52

Assuming that the MD and 1stP models are most likely to
be correct for all diameters, inspection of Fig. 7 and Table III
again suggests that among the four simpler models the BvKS
model is likely to be most accurate.

D. Thickness dependence of in-plane
thermal conductivity for a film

As a second application of the integral transform of Eq. (12),
we consider the in-plane thermal conductivity of a film
of thickness d and diffuse surfaces. We again emphasize
that this calculation uses only the geometry function and
accumulation function for each model and does not require
explicit knowledge of any dispersion relation or scattering
rule �bulk(ω,s). The geometry function Bfilm for this problem
is readily obtained from the well-known solution of the
Boltzmann transport equation by Fuchs and Sondheimer,37,38

Bfilm(Kn) = 1 − 3
8 Kn[1 − 4E3(Kn−1) + 4E5(Kn−1)],

(17)

where En is the nth-order exponential integral and here Kn =
�bulk/d.

The resulting thickness dependence of the film thermal
conductivity is shown in Fig. 8. Because of the scatter in
the experimental data,3,48,53 it is not possible to assess which
of the models is best. Comparing the models to each other,
the major trends are all qualitatively similar to those for the
nanowire calculation in Fig. 7. For example, the Holland and
gray models again show a sharper transition in κnano(D), due
to their narrower distributions and emphasis on shorter MFPs.
Figure 8 also shows the importance of long MFP phonons in
the BvKS, MD, and 1stP models: For a 10-μm-thick film, the
thermal conductivity reductions compared to bulk are 11%
for BvKS, 10% for MD, and 13 ± 5% for 1stP (bounding
scenarios), but only 6% for Callaway, 3% for Holland, and
less than 1% for the gray model.

E. Broadening of κnano compared to α

Comparison of Fig. 6(a) with Figs. 7 and 8 suggests that
the integral transform of Eq. (12) makes the κnano(Lc) function
even broader than the α(�bulk) function. This is fundamentally
due to the smoothing effect of the kernel,54 whether dBt

d�bulk
[Eq. (12)] or Bt [Eq. (10)]. Focusing on the nanowire example,
this broadening effect is more clearly seen in Fig. 9, which plots
the accumulation functions and normalized conductivities
together on the same axes. We show the BvKS model as a

representative of the family of broad-spectrum models (which
includes Callaway, MD, and 1stP), and the gray model as a
representative of the narrow-spectrum models (the other being
Holland). In close analogy to the definition of the cutoff MFPs
�α in Eq. (5), here we define cutoff diameters Dβ such that

β(Dβ) = κnano(Dβ)

κbulk
. (18)

For example, at D = D0.9, the nanowire thermal conductivity
is reduced by 10% compared to bulk. For the BvKS model of
Si nanowires at 300 K, these cutoff diameters are D0.1 = 30 nm
and D0.9 = 29 900 nm, with a “bandwidth” of D0.9/D0.1 = 997,
over five times larger than the MFP bandwidth of �0.9/�0.1 =
177 (Table I). For the gray model, the cutoff diameters are
D0.1 = 24 nm and D0.9 = 1890 nm, with a bandwidth
of D0.9/D0.1 = 79. Clearly, this represents a great deal of
broadening as compared to the gray model’s δ-function MFP
spectrum (�0.9/�0.1 = 1). A similar broadening effect was
also reported in a 1stP calculation for silicon and diamond
nanowires.21

This broadening effect is relevant for current experimental
efforts to measure the MFP distribution,18,19 which use a
plausible though currently unproven postulate that a sharp
cutoff condition can be used to estimate a MFP spectrum from
the raw measurements. Although those experiments18,19 are
based on unsteady heating with varying frequency, here we
consider the analogous postulate for a steady-state problem
with varying Lc. Consider a hypothetical siliconlike material
with a gray MFP spectrum. As shown in Fig. 9, a set
of size-dependent measurements of this material would be
broadened to a bandwidth of D0.9/D0.1 = 79. If this κnano(D)
dataset were then analyzed with a Koh and Cahill-type cutoff
condition,18,19 the estimated MFP spectrum would then also
be broadened to �0.9/�0.1 = 79, much larger than the true
breadth �0.9/�0.1 = 1. A more sophisticated approach to
estimating α(�bulk) from κnano(D) would require careful use of

FIG. 8. (Color online) Normalized in-plane thermal conductivity
κnano(d)/κbulk of silicon thin films, using the integral transform of
Eq. (12) and assuming diffuse boundary scattering. The experimental
data are from Refs. 3,48, and 53. As with Fig. 7, the result for the
1stP spectrum is an average of two bounding cases.
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FIG. 9. (Color online) Comparison of the bulk accumulation
function (dashed lines) and normalized nanowire thermal conductiv-
ity (solid lines) for gray (black) and BvKS (red) models. As indicated
by the arrows, for both models the κnano(D) curves are substantially
broadened as compared to the α(�bulk) curves.

inverse methods,22 although this is known to be challenging for
Fredholm equations of the first kind with smoothing kernels,
such as Eqs. (10) and (12).54

IV. SUMMARY AND CONCLUSIONS

Expressions for the bulk MFP spectrum [Eq. (4)] and accu-
mulation function [Eq. (5)] have been rigorously rederived.13

The key physical insight is to write the kinetic theory integral in
terms of MFP rather than frequency. The major restrictions are
the assumptions that wave confinement effects are negligible,
the bulk dispersion relation and bulk MFPs are approximately
isotropic, and any thermal transients are much slower than the
carrier relaxation times.

Extending this framework to nanostructures leads to the
integral transform of Eq. (10). The inputs to the transform
are the bulk MFP spectrum and a geometry function for
boundary scattering, and the output is the size-dependent
thermal conductivity of the nanostructure. Equation (12) is an
equivalent transform in terms of the accumulation function,
which may be preferred for practical reasons. The most
important feature of these transforms is that they require
no summation over polarizations and no explicit knowledge
of the energy carriers’ dispersion relation or bulk scattering
rules. Rather, the derivation shows that this information is
already incorporated in the bulk MFP spectrum in exactly the
form needed to evaluate the additional effects of boundary
scattering. This major simplification is not possible if the
integrals are expressed in terms of other common quantities
such as frequency, wavelength, or relaxation time.

Thus, the framework of MFP spectra (or accumulation
functions) has two major benefits: visualization of the im-
portant MFPs for bulk thermal conductivity and quantitative
evaluation of a nanostructure’s thermal conductivity given its
bulk MFP spectrum. Therefore, it is hoped that future models

of the bulk thermal conductivity will include at least one plot
of the accumulation function.13–21

To demonstrate these benefits, this paper closes with
a case study of six models for phonons in bulk silicon:
three analytical,23–25 one gray, and two purely numerical.14,20

Among the four simple models, the BvKS model is in closest
agreement with the more sophisticated numerical results of
Henry and Chen,14 Li et al.,21 and Esfarjani et al.20,47 This
suggests that the BvKS model should be preferred over the
gray, Holland, and modified Callaway models for studies
involving phonon boundary scattering.5,13,25 However, further
experimental studies of the MFP spectra,18,19 coupled with
rigorous theoretical interpretation, are also needed.
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APPENDIX A: MODELS OF Si THERMAL CONDUCTIVITY

Table IV summarizes the dispersion relations and scattering
rules for the three analytical models used in the main text.
These models ignore heat conduction by optical phonons and
use simple functions to approximate the phonon dispersion
and scattering rules for acoustic phonons. We use the Holland
model exactly as described in the original work,24 including
the values of all fitting parameters, so it is not discussed further
here. Below we describe our implementation of the Callaway
model23 with a modified umklapp scattering law as well as a
BvKS model.25

The Callaway model is based on a Debye dispersion relation
for a single, triply degenerate phonon branch. The Debye
temperature θD = 530 K is calculated from

θD = (6π2/VP )1/3h̄vs/kB, (A1)

where VP = 3.98 × 10−29 m3 (Ref. 55) is the volume of a
primitive unit cell which contains two Si atoms and vs =
6084 m/s (Ref. 33) is an average sound velocity. The original
Callaway model23 used an umklapp scattering rule with a
lifetime proportional to T −3, which is not appropriate for
temperatures near or above the Debye temperature where the
behavior is close to T −1. Therefore, to adapt this model to
high temperatures we replace Callaway’s original umklapp
scattering law with a common form,27,45,56

τ−1
PP = Pω2T exp

(
−CU

T

)
, (A2)

where P and CU are fitting parameters. For the natural
silicon of interest in this work we neglect Callaway’s k2

correction term, which is only important for isotopically pure
materials.24,27,32 All other model parameters retain the same
form as in the original paper.23 We fit this modified Callaway
model to the experimental data from Holland,24 yielding the
fitting parameters shown in Table V.
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TABLE IV. Summary of thermal conductivity models used in this paper. A, b, CU , and Pi are adjustable parameters.

Scattering rates

Phonon Boundary Impurity Phonon-phonon
Model Dispersion branch τ−1

B τ−1
I τ−1

PP

Callaway (modified) Debye Average vg/b Aω4 Pω2T e−CU /T

Holland Piecewise linear T 0 vg/b Aω4 PT ωT 4

T U vg/b Aω4 PT Uω2/ sinh( h̄ω

kBT
)

L vg/b Aω4 PLω2T 3

BvKS BvK Average vg/b Aω4 Pω2T e−CU /T

The BvKS model is based on the Born–von Karman
dispersion, ω = ωmax sin(πq/2qmax), where qmax = 1.14 ×
1010 m−1 is the Debye cutoff wave vector based on the number
density of primitive unit cells. The BvK dispersion includes the
reduction of group velocity for wave vectors approaching the
boundary of the first Brillouin zone,25,33 although this rolloff is
overestimated for LA modes in Si. As with our implementation
of the Callaway model, in this BvKS model we approximate
the three acoustic branches with a single effective branch based
on an average sound velocity of 6084 m/s and use Eq. (A2) for
phonon-phonon scattering. To the best of our knowledge this
form of scattering time was first discussed by Slack,56 which
is the reason we refer to this model as BvKS.

APPENDIX B: ANALYTICAL ACCUMULATION
FUNCTION FOR LONG MFP PHONONS

We present a convenient analytical form for the α(�bulk)
function for phonons in the long MFP limit. This is a straight-
forward generalization of unpublished results for the case of
ω−2 umklapp scattering recently obtained independently by
Cahill57 and then Freedman and Malen.58 The form below
should prove useful for extrapolating numerical accumulation
functions such as from first-principles calculations,20,47 which
are unable to directly calculate very long MFPs, as well as
interpreting measured accumulation functions.

We consider a general scattering power law,

�bulk = Aω−n, (B1)

where A may depend on T but not ω. This form applies for most
common bulk scattering mechanisms, including impurities
(n = 4), umklapp (n = 2), Akheiser damping59 (n = 0 − 2),
and boundaries (n = 0 or 1, Ref. 5). In a bulk sample usually
n > 0, and thus large MFPs correspond to small ω, justifying
a Debye approximation for the long-MFP tail regardless of
T . Furthermore, for sufficiently small ω it is always true that
h̄ω << kBT , so it is convenient to approximate the Bose-
Einstein function by f ≈ kBT

h̄ω
. Focusing on a single scattering

mechanism with 0 < n < 3, applying this high-temperature

TABLE V. Scattering parameters used in the Callaway and BvKS
models.

A (10−45 s3) P (10−19 sK−1) CU (K) b (mm)

Callaway (modified) 2.73 2.73 173 5.7
BvKS 2.54 1.53 144 5.7

Debye model to Eq. (2) yields

κbulk ∝
∫ ωD

0
ω2−ndω ∝

∫ ∞

�D

�
− 3

n

bulkd�bulk ∝ �1− 3
n

∣∣∞
�D

,

(B2)

where �D = �bulk(ωD) is the minimum MFP, e.g., at the
Debye cutoff frequency. This form diverges for n � 3 in an
infinite crystal, in which case we also allow for MFP truncation
at some maximum length scale Lmax, much larger than �D .

Continuing to the accumulation function α(�bulk) from
Eq. (5), we consider four cases depending on the value of
n. For 0 < n < 3, as in umklapp scattering,

α (�bulk) = 1 −
(

�bulk

�D

)1− 3
n

. (B3)

The analogous result for n = 0 is identical to the gray
assumption discussed in the main text with �gr = �D, so the
accumulation is a Heaviside step function, H (�bulk − �D).
Results for n = 3 and n > 3 are given in Table VI, where the
last expression also assumes Lmax � �bulk � �D. We note
that results equivalent to Eq. (B3) for n = 2 were obtained
previously by Cahill57 and Freedman and Malen.58

To apply these analytical forms to extrapolate the numerical
results20,47 of Fig. 6, we relax the derivation to require a
pure power law only in the limit of small ω, while allowing
arbitrary �bulk(ω) for moderate and large ω. Thus, Eq. (B2)
applies for all �bulk beyond some threshold �T defining
the long tail regime, at which point the accumulation has
the value αT = α(�T ). For example, this point (�T ,αT )
might be the longest MFP that was simulated numerically20,47

or measured experimentally. For compactness we define a
remainder function r(�bulk) = 1 − α(�bulk) to describe the
thermal conductivity contribution beyond �bulk. Repeating the
above analysis gives

r = rT ·
(

�bulk

�T

)1− 3
n

(B4)

TABLE VI. Analytical forms for the accumulation functions in
the high-temperature Debye limit corresponding to Eq. (B2) for
different scattering exponents n.

n = 0 0 < n < 3 n = 3 n > 3

α(�bulk) = H (�bulk − �D) 1 −
(

�bulk
�D

)1− 3
n ln(�bulk/�D )

ln(Lmax/�D )
�

1− 3
n

bulk −�
1− 3

n
D

L
1− 3

n
max
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for �bulk � �T and where rT = 1 − αT . Recognizing that
the point (�T ,rT ) is known, Eq. (B4) shows that the
long MFP tail will still have a clean analytical form even
though the behavior for �bulk < �T may be much more
complicated. Thus, if the power-law exponent in the long-
MFP regime is believed to be known or bounded, Eq. (B4)
should be useful for extrapolating an incomplete accumulation
function.20,47 Equation (B4) holds for 0 < n < 3, while the
analogous derivations for other values of n are similarly
straightforward.

Equation (B4) also suggests convenient transformed axes
for graphically identifying the dominant scattering exponent n

from numerical and/or experimental data. In the long MFP
(i.e., low-frequency) limit, a plot of ln(r) versus ln(�bulk)
should be a straight line with slope 1 − 3

n
, for MFP ranges

where n is approximately constant and 0 < n < 3. Figure 10
gives an example of these transformed axes. For �T we choose
the last available MFP from the 1stP calculation,20,47 6.58
μm, and anchor all curves to this point as indicated by the
solid black circle. This calculation confirms that the long MFP
tails of the Callaway,23 Holland,24 and BvKS25,33 models all
collapse onto the same n = 2 behavior, with a shape matching
that obtained previously.57,58 The MD results from Henry and
Chen14 have a slightly stronger exponent of n ≈ 2.1 in this
regime, while the 1stP results from Esfarjani et al.20,47 are less
clear but also appear to have n of around 2. Thus, the good

FIG. 10. (Color online) Remainder functions r(�bulk) =
1 − α(�bulk) for different models in the long MFP region for Si at
300 K. All six curves are referenced to the same arbitrary tail point
�T = 6.58 μm.

agreement between all six curves of Fig. 10 in the long MFP
regime confirms that Eqs. (B3) and (B4) should be a reliable
basis for analytical extrapolation.
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