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Random evolution approach to universal conductance statistics
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It is shown that the Dorokhov-Mello-Pereyra-Kumar equation can be solved by propagating an ordinary
stochastic differential equation. Such a random evolution approach allows any transport statistics to be easily
calculated from the ballistic to localization regime for an arbitrary number of channels. As an example, a
disordered wire with reflectionless contacts is considered. The conductance distribution, transmission channel
density, and shot-noise suppression are fully analyzed.
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Quantum transport through a disordered wire is one of
the fundamental problems in mesoscopic physics. At low
enough temperatures, electrons can travel over a distance
of the order of the localization length ξ without undergoing
inelastic scattering. The conductance statistics in such phase-
coherent conductors displays many interesting features. The
most famous example is universal conductance fluctuations
(UCFs):1 The amplitude of the conductance variation from
sample to sample is of the order of e2/h and it does not depend
on the size of the sample, its material properties, and average
conductance.

Since the early experimental observations of UCFs in
normal metals,2 a large body of work has been devoted to
understanding the basic physics of mesoscopic conductors.
The universality in the conductance statistics suggested that
it could be described by a relatively simple Hamiltonian and
led to the development of a random-matrix theory (RMT)
of quantum transport.3–6 In this approach one considers a
wire with N conducting channels and calculates the N × N

transmission matrix t based on the flux conservation and
symmetry of the system with respect to time reversal. All the
physical characteristics can be evaluated once the eigenvalues
T1,T2, . . . ,TN of the product t t† are known. For example, the
conductance (in units of G0 = 2e2

h
) is given by the transmission

coefficient g = Tr(t t†) = ∑
n Tn. Introducing another set of

variables λn = 1−Tn

Tn
, one can show that the probability dis-

tribution P (λ,L) as a function of length L of the disordered
wire satisfies the Dorokhov-Mello-Pereyra-Kumar (DMPK)
equation4,6

∂P

∂L
= 2

ξ

N∑
i=1

∂

∂λi

[
λi(1 + λi)J

∂

∂λi

P

J

]
, (1)

where J = �i<j |λi − λj |β . The symmetry index is β = 1
for systems with time-reversal symmetry, β = 2 if the time-
reversal symmetry is broken, and β = 4 if the time-reversal
symmetry is conserved but the spin-rotational symmetry is
broken.

The DMPK equation is the starting point to study the
transition from a metallic to insulating regime, weak local-
ization, effects of point contacts or tunnel barriers, statistics
of metal-superconductor junctions, and shot-noise reduction.
An exact solution of the DMPK equation is only known for
β = 2.7 Most of the results have been obtained in the large-N
limit for the metallic and deep localization regimes (see, e.g.,

Ref. 6 and references therein). The conductance probability
distribution P (g) at small N was calculated by a Monte
Carlo technique based on mapping Eq. (1) to a Schrödinger
equation for N interacting fermions.8 An asymptotic analytical
form of P (λ,L) for arbitrary N was found in Ref. 9 and
used in Ref. 10 to study the transmission channel density
ρ(T ) ≡ 〈∑n δ(T − Tn)〉.

In spite of this progress, the crossover between the metallic
and localization regimes and the statistical properties of
systems with a finite number of propagating modes are still not
well understood. Experimental observation of the anomalous
conductance distribution in gold wires was reported in Ref. 11.
Numerical calculations of P (g) showed asymmetric broad dis-
tributions which agreed with the one-side log-normal behavior
obtained from the maximum-entropy ansatz.8,12,13 These re-
sults concur with the critical conductance distribution at an in-
teger quantum Hall transition,14,15 suggesting that anomalous
distribution may be independent on the microscopic details.
Transport studies in the framework of the Anderson model also
indicate that P (g) in quasi-one-dimensional conductors differ
quantitatively from the distributions in systems with stronger
disorder.16,17 At the same time, recent measurements of the
transmission channel density in nanoscale contacts show that
the transport statistics even at small g may be unexpectedly
close to RMT predictions in the universal diffusive limit
1 � g � N .18

Strong conductance fluctuations have been observed also in
semiconductor nanowire heterostructures.19 The conductance
in random wires with a moderate number of channels has
been calculated with the effective mass approximation,20 tight-
binding models,21–24 and an ab initio approach.25 These studies
display a very similar behavior: var(g) reaches a maximum
value close to the classical result 2/15 (Refs. 3 and 5) at L of
the order of the mean free path le and shows the same universal
trend at larger L, which can be characterized by a single length
parameter le (or ξ ). Its energy dependence correlates with the
band structure of the pristine wire,21,26–28 suggesting that the
transport statistics can be explained by the N -channel model.

In this paper we present a general scheme for solving the
DMPK equation with time-reversal symmetry in a wide range
of its parameters. Our method is based on the observation
that Eq. (1) is equivalent to a random evolution defined by a
N -dimensional Riccati-type matrix equation

du

dx
= uH †u − H, (2)
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with a symmetric initial condition uT (0) = u(0) and δ-
correlated stochastic coefficients

Hij = Hji, 〈H 〉 = 0, 〈Hij (x)Hkl(x
′)〉 = 0, (3)

〈Hij (x)H ∗
kl(x

′)〉 = D(δikδjl + δilδjk)δ(x − x ′), (4)

where 〈· · ·〉 stands for averaging over realization.
To establish this connection, we introduce the Hermitian

matrixT = 1 − uu† and show that the Fokker-Planck equation
for its eigenvalues coincides with Eq. (1). We note that, since
the propagation in Eq. (2) preserves the symmetry, uT = u

and T u = uT T for any realization of H . Let F (t1,t2, . . .) ≡
F (t) be an arbitrary real-valued function of tn ≡ Tr T n. From
Eq. (2) we obtain

d

dx
〈F 〉 =

∑
n

n

〈
∂F

∂tn
Tr(T nuH †)

〉
+ c.c. (5)

The averaging is performed as usual by substituting all the
functions of u(x) on the right hand side by the corresponding
formal integral solutions

∫ x
. . . H (x ′)dx ′ and taking advantage

of the δ correlator in Eq. (4) to eliminate the integrals.
We obtain various terms in the form 〈. . . Tr(T n)Tr(T m)〉
or 〈. . . Tr[(u†T n)(T mu)T ]〉, where . . . stands for the first or
second partial derivatives of F . Because of the symmetry of u,
the latter expression can be reduced to 〈. . . (tn+m − tn+m+1)〉
and we arrive at

d

dx
〈F 〉 = D

〈∑
n
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+ 2
∑
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n
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∂F
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−

∑
n

n

n∑
m=1

tn−m+1tm
∂F

∂tn

〉
.

(6)

Equation (6) is equivalent to a Fokker-Planck equation for the
probability distribution on the infinite set of {tn}. These are not
independent and can be expressed as tn(λ) ≡ ∑N

i=1(1 + λi)−n

in terms of N variables λi . Then, one can easily check that a
solution of Eq. (6) is given by

〈F (t)〉x =
∫

dλF (t(λ))P (λ,Dξx), (7)

where P satisfies Eq. (1) with β = 1. This result shows that
any statistics of the transmission eigenvalues in the DMPK
equation can be calculated by averaging the corresponding
function of the eigenvalues of T (i.e., uu†) in Eq. (2) over
realizations of H .

The Riccati-type equation appears naturally in the frame-
work of quantum scattering theory. As shown in Ref. 29,
the problem of wave transmission through a random media
can be generally reduced to a initial-value problem and the
reflection coefficient satisfies a stochastic Riccati equation
relative to the size of the disordered region. In the present case,
Eq. (2) can be shown to describe the evolution of the reflection
matrix in a continuous 2N × 2N matrix model of N channels
with unit group velocity and the off-diagonal backscattering
term given by Eqs. (3) and (4). HT = H then becomes a

necessary condition to ensure the S-matrix symmetry (a part
of which is uT = u) in the absence of magnetic field. The
kinetic mean free path in this model le = 1

2D(N+1) and Eq. (7)

gives ξ = 2le(N + 1), in agreement with RMT.6 In this
connection, we should mention other microscopic models,30,31

which provide an underlying stochastic Hamiltonian for
the DMPK equation. However, to our best knowledge, an
equivalent stochastic dynamics has never been used for
solving Eq. (1).

In the rest of this paper, we apply the random evolution
approach to calculate the most important statistical character-
istics in the crossover and localization regimes. All the results
are presented in terms of the dimensionless length s ≡ 2L/ξ .
In practice we use a discrete analog of the δ-correlated noise
and rescale H,x in order to obtain unit propagation steps.
The numerical solution of the matrix Riccati equation is very
stable and, unlike the transfer-matrix method, the dynamical
range problem32 does not arise in this case. Physical solutions
of Eq. (2) remain uniformly bounded, |uij | < 1, and can be
safely propagated over large distances for eventually any N .
Each realization starts from u(0) = 0, which corresponds to the
initial probability distribution �δ(λi) in the DMPK equation (a
piece of disordered wire of length L between two ideal leads).
Other initial conditions are also possible but not considered
here. The simulations proceed as follows. (1) Set u = 0. (2)
Generate N (N + 1) independent random numbers {xνμ,yνμ},
ν � μ from N (0,
) and construct a symmetric N × N matrix,
H : Hνν = (xνν + iyνν), Hνμ = Hμν = 1√

2
(xνμ + iyνμ), ν <

μ. (3) Propagate Eq. (2) over the unit x interval. (4) Repeat
steps (2) and (3) M times and obtain a realization of {Tn}
at s = 2M
 (as well as at all the intermediate s < 2M
).
Repeat steps (1)–(4) Ns times to accumulate statistics and
calculate desired distributions or average values. The choice
of the discretization parameter 
 depends on the problem.

 ∼ 0.01 is found to be small enough to mimic the random
evolution in the diffusion regime. Smaller 
 may be needed at
s > 2. In the calculations below we used 
 ∼ 10−2–10−3 and
Ns ∼ 105–106.

The conductance density distribution. Figure 1 shows the
evolution of the density distribution P (g) in a wire with N = 5
propagating channels from a Gaussian in the quasiballistic
regime to the one-side log-normal distribution in the crossover
regime. The distributions at selected 〈g〉 values in the insets
reproduce the previous results of the Monte Carlo simulation
for N = 6.8 Our results show that the system “forgets”
the initial conditions at 〈g〉 ∼ 1 (Thouless criterion) and
the density distribution P (g) (at given 〈g〉) becomes nearly
independent on N . Note, however, that the L dependence of
〈g〉 may be still quite different in this regime.

The variance of the conductance var(g) as a function of s is
shown in Fig. 2 for different numbers of propagated channels.
For comparison we also show var(g) calculated from the
exact probability distribution33 for N = 1 and the asymptotic
approximation9 for N = 2–5. The latter demonstrates an
unexpectedly good accuracy far beyond the metallic regime,
which provides support for the recent calculations of the
transmission channel density.10 The inset in Fig. 2 shows on an
enlarged scale the crossover regime where var(g) approaches
the universal value 2/15 in the large-N limit. The straight line
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FIG. 1. The probability distribution P (g) in a wire with N = 5
channels at various s. The arrows show the direction of increasing
s from the quasiballistic (s = 0.06, 〈g〉 ≈ 4.2) to weak localization
(s = 3.2, 〈g〉 ≈ 0.28) regime. Insets: P (g) at four selected 〈g〉 values
in the crossover regime. The distributions for N = 5 (solid lines) and
N = 20 (open squares) coincide within a few percent.

represents the universal asymptote 2
15 − 4

315 s obtained from
the nonlinear sigma model.35

The transmission channel density ρ(T ) carries more de-
tailed information and allows any linear statistics

∑N
i=1 f (Ti)

on the transmission eigenvalues {Ti} to be evaluated. In
the universal diffusive regime, RMT predicts the bimodal
distribution

ρ(T ) = 〈g〉
2T

√
1 − T

, (8)

with an appropriate cutoff at small T to ensure the normaliza-
tion

∫ 1
0 ρ(T )dT = N . One of the consequences of Eq. (8) is the

1/3 shot-noise suppression, which is another striking universal
property of the diffusive conductors.36 Our calculations show
that a close-to-universal regime can be actually realized in a

FIG. 2. The variance of the conductance var(g). The number
of channels varies from N = 1 (the lowest curve) to N = 30 (the
top curve). var(g) calculated from the exact (Ref. 33) (N = 1) and
asymptotic (Ref. 9) (N = 2–5) probability distributions are shown for
comparison (black squares). Inset: var(g) is approaching the universal
asymptote 2

15 − 4s

315 in the large-N limit.

FIG. 3. (Color online) The normalized transmission channel
density ρ̃(T ) = 1

〈g〉
〈∑

n δ(T − Tn)
〉
. (a)–(c) Evolution of ρ̃(T ) in the

interval s ∈ [0 : 1] (the step size 
s = 0.1) for N = 2, 5, and 10.
(d) The “closest-to-universal” density is approaching the bimodal
distribution 1

2T
√

1−T
at increasing N (see the text). The number of

channels N is shown in the same order (from the top down) as the
corresponding curves.

thin wire with a small number of conducting channels. Figure 3
shows the evolution of the normalized density ρ̃ ≡ ρ/〈g〉
from a quasiballistic density peak around T = 1 at s = 0.1
to the bimodal distribution (red thicker line) in the crossover
regime. This behavior correlates with Fig. 2: ρ̃ approaches the
bimodal distribution at the same s ≈ smax where the variance of
the conductance reaches a maximum value. Figure 3(d) also
demonstrates that the channel density at smax becomes very
close to the bimodal distribution even at small N ∼ 5–10. ρ̃

“dwells” in the vicinity of the universal distribution within
a finite s interval ∼[smax,1] and at larger s starts changing
towards developing a localization peak around T = 0 (not
shown).

The shot-noise power is another important transport
characteristics. In the absence of correlation among the
carriers, the charge transfer can be considered to be a
Poisson process with the shot-noise power PPoisson = 2eI

proportional to the time-averaged current. In a phase-coherent
conductor, the quantum theory predicts the noise reduction
P/PPoisson = 1

〈g〉 〈
∑

n Tn(1 − Tn)〉, which is sensitive to the

carrier statistics.36,37 P thus contains different information on
the quantum transport which is not given by the conductance
and can be directly measured in the experiments. The results
of calculations for N = 10 and 50 are presented in Fig. 4. The
ratio P/PPoisson reaches the universal value 1/3 at s ≈ smax

and then shows a nearly linear moderate growth which slows
down in the localization regime. The inset in Fig. 4 shows
in more detail the shot-noise suppression at various N in
the crossover regime as a function of length s and average
conductance 〈g〉. P/PPoisson is seen to approach the large-N
asymptote (thicker line), obtained from the leading terms in
the perturbation expansion.34

In conclusion, we have shown that any statistics of the
transmission eigenvalues in the DMPK equation can be
calculated by solving a single Riccati equation. The random
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FIG. 4. (Color online) Suppression of the Poisson shot noise in a
wire with 10 and 50 channels. Insets: N dependence of P/PPoisson in
the crossover regime. The arrows show the direction of increasing N .
The thicker (red) lines correspond to the g−1 perturbation expansion
(Ref. 34).

evolution approach makes it possible to obtain a full statistical
description of quasi-one-dimensional conductors from the

ballistic to localization regime. Examples of such calculations
have been presented for a disordered wire sandwiched between
ideal leads. We have obtained the conductance distribution,
transmission channel density, and have calculated the conduc-
tance fluctuations and shot-noise reduction in a wide range of
wire sizes. Our results reproduce all the previously reported
data and predict a number of different general properties.
We have also found that universal statistical behavior can
be observed in thin quantum wires with a small number
of propagated channels. Such a situation can be realized in
one-dimensional nanomaterials which have recently attracted
much attention for their interesting physical properties and
wide range of potential applications. Apart from its theoretical
interest, a detailed understanding of the statistical behavior of
these systems may become important in addressing practical
issues related to sample-to-sample variability.38 In this paper,
we have only considered a spinless system with time-reversal
symmetry. A similar approach can be developed for other types
of symmetries. We can show that the random evolution for
the DMPK equation with β = 2 (β = 4) is defined by the
Riccati equation with a general complex (self-dual complex
quaternion) δ-correlated coefficient matrix. Further details are
beyond the scope of this paper and will be given elsewhere.
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8L. S. Froufe-Pérez, P. Garcı́a-Mochales, P. A. Serena, P. A. Mello,
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34A. M. S. Macêdo, Phys. Rev. B 49, 1858 (1994).
35A. D. Mirlin, A. Müller-Groeling, and M. R. Zirnbauer, Ann. Phys.

(NY) 236, 325 (1994).
36C. W. J. Beenakker and M. Büttiker, Phys. Rev. B 46, 1889
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